CN112110740A - 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品 - Google Patents

一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品 Download PDF

Info

Publication number
CN112110740A
CN112110740A CN202011031530.4A CN202011031530A CN112110740A CN 112110740 A CN112110740 A CN 112110740A CN 202011031530 A CN202011031530 A CN 202011031530A CN 112110740 A CN112110740 A CN 112110740A
Authority
CN
China
Prior art keywords
alumina
based composite
preparing
situ reaction
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011031530.4A
Other languages
English (en)
Other versions
CN112110740B (zh
Inventor
汪永清
洪毓鸿
白明敏
施德太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdezhen Ceramic Institute
Original Assignee
Jingdezhen Ceramic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdezhen Ceramic Institute filed Critical Jingdezhen Ceramic Institute
Priority to CN202011031530.4A priority Critical patent/CN112110740B/zh
Publication of CN112110740A publication Critical patent/CN112110740A/zh
Application granted granted Critical
Publication of CN112110740B publication Critical patent/CN112110740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种原位反应制备氧化铝基复合生物陶瓷材料的方法,以氧化铝、3mol%Y2O3稳定氧化锆和硝酸镨为原料,经球磨混料、加热旋转干燥而得到前驱物粉料;然后将所述前驱物粉料进行造粒、干压成型得到的陶瓷生坯,在空气气氛下以5~15℃/min升温至1400~1600℃,保温时间为0.5~1.5h,随炉冷却后即制得原位生长板状晶增韧的氧化铝基复合生物陶瓷材料。此外,还公开了利用上述制备方法制得的产品。本发明工艺简便,采用常压低温烧结,原位合成的增韧相均匀分散且与基体界面结合良好,显微结构均匀,致密度高,从而具有优异的力学性能,并适合于工业化大批量生产。

Description

一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制 得的产品
技术领域
本发明涉及医用生物材料技术领域,尤其涉及一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品。
背景技术
氧化铝(Al2O3)陶瓷硬度高,并具有优异的耐磨及耐腐蚀性、生物相容性及生物惰性,因此被认为是较理想的人工关节假体,但也存在着脆性高及可靠性低等结构陶瓷所固有的缺点,使得其作为生物陶瓷在应用上受到了限制。
单相氧化铝陶瓷的强度通常在400~500MPa,断裂韧性在3~4MPa·m1/2左右。然而,在常温下材料呈现出脆性或者韧性是受到材料的成分、结构、受力环境和条件等多因素综合影响的,而材料内部不同的显微结构在宏观外力作用下,也会表现出不同的力学性能。因此,通过对材料断裂机理的研究,借以有效调控材料的显微结构并最终实现材料性能的改善已成为材料科学研究中一项重要的研究内容。
近年来的研究主要通过两种方法来提高陶瓷材料的韧性和可靠性:一是通过引入新工艺制备陶瓷材料,从而控制陶瓷材料的微观结构,减少内部缺陷尺寸,来提高陶瓷材料机械性能。二是采用各种增韧方法来改善陶瓷材料对外加应力的分散机制,从而使材料对缺陷的敏感性降低。
研究发现:在氧化铝基体中引入SiC晶须,可以大幅度提高材料的断裂韧性,但由于晶须在批量生产、分散以及后续的烧结过程中,结构容易被破坏,而且加入的晶须与基体在化学上的相容性和物理上的热膨胀系数存在差异,因此需要对晶须进行表面改性;同时还由于成型密度低,不易烧结致密,需采用特殊的烧结方法,所以此方法的应用受到了限制。而原位生长板状晶免去了因使用晶须在工艺上造成的困难,相对于单相氧化铝陶瓷虽然在力学性能上有大幅改善,但仍存在着液相和晶种在氧化铝基体中不易均匀分散、与基体的结合性能不好、需要热压烧结等问题,不利于实现工业化大批量生产。
发明内容
本发明的目的在于克服现有技术的不足,提供一种工艺简便、烧结温度低、增韧相均匀分散且与基体界面结合良好的原位反应制备氧化铝基复合生物陶瓷材料的方法,以获得力学性能优异的生物陶瓷材料,并适合于工业化大批量生产。本发明的另一目的在于提供利用上述原位反应制备氧化铝基复合生物陶瓷材料的方法制得的产品。
本发明的目的通过以下技术方案予以实现:
本发明提供的一种原位反应制备氧化铝基复合生物陶瓷材料的方法,包括以下步骤:
(1)按照质量比3Y-ZrO2∶(Al2O3+Pr2O3)=1∶4~9,其中Al2O3∶Pr2O3=15~89∶1,以无水乙醇为介质,将氧化铝、3mol%Y2O3稳定氧化锆和硝酸镨进行湿法球磨混料,得到前驱物浆料;
(2)采用旋转蒸发干燥仪对所述前驱物浆料进行加热旋转干燥后,过筛得到前驱物粉料;
(3)将所述前驱物粉料进行造粒、干压成型,得到陶瓷生坯;
(4)所述陶瓷生坯在空气气氛下以5~15℃/min升温至1400~1600℃,保温时间为0.5~1.5h,随炉冷却后即制得原位生长板状晶增韧的氧化铝基复合生物陶瓷材料。
为进一步控制所得生物陶瓷的基体粒径,本发明所述步骤(1)中加入聚丙烯酸或聚丙烯酸铵作为分散剂,所述分散剂的用量为氧化铝固含量的1~3wt%。此外,所述步骤(1)中球磨的转速为300~400r/min,球磨时间为6~10h。
上述方案中,本发明所述步骤(2)前驱物浆料以50~80℃的水浴温度持续加热旋转干燥1~4h。
为进一步提高陶瓷生坯的致密度,本发明所述步骤(3)造粒中加入聚乙烯醇作为粘结剂,其加入量为前驱物粉料的0.5~1.5wt%,以浓度为5%的聚乙烯醇水溶液形式加入。
利用上述原位反应制备氧化铝基复合生物陶瓷材料的方法制得的产品,由Al2O3基体、均匀分散在Al2O3基体中的ZrO2晶粒和原位合成的增韧相板状六铝酸镨晶粒构成,并且所述板状六铝酸镨晶粒内有弥散的氧化锆颗粒。
上述方案中,本发明所述板状六铝酸镨晶粒的长度为0.5~0.8μm,长径比为5~10。
本发明具有以下有益效果:
(1)本发明所选用的硝酸镨作为镨源,在烧结过程中与氧化铝原位固相反应生成板状六铝酸镨晶粒,通过湿法球磨保证了前驱物中的均匀分布,同时借助旋转蒸发仪可以有效克服在传统烘箱干燥中发生的偏析。
(2)本发明中板状六铝酸镨晶粒在烧结过程中原位生长,与Al2O3基体界面结合紧密,既避免了直接加入板状晶对致密度及力学性能的不良影响,又不会出现通过引入玻璃相各向异性生长而造成的大量晶间气孔,还可以控制板状晶的生成数量。
(3)本发明中板状晶在断裂过程中为台阶状穿晶断裂,同时板状晶内有弥散的氧化锆颗粒起到裂纹钉扎、偏转的作用,避免了传统板状晶的脆性穿晶平面断裂,提高了材料的强度(抗弯强度为620~850MPa)和韧性(断裂韧性为4~7MPa·m1/2)。
(4)本发明采用常压低温烧结,显微结构均匀,致密度高,力学性能优异。
(5)本发明所采用的制备工艺简单,降低了生物陶瓷的制备成本,适合于工业化批量生产。
附图说明
下面将结合实施例和附图对本发明作进一步的详细描述:
图1是本发明实施例制备的氧化铝基复合生物陶瓷材料的XRD图谱;
图2是本发明实施例制备的氧化铝基复合生物陶瓷材料的扫描电镜断口形貌图。
具体实施方式
实施例一:
本实施例一种原位反应制备氧化铝基复合生物陶瓷材料的方法,其步骤如下:
(1)称取89g氧化铝、10g 3mol%Y2O3稳定氧化锆、1g硝酸镨、0.89g聚丙烯酸,以50mL无水乙醇为介质,加入行星式球磨罐中以300r/min转速球磨混合8h,得到前驱物浆料;
(2)将上述前驱物浆料倒入旋转蒸发干燥仪以60℃的水浴温度持续加热旋转干燥2h后,过100目筛得到前驱物粉料;
(3)上述前驱物粉料用浓度为5%的聚乙烯醇水溶液(聚乙烯醇的用量为混合粉料的0.5wt%)造粒,然后在20MPa压力下干压成型而得到陶瓷生坯;
(4)上述陶瓷生坯在高温炉中空气气氛下,以10℃/min升温至1500℃,保温1.5h,随炉冷却后即制得原位生长板状晶增韧的氧化铝基复合生物陶瓷材料。
实施例二:
本实施例一种原位反应制备氧化铝基复合生物陶瓷材料的方法,其步骤如下:
(1)称取79g氧化铝、20g 3mol%Y2O3稳定氧化锆、1g硝酸镨、1.58g聚丙烯酸,以50mL无水乙醇为介质,加入行星式球磨罐中以350r/min转速球磨混合8h,得到前驱物浆料;
(2)将上述前驱物浆料倒入旋转蒸发干燥仪以60℃的水浴温度持续加热旋转干燥1h后,过100目筛得到前驱物粉料;
(3)上述前驱物粉料用浓度为5%的聚乙烯醇水溶液(聚乙烯醇的用量为混合粉料的1wt%)造粒,然后在20MPa压力下干压成型而得到陶瓷生坯;
(4)上述陶瓷生坯在高温炉中空气气氛下,以10℃/min升温至1600℃,保温1h,随炉冷却后即制得原位生长板状晶增韧的氧化铝基复合生物陶瓷材料。
实施例三:
本实施例一种原位反应制备氧化铝基复合生物陶瓷材料的方法,其步骤如下:
(1)称取75g氧化铝、20g 3mol%Y2O3稳定氧化锆、5g硝酸镨、2.25g聚丙烯酸,以50mL无水乙醇为介质,加入行星式球磨罐中以400r/min转速球磨混合8h,得到前驱物浆料;
(2)将上述前驱物浆料倒入旋转蒸发干燥仪以60℃的水浴温度持续加热旋转干燥2h后,过100目筛得到前驱物粉料;
(3)上述前驱物粉料用浓度为5%的聚乙烯醇水溶液(聚乙烯醇的用量为混合粉料的1.5wt%)造粒,然后在20MPa压力下干压成型而得到陶瓷生坯;
(4)上述陶瓷生坯在高温炉中空气气氛下,以15℃/min升温至1550℃,保温1.5h,随炉冷却后即制得原位生长板状晶增韧的氧化铝基复合生物陶瓷材料。
实施例四:
本实施例一种原位反应制备氧化铝基复合生物陶瓷材料的方法,其步骤如下:
(1)称取77g氧化铝、20g 3mol%Y2O3稳定氧化锆、3g硝酸镨、0.77g聚丙烯酸,以50mL无水乙醇为介质,加入行星式球磨罐中以400r/min转速球磨混合10h,得到前驱物浆料;
(2)将上述前驱物浆料倒入旋转蒸发干燥仪以60℃的水浴温度持续加热旋转干燥3h后,过100目筛得到前驱物粉料;
(3)上述前驱物粉料用浓度为5%的聚乙烯醇水溶液(聚乙烯醇的用量为混合粉料的0.5wt%)造粒,然后在20MPa压力下干压成型而得到陶瓷生坯;
(4)上述陶瓷生坯在高温炉中空气气氛下,以5℃/min升温至1500℃,保温1.5h,随炉冷却后即制得原位生长板状晶增韧的氧化铝基复合生物陶瓷材料。
实施例五:
本实施例一种原位反应制备氧化铝基复合生物陶瓷材料的方法,其步骤如下:
(1)称取77g氧化铝、20g 3mol%Y2O3稳定氧化锆、3g硝酸镨、0.77g聚丙烯酸,以50mL无水乙醇为介质,加入行星式球磨罐中以400r/min转速球磨混合10h,得到前驱物浆料;
(2)将上述前驱物浆料倒入旋转蒸发干燥仪以60℃的水浴温度持续加热旋转干燥2h后,过100目筛得到前驱物粉料;
(3)上述前驱物粉料用浓度为5%的聚乙烯醇水溶液(聚乙烯醇的用量为混合粉料的0.5wt%)造粒,然后在20MPa压力下干压成型而得到陶瓷生坯;
(4)上述陶瓷生坯在高温炉中空气气氛下,以10℃/min升温至1550℃,保温1.5h,随炉冷却后即制得原位生长板状晶增韧的氧化铝基复合生物陶瓷材料。
本发明实施例制备的氧化铝基复合生物陶瓷材料,如图1所示,其特征衍射峰与Al2O3标准卡片(JCPDS编号97-005-2024)、ZrO2标准卡片(JCPDS编号97-007-9197)、Pr0.833Al11.833O19标准卡片(JCPDS编号97-007-4317)相一致,表明晶粒发育良好,不存在杂质相。ZrO2晶粒以及原位合成的增韧板状Pr0.833Al11.833O19晶粒均匀分散在Al2O3基体中。
如图2所示,板状Pr0.833Al11.833O19晶粒的长度约为0.6μm,长径比约为8。板状晶在基体中分散均匀,且与基体界面结合良好,板状晶粒内有弥散的氧化锆颗粒。从图2中还可以看出,所制备的陶瓷材料的断裂方式为:在基体上以沿晶断裂为主、在自增韧板状晶处为先裂纹桥连和板状晶拔出,超过板状晶断裂极限后发生穿晶断裂。这种混合断裂模式能显著消耗裂纹扩展的能量,从而有效提高生物陶瓷材料的力学性能。
本发明实施例制备的陶瓷材料经磨削、抛光等工艺得到成品样品,采用三点弯曲法,用WOW-20电子万能试验机以跨度30mm,十字头速度0.5mm/min,对4mm×3mm×30mm试样进行弯曲强度(σ)测试。每个试样用金刚石膏(3μm)抛光,边缘倒角(约45°)。样品的抗弯强度由下式给出:
Figure BDA0002703859850000061
式中,σ为抗弯强度(MPa),F为断裂载荷(N),b为试样宽度(mm),h为试样厚度(mm),L为跨距(mm)。
根据GB/T 23806—2009单边预裂纹梁(SEPB)法,对尺寸为3mm×4mm×36mm的试样进行断裂韧性试验。在其中心引入一个切口深度A相对长度为A/W≈0.4的尖锐V形切口,以获得用于断裂韧性评估的单边V形切口梁(SEVNB)结构。对每种材料共5个试样进行测试,结果为平均值。
测得的性能指标如表1所示。
表1本发明实施例制备的陶瓷材料的性能指标
Figure BDA0002703859850000062

Claims (7)

1.一种原位反应制备氧化铝基复合生物陶瓷材料的方法,其特征在于包括以下步骤:
(1)按照质量比3Y-ZrO2∶(Al2O3+Pr2O3)=1∶4~9,其中Al2O3∶Pr2O3=15~89∶1,以无水乙醇为介质,将氧化铝、3mol%Y2O3稳定氧化锆和硝酸镨进行湿法球磨混料,得到前驱物浆料;
(2)采用旋转蒸发干燥仪对所述前驱物浆料进行加热旋转干燥后,过筛得到前驱物粉料;
(3)将所述前驱物粉料进行造粒、干压成型,得到陶瓷生坯;
(4)所述陶瓷生坯在空气气氛下以5~15℃/min升温至1400~1600℃,保温时间为0.5~1.5h,随炉冷却后即制得原位生长板状晶增韧的氧化铝基复合生物陶瓷材料。
2.根据权利要求1所述的原位反应制备氧化铝基复合生物陶瓷材料的方法,其特征在于:所述步骤(1)中加入聚丙烯酸或聚丙烯酸铵作为分散剂,所述分散剂的用量为氧化铝固含量的1~3wt%。
3.根据权利要求1或2所述的原位反应制备氧化铝基复合生物陶瓷材料的方法,其特征在于:所述步骤(1)中球磨的转速为300~400r/min,球磨时间为6~10h。
4.根据权利要求1所述的原位反应制备氧化铝基复合生物陶瓷材料的方法,其特征在于:所述步骤(2)前驱物浆料以50~80℃的水浴温度持续加热旋转干燥1~4h。
5.根据权利要求1所述的原位反应制备氧化铝基复合生物陶瓷材料的方法,其特征在于:所述步骤(3)造粒中加入聚乙烯醇作为粘结剂,其加入量为前驱物粉料的0.5~1.5wt%,以浓度为5%的聚乙烯醇水溶液形式加入。
6.利用权利要求1-5之一所述原位反应制备氧化铝基复合生物陶瓷材料的方法制得的产品,其特征在于:由Al2O3基体、均匀分散在Al2O3基体中的ZrO2晶粒和原位合成的增韧相板状六铝酸镨晶粒构成,并且所述板状六铝酸镨晶粒内有弥散的氧化锆颗粒。
7.根据权利要求5所述的原位反应制备氧化铝基复合生物陶瓷材料的方法制得的产品,其特征在于:所述板状六铝酸镨晶粒的长度为0.5~0.8μm,长径比为5~10。
CN202011031530.4A 2020-09-27 2020-09-27 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品 Active CN112110740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011031530.4A CN112110740B (zh) 2020-09-27 2020-09-27 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011031530.4A CN112110740B (zh) 2020-09-27 2020-09-27 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品

Publications (2)

Publication Number Publication Date
CN112110740A true CN112110740A (zh) 2020-12-22
CN112110740B CN112110740B (zh) 2022-11-25

Family

ID=73798241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011031530.4A Active CN112110740B (zh) 2020-09-27 2020-09-27 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品

Country Status (1)

Country Link
CN (1) CN112110740B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679216A (zh) * 2020-12-25 2021-04-20 西安理工大学 一种液相旋蒸法制备四方相BaTiO3/HA复合纳米颗粒的方法
CN113149619A (zh) * 2021-05-14 2021-07-23 景德镇陶瓷大学 一种高强度低介电损耗氧化铝陶瓷基片
CN118026654A (zh) * 2024-04-11 2024-05-14 北京国械堂科技发展有限责任公司 一种氧化铝基生物陶瓷材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249654A (ja) * 1988-03-30 1989-10-04 Tanaka Kikinzoku Kogyo Kk 耐熱性セラミックス
CN1513803A (zh) * 2003-07-16 2004-07-21 中国科学院上海硅酸盐研究所 高强度氧化铝/氧化锆/铝酸镧复相陶瓷及制备方法
CN1772694A (zh) * 2005-09-22 2006-05-17 山东大学 混合稀土增韧补强氧化铝基陶瓷复合材料及其制备方法
US20060186780A1 (en) * 2003-10-03 2006-08-24 Nippon Soken, Inc. Alumina-based ceramic composition and spark plug using the same
CN101555128A (zh) * 2003-01-20 2009-10-14 宇部兴产株式会社 用于光转化的陶瓷复合材料及其应用
US20110021340A1 (en) * 2009-07-24 2011-01-27 Karl-Heinz Schofalvi Refractory
CN102584236A (zh) * 2012-03-12 2012-07-18 中国地质大学(北京) 一种PrMgAl11O19耐高温陶瓷材料的制备方法
CN102617147A (zh) * 2012-04-17 2012-08-01 江苏科技大学 钙钛矿型结构铝酸盐基混合导电陶瓷及其制备方法
US20180244579A1 (en) * 2015-09-30 2018-08-30 Ngk Insulators, Ltd. Method for producing transparent alumina sintered body
CN110898826A (zh) * 2018-09-18 2020-03-24 中国石油天然气股份有限公司 一种含Pr氧化铝载体及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249654A (ja) * 1988-03-30 1989-10-04 Tanaka Kikinzoku Kogyo Kk 耐熱性セラミックス
CN101555128A (zh) * 2003-01-20 2009-10-14 宇部兴产株式会社 用于光转化的陶瓷复合材料及其应用
CN1513803A (zh) * 2003-07-16 2004-07-21 中国科学院上海硅酸盐研究所 高强度氧化铝/氧化锆/铝酸镧复相陶瓷及制备方法
US20060186780A1 (en) * 2003-10-03 2006-08-24 Nippon Soken, Inc. Alumina-based ceramic composition and spark plug using the same
CN1772694A (zh) * 2005-09-22 2006-05-17 山东大学 混合稀土增韧补强氧化铝基陶瓷复合材料及其制备方法
US20110021340A1 (en) * 2009-07-24 2011-01-27 Karl-Heinz Schofalvi Refractory
CN102584236A (zh) * 2012-03-12 2012-07-18 中国地质大学(北京) 一种PrMgAl11O19耐高温陶瓷材料的制备方法
CN102617147A (zh) * 2012-04-17 2012-08-01 江苏科技大学 钙钛矿型结构铝酸盐基混合导电陶瓷及其制备方法
US20180244579A1 (en) * 2015-09-30 2018-08-30 Ngk Insulators, Ltd. Method for producing transparent alumina sintered body
CN110898826A (zh) * 2018-09-18 2020-03-24 中国石油天然气股份有限公司 一种含Pr氧化铝载体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭瑞松等: "《工程结构陶瓷》", 3 September 2002, 天津大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679216A (zh) * 2020-12-25 2021-04-20 西安理工大学 一种液相旋蒸法制备四方相BaTiO3/HA复合纳米颗粒的方法
CN113149619A (zh) * 2021-05-14 2021-07-23 景德镇陶瓷大学 一种高强度低介电损耗氧化铝陶瓷基片
CN118026654A (zh) * 2024-04-11 2024-05-14 北京国械堂科技发展有限责任公司 一种氧化铝基生物陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN112110740B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN112110740B (zh) 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品
US6066584A (en) Sintered Al2 O3 material, process for its production and use of the material
Kim et al. Microstructure control of in‐situ‐toughened α‐SiAlON Ceramics
JPH07277814A (ja) アルミナ基セラミックス焼結体
US4764491A (en) Low temperature sintering of yttria stabilized zirconia with lanthana borate additions
CN109836155A (zh) 一种致密铁弹性双稀土钽酸盐固溶体高温陶瓷及其制备方法
NL2030121B1 (en) Method for preparing large-size high-quality potassium tantalum niobate ceramic target material
CN110105057A (zh) 陶瓷手臂及其制备方法、真空吸附机械手和晶圆传输装置
CN110937893A (zh) 一种提高热释电复合陶瓷材料能量密度的方法
Qin et al. Silicon nitride ceramics consolidated by oscillatory pressure sintering
JP3160979B2 (ja) ジルコニア質焼結体の製造方法
CN113683416B (zh) 一种两相钽酸镁陶瓷块体的制备方法
Wang et al. Effect of in situ synthesis of Si2N2O on microstructure and the mechanical properties of fused quartz ceramics
JPH09165265A (ja) 高熱伝導窒化ケイ素セラミックスならびにその製造方法
Li et al. Fabrication and mechanical properties of Al2O3–Ni composite from two different powder mixtures
CN102030535B (zh) 氮化锆增强氧氮化铝复合陶瓷材料的制备方法
CN108329018B (zh) 一种增韧氧化铝复合陶瓷及其制备方法
CN113277854A (zh) 高强度莫来石结合碳化硅多孔陶瓷材料的制备方法
Yuan et al. Dual-phase magnesia-zirconia ceramics with strength retention at elevated temperatures
CN108358628A (zh) 一种莫来石-氧化锆复合陶瓷及其制备方法
Homerin et al. Mechanical properties of zirconia toughened alumina prepared by different methods
JP2650049B2 (ja) セラミック切削工具及びその製造方法
JP3148559B2 (ja) セラミックス繊維強化タービン翼及びその製造方法
Li Research on the Preparation of Toughened Mullite Ceramic Support
JPS63134551A (ja) アルミナ質焼結体およびその製造法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant