CN112086648A - 一种合成AuPd@C材料用于氧还原反应电催化的方法 - Google Patents

一种合成AuPd@C材料用于氧还原反应电催化的方法 Download PDF

Info

Publication number
CN112086648A
CN112086648A CN202010828549.5A CN202010828549A CN112086648A CN 112086648 A CN112086648 A CN 112086648A CN 202010828549 A CN202010828549 A CN 202010828549A CN 112086648 A CN112086648 A CN 112086648A
Authority
CN
China
Prior art keywords
aupd
solution
zif
particles
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010828549.5A
Other languages
English (en)
Inventor
王立开
刘哲
张申智
闫召娣
张亚梅
李忠芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202010828549.5A priority Critical patent/CN112086648A/zh
Publication of CN112086648A publication Critical patent/CN112086648A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米材料合成技术领域,公开了一种AuPd@C纳米催化剂的合成方法。该催化剂的优势在于:制备方法简便,谷胱甘肽配体保护的Au盐和Pd盐被共还原成直径为4 nm左右的AuPd合金纳米颗粒;将其负载到原位合成的ZIF‑8内,外层包覆二氧化硅作保护,在惰性氛围保护下600~900 oC高温煅烧碳化形成多孔碳固定的AuPd纳米颗粒,再用氢氟酸或NaOH刻蚀掉表面二氧化硅,制得一系列不同变量的催化剂;催化剂中AuPd颗粒粒径均匀,且AuPd颗粒与载体的相互作用可提高催化稳定性。本发明为燃料电池阴极氧还原反应的催化提供了一种可靠的电催化剂,具有一定的市场应用前景。

Description

一种合成AuPd@C材料用于氧还原反应电催化的方法
技术领域
本发明涉及纳米催化剂合成与新型能源材料技术领域,具体涉及到原位合成AuPd@C复合材料用于高效氧还原反应电催化剂的制备及其在燃料电池阴极材料方面的应用。
背景技术
纳米催化剂材料又可分为贵金属纳米催化剂、过渡金属纳米催化剂、碳材料以及其他相关纳米材料的催化剂。贵金属纳米催化剂以贵金属纳米粒子为主,其中贵金属主要指金(Au)、铂(Pt)、钯(Pd)、钌(Ru)等。贵金属纳米材料将纳米材料的特性与贵金属的理化性质相结合,表现出体积效应、表面效应、量子尺寸效应等独特性质,但是贵金属纳米颗粒不能稳定存在,易团聚成大颗粒,对其合成及应用研究带来障碍。
燃料电池为一种新型的能量转换装置,为推动其商业化应用必须解决其阴极氧还原反应速率缓慢的难题,选择合适的氧还原电催化剂成为降低反应过电势挺高其反应速率的关键。
金属有机框架化合物是一种以金属离子为节点,有机分子为配体的配合物;在惰性气氛保护下高温处理,MOFs可衍生出无定型多孔碳材料,从而形成金属纳米颗粒担载多孔碳材料。因此,MOFs可作模板形成一定形貌的材料。为燃料电池阴极氧还原反应的催化提供了一种可靠的电催化剂,具有一定的市场应用前景。
本发明原位合成AuPd@C复合材料,并研究其在燃料电池阴极材料方面的应用,系统研究了其用于氧还原电催化的性能,目前尚未发现可以通过一种原位合成N掺杂多孔碳担载超小高分散AuPd纳米颗粒的制备实例的专利报道。
为了解决上述技术问题,本发明提供了一种原位合成N掺杂多孔碳片担载超小高分散AuPd纳米颗粒的制备实例。
发明内容
本发明主要目的是提供一种MOFs衍生的贵金属合金@C纳米材料,原位合成AuPd@C复合材料用于高效氧还原反应电催化剂的制备。
本发明是通过以下技术方案实现的,具体包括以下几个步骤:
本发明其特征在于:(1)制备方法比较简便,谷胱甘肽配体保护的金属盐摩尔比为(1 :5 ~5 : 1)的Au盐和Pd盐被共还原成直径为4 nm左右的AuPd合金纳米颗粒;(2)所得催化剂具有核壳结构,其中金钯纳米合金粒子为核,外层包覆由MOFs衍生的多孔材料;(3)将其负载到原位合成的ZIF-8内,其外层包覆二氧化硅层作保护,该催化剂由于SiO2壳层的保护,其AuPd纳米颗粒粒径分布均匀;(4)AuPd纳米颗粒与载体的紧密结合,极大提高催化稳定性。
具体工艺路线通过以下技术方案实现的,具体包括以下几个步骤:
(1)AuPd合金纳米颗粒的制备:将一定浓度的金盐溶液和钯盐溶液混合,搅拌混匀;加入一定比例的硫配体搅拌聚合,再将新配制硼氢化钠溶液还原反应液,最后透析提纯AuPd溶液;
(2)AuPd@ZIF-8的制备:六水合硝酸锌溶于甲醇(A),向溶液中加入上述得到的AuPd合金纳米颗粒溶液混合均匀,2-甲基咪唑溶于甲醇(B),A+B两溶液混合搅拌;静置后离心分离,甲醇清洗,真空干燥;
(3)AuPd@ZIF-8@SiO2的制备:将AuPd@ZIF-8加入甲醇与水的混合溶液,向混合液中滴加氢氧化钠溶液并调节溶液的pH值;一定量的表面活性剂溶于水中倒入反应液,加入正硅酸乙酯(TEOS)。将反应完得到的混合液的转速下离心分离,所得沉淀物用乙醇洗涤三次,真空干燥;
(4)AuPd@C的制备:将干燥好的AuPd@ZIF-8@SiO2研磨后置于瓷舟中,持续通入惰性气体煅烧。将煅烧得到的黑色样品进行刻蚀得到AuPd@C材料,离心分离、水洗,真空干燥。
作为进一步优选的技术方案,所述步骤(1)具体包括:金属金与金属钯的摩尔比为(1 : 5 ~5 : 1),合金与配体谷胱甘肽及还原剂硼氢化钠摩尔为1: 2 : 5至1 : 8 : 16,同时还原剂可以采用硼氢化钠、硼氢化钾、CO等还原剂;反应的搅拌速度为500 - 1500 r/min,搅拌时间为30-60 min;透析时间为3-9 h。
作为进一步优选的技术方案,所述步骤(2)具体包括:将六水硝酸锌与AuPd纳米颗粒混合均匀后加入2-甲基咪唑,三者质量比为1 : 10 : 12至1 : 100 : 120范围;将AuPd纳米颗粒包覆其中形成一个金属有机框架保护和担载的复合材料;静置时间为20 h- 40h,高速离心机分离速度在5000-10000 r/min下分离AuPd@ZIF-8。
作为进一步优选的技术方案,所述步骤(3)中,配制出浓度为5-20%的甲醇水溶液,溶液pH调至10-13,可以用氨水、氢氧化钠、氢氧化钾等进行调节;正硅酸乙酯滴速控制在1-10 ml/min,其干燥8-24 h。
作为进一步优选的技术方案,所述步骤(4)具体包括:煅烧温度为700-900 oC,升温速度为1、2、5、10和15 oC/min;刻蚀去除SiO2层方式可采用氢氟酸、浓氢氧化钠,其刻蚀所需反应器应选用聚四氟乙烯材质,刻蚀时间为12 - 48 h。步骤(5)所述催化剂用于电催化反应中的统一负载量为200 μg/cm2
综上所述,与现有的研究相比,本发明的有益之处在于:
将其负载到原位合成的ZIF-8内,其外层包覆二氧化硅层作保护,该催化剂由于SiO2壳层的保护,该催化剂在煅烧过程中保持MOF的原晶体结构,防止了碳材料的塌陷和纳米颗粒间团聚,其AuPd纳米颗粒粒径分布均匀;
制备方法比较简便,谷胱甘肽配体保护的金属盐摩尔比为(1 : 5 ~5 : 1)的Au盐和Pd盐被共还原成直径为4 nm左右的AuPd合金纳米颗粒,增大了催化剂的的比表面积,为催化剂提供了更多的活性位点,为贵金属与碳材料复合提供了新的合成路径;
所得催化剂具有核壳结构,其中金钯纳米合金粒子为核,外层包覆由MOFs衍生的多孔碳材料,Au、Pd双金属之间以及贵金属颗粒与碳载体之间的协同作用可以提高催化剂的活性与稳定性。
附图说明
图1为ZIF-8在不同放大倍数下的扫描电镜(SEM)分析图与实例1制备的AuPd@C催化剂在不同放大倍数下的的扫描电镜(SEM)分析图。
图2为实例1制备的AuPd@C催化剂在不同放大倍数下的的投射电镜(TEM)分析图。
图3为实例1制备的AuPd@C(黑线)和Pt/C(红线)在氧饱和的0.1 M KOH溶液中的(A)循环伏安曲线、(B)1600 r/min下的线性扫描伏安曲线。
具体实施方式
下面结合实例对本发明进一步说明,但本发明并不限于以下实施例。
实施例1
AuPd合金纳米颗粒的制备:量取3.4 mL四氯金酸水溶液(0.02 g/mL),加入7 mL去离子水稀释。称取29 mg四氯钯(
Figure 400952DEST_PATH_IMAGE001
)酸钠,溶于上述溶液中,搅拌15 min使其混合均匀。称取0.5531 g谷胱甘肽加入混合液中,在1100 r/min转速下搅拌30 min。称取0.1135 g硼氢化钠溶于6 mL冰水中。现配的硼氢化钠溶液迅速加入到反应液中,持续搅拌3 h。将反应完得到的溶液倒入透析袋中,封口,浸泡于蒸馏水中,缓慢搅拌,隔3 h、6 h、9 h各换一次水。
AuPd@ZIF-8的制备:称取2.232 g六水合硝酸锌溶于30 mL甲醇中,向溶液中加入20 mL上述得到的AuPd合金纳米颗粒溶液(1.25 mg/mL),搅拌15 min混合均匀。称取2.380g 2-甲基咪唑溶于80 mL甲醇中。两溶液混合,搅拌1 h。静置20 h后离心分离。所得沉淀物用甲醇洗涤三次。产物放进真空干燥箱干燥12 h。
AuPd@ZIF-8@SiO2的制备:量取40 mL甲醇、360 mL去离子水,配成10%的甲醇水溶液,将AuPd@ZIF-8加入混合溶液中,超声数秒使其分散均匀。边搅拌边向混合液中滴加氢氧化钠溶液,直至溶液pH调至11。称取65 mg十六烷基三甲基溴化铵,溶于6 mL水中,倒入反应液。逐滴滴加进2.4 mL正硅酸乙酯。搅拌1 h。将反应完得到的混合液在8000 r/min的转速下离心10 min分离,所得沉淀物用乙醇洗涤三次。放入真空干燥箱干燥12 h。
AuPd@C的制备:称取50 mg干燥好的AuPd@ZIF-8@SiO2,研磨后置于瓷舟中,持续通入氮气,以5 oC/min的速度升温至900 oC,煅烧2 h。量取10mL氢氟酸与40 mL去离子水混合,将煅烧得到的黑色样品加入溶液中,超声分散均匀,搅拌24 h。刻蚀好的AuPd@C材料在8500r/min的转速下离心15 min分离,水洗五次,放入真空干燥箱干燥12 h。
实施例2
氧还原工作电极的制备:称取2.5 mg催化剂于1.0 mL乙醇溶液中,滴加10 μLNafion配置标准溶液,将混合液超声30分钟,得浓度为2.5 mg/mL的催化剂悬浮液。取10 μL催化剂悬浮液均匀涂抹在玻碳电极上并在空气中自然干燥,得到催化剂负载量为200 μg/cm2。将工作电极置于氧饱和的0.1 M KOH溶液中进行伏安循环特性测试。
如图1所示,ZIF-8煅烧得到的多孔碳是由一个一个立方多面体组成,粒径尺寸在60~110 nm范围内。没有二氧化硅壳的保护时,在煅烧过程中发生了团聚和烧结。在二氧化硅的保护下,AuPd@C在煅烧后较大程度地保持了ZIF-8的立方体结构且没有发生烧结现象,掺入AuPd颗粒后,立方体尺寸增大。从图2AuPd@C透射电镜图中可以明显看到被完全包覆在ZIF-8中的小AuPd纳米颗粒。纳米颗粒粒径约为4~5 nm,XRD图中23.8o和43.0o处的两个衍射峰对应碳的(002)和(101)晶面,由于得到的AuPd颗粒粒径很小且含量较低,以小尺寸均匀分散在ZIF-8中,所以XRD中没有明显的Au、Pd的峰。由图3、图4可以看出得到的AuPd@C具有优异的氧还原催化性能以及稳定性,且相比于ZIF-8及ZIF-8@SiO2性能得到很大的改善。
上述实施例为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种合金氧还原非均相催化剂,其特征在于:制备方法比较简便,谷胱甘肽配体保护的金属盐摩尔比为(1 : 5 ~5 : 1)的Au盐和Pd盐被共还原成直径为4 nm左右的AuPd合金纳米颗粒;所得催化剂具有核壳结构,其中金钯纳米合金粒子为核,外层包覆由MOFs衍生的多孔碳材料;将其负载到原位合成的ZIF-8内,外层包覆二氧化硅层作保护,该催化剂由于SiO2壳层的保护,其AuPd纳米颗粒粒径分布均匀;AuPd纳米颗粒与载体的紧密结合,极大提高催化稳定性。
2.该催化剂的具体制备工艺路线,包括以下步骤:
(1)AuPd合金纳米颗粒的制备:将一定浓度的金盐溶液和钯盐溶液混合,搅拌使其混匀;再加入一定比例的硫配体至混合液中搅拌约10-60 min,再将其新配制的硼氢化钠溶液迅速加入到反应液中,持续搅拌1-6 h,将所得溶液利用透析袋提纯;
(2)AuPd@ZIF-8的制备:六水合硝酸锌溶于甲醇(A),向溶液中加入上述得到的AuPd合金纳米颗粒溶液混合均匀,2-甲基咪唑溶于甲醇(B),A+B两溶液混合搅拌;静置后离心分离,所得沉淀物用甲醇洗涤至少3-5次,产物真空干燥;
(3)AuPd@ZIF-8@SiO2的制备:将AuPd@ZIF-8加入甲醇与水的混合溶液,向混合液中滴加氢氧化钠溶液并调节溶液的pH值;一定量的表面活性剂溶于水中倒入反应液,加入正硅酸乙酯(TEOS);将反应完得到的混合液的转速下离心分离,所得沉淀物用乙醇洗涤三次,真空干燥;
(4)AuPd@C的制备:将干燥好的AuPd@ZIF-8@SiO2研磨后置于瓷舟中,持续通入惰性气体煅烧,将煅烧得到的黑色样品进行刻蚀得到AuPd@C材料,离心分离、水洗,真空干燥;
(5)制备的一系列催化剂用于催化氧还原反应,测试其催化性能,该催化剂适用于金属空气电池、氢氧燃料电池、电解水的催化。
3.根据权利要求1所述的AuPd@C的制备过程,其特征在于:步骤(1)谷胱甘肽配体保护的金盐与钯盐摩尔比为(1 : 5 ~5 : 1)被共还原成直径为4 nm左右的AuPd合金颗粒,该纳米颗粒具有大的比表面积便于其活性位点的暴露;其金盐为氯金酸,钯盐为氯化钯、氯钯酸钾、氯钯酸钠等均可,其配体为水溶性的谷胱甘肽配体为主,金属盐、配体及还原剂摩尔比约为1: 2 : 5至1:8:16范围内,同时还原剂可以采用硼氢化钠、硼氢化钾、CO等还原剂;反应的搅拌速度为500 - 1500 r/min,搅拌时间为30-60 min;每次透析过程为3-9 h。
4.根据权利要求1所述的AuPd@C的制备过程,其特征在于:步骤(2)中,将六水硝酸锌与AuPd纳米颗粒混合均匀后加入2-甲基咪唑,三者质量比为1:10:12至1:100:120范围内,以便AuPd纳米颗粒镶嵌至ZIF-8框架内,形成ZIF-8,将AuPd纳米颗粒包覆其中形成一个金属有机框架担载的复合材料,并静置一段时间(20 h - 40 h),再利用高速离心机在5000-10000 r/min的离心速度下分离出AuPd@ZIF-8。
5.根据权利要求1所述的AuPd@C的制备过程,其特征在于:步骤(3)中,配制出浓度为5-20%的甲醇水溶液,溶液pH调至10-13,可以用氨水、氢氧化钠、氢氧化钾等进行调节;正硅酸乙酯在碱性条件发生水解,初步形成SiO2包覆ZIF-8,正硅酸乙酯滴加至上述溶液,其滴速控制在1-10 ml/min,合适的滴速可以促进SiO2壳层的均匀覆盖和生成,干燥8-24 h,形成AuPd@ZIF-8@SiO2
6.根据权利要求1所述的AuPd@C的制备过程,其特征在于:步骤(4)中,煅烧温度为700-900 oC,升温速度为1、2、5、10和15 oC/min;所得的碳化后产物进行刻蚀去除SiO2层,其刻蚀方式可以采用氢氟酸、浓氢氧化钠均可去除保护层,其刻蚀所需的反应器应选用聚四氟乙烯材质的容器,防止反应容器被破坏,刻蚀时间为12 - 48 h;由于SiO2的包覆,使催化剂的壳层保持原形态不变,防止AuPd纳米颗粒团聚现象,对提高其氧还原反应的电催化活性有促进作用。
CN202010828549.5A 2020-08-18 2020-08-18 一种合成AuPd@C材料用于氧还原反应电催化的方法 Pending CN112086648A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010828549.5A CN112086648A (zh) 2020-08-18 2020-08-18 一种合成AuPd@C材料用于氧还原反应电催化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010828549.5A CN112086648A (zh) 2020-08-18 2020-08-18 一种合成AuPd@C材料用于氧还原反应电催化的方法

Publications (1)

Publication Number Publication Date
CN112086648A true CN112086648A (zh) 2020-12-15

Family

ID=73728219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010828549.5A Pending CN112086648A (zh) 2020-08-18 2020-08-18 一种合成AuPd@C材料用于氧还原反应电催化的方法

Country Status (1)

Country Link
CN (1) CN112086648A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600209A (zh) * 2021-08-23 2021-11-05 西安交通大学 制备高分散碳载Pt基有序合金催化剂的方法及催化剂
CN114289071A (zh) * 2022-01-10 2022-04-08 全球能源互联网研究院有限公司 一种耐水脱氧催化剂及其制备方法与应用
CN114792816A (zh) * 2021-01-25 2022-07-26 中国科学院理化技术研究所 一种铂基合金催化剂及其制备方法和应用
CN115970004A (zh) * 2022-11-25 2023-04-18 山西医科大学 一种基于nir-ⅱfl引导的双向纳米药物递送系统及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553582A (zh) * 2011-12-01 2012-07-11 昆明理工大学 一种制备碳载金铂或金钯催化剂的方法
CN107331877A (zh) * 2017-08-03 2017-11-07 重庆大学 一种三维碳骨架镶嵌纳米铂基合金催化剂的制备方法
CN108213414A (zh) * 2017-12-29 2018-06-29 安庆师范大学 一种包覆mof提高金纳米团簇光稳定性的方法及其应用
CN109675603A (zh) * 2018-12-28 2019-04-26 西安交通大学 一种二氧化硅保护的碳基催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553582A (zh) * 2011-12-01 2012-07-11 昆明理工大学 一种制备碳载金铂或金钯催化剂的方法
CN107331877A (zh) * 2017-08-03 2017-11-07 重庆大学 一种三维碳骨架镶嵌纳米铂基合金催化剂的制备方法
CN108213414A (zh) * 2017-12-29 2018-06-29 安庆师范大学 一种包覆mof提高金纳米团簇光稳定性的方法及其应用
CN109675603A (zh) * 2018-12-28 2019-04-26 西安交通大学 一种二氧化硅保护的碳基催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHER P. DEMING ET AL.: "Protected AuPd Alloy Nanoparticles for Electrocatalytic Reduction of Oxygen", 《CHEMELECTROCHEM》, vol. 2, 3 August 2015 (2015-08-03), pages 1719 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792816A (zh) * 2021-01-25 2022-07-26 中国科学院理化技术研究所 一种铂基合金催化剂及其制备方法和应用
CN114792816B (zh) * 2021-01-25 2024-02-20 中国科学院理化技术研究所 一种铂基合金催化剂及其制备方法和应用
CN113600209A (zh) * 2021-08-23 2021-11-05 西安交通大学 制备高分散碳载Pt基有序合金催化剂的方法及催化剂
CN113600209B (zh) * 2021-08-23 2022-12-09 西安交通大学 制备高分散碳载Pt基有序合金催化剂的方法及催化剂
CN114289071A (zh) * 2022-01-10 2022-04-08 全球能源互联网研究院有限公司 一种耐水脱氧催化剂及其制备方法与应用
CN114289071B (zh) * 2022-01-10 2023-09-19 全球能源互联网研究院有限公司 一种耐水脱氧催化剂及其制备方法与应用
CN115970004A (zh) * 2022-11-25 2023-04-18 山西医科大学 一种基于nir-ⅱfl引导的双向纳米药物递送系统及应用

Similar Documents

Publication Publication Date Title
CN112086648A (zh) 一种合成AuPd@C材料用于氧还原反应电催化的方法
Liu et al. A review of approaches for the design of high-performance metal/graphene electrocatalysts for fuel cell applications
Tan et al. Pd-around-CeO 2− x hybrid nanostructure catalyst: three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism
Peng et al. Ordered macroporous MOF-based materials for catalysis
CN112038648A (zh) 一种中空结构过渡金属钴、氮共掺杂炭氧还原催化剂及其制备方法和应用
Venarusso et al. Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction
CN109494381A (zh) 一种单原子铁基碳材料及制备方法和电催化应用
CN112886030B (zh) 一种多孔凹形立方体CoNP@CoSA-N-C催化剂及其制备方法和应用
CN101656313A (zh) 直接甲醇燃料电池阴极用催化剂的制备方法
Zhou et al. Facet effect of Pt nanocrystals on catalytical properties toward glycerol oxidation reaction
CN108550871B (zh) 一种二氧化锰/炭黑复合材料及其制备方法和应用
CN108470920A (zh) 一种用于酸性介质的石墨烯负载铂钴钨合金纳米粒子复合催化剂及其制备方法
She et al. Spatially separated bimetallic cocatalysts on hollow-structured TiO 2 for photocatalytic hydrogen generation
CN110350205A (zh) ZIFs衍生金属氮化物/碳复合材料及制备方法和用途
CN106890639A (zh) 铟基双组元或三组元纳米催化剂及其制备和应用
CN110265667A (zh) 一种应用于氧还原的新型纳米复合催化剂及其制备方法
Parkash Pt nanoparticles anchored on Cu-MOF-74: an efficient and durable ultra-low Pt electrocatalyst toward oxygen reduction reaction
CN110534754B (zh) 一种包裹Fe3C纳米晶的碳纳米管及其制备方法和应用
Jiang et al. Synergism of multicomponent catalysis: one-dimensional Pt-Rh-Pd nanochain catalysts for efficient methanol oxidation
CN110548507B (zh) 一种碳负载纳米银催化剂的制备方法
Zhang et al. Recent advances in phosphorus containing noble metal electrocatalysts for direct liquid fuel cells
Chen et al. Facile synthesis of platinum-copper aerogels for the oxygen reduction reaction
Hunyadi Murph et al. Synthesis, functionalization, characterization, and application of controlled shape nanoparticles in energy production
CN109560299A (zh) 一种纳米线网结构PtCu合金催化剂及其制备方法与应用
Sridharan et al. Enhanced oxygen reduction activity of bimetallic Pd–Ag alloy-supported on mesoporous cerium oxide electrocatalysts in alkaline media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination