CN112063572B - 一种高产o-乙酰-l-高丝氨酸的重组大肠杆菌及其应用 - Google Patents

一种高产o-乙酰-l-高丝氨酸的重组大肠杆菌及其应用 Download PDF

Info

Publication number
CN112063572B
CN112063572B CN202011002103.3A CN202011002103A CN112063572B CN 112063572 B CN112063572 B CN 112063572B CN 202011002103 A CN202011002103 A CN 202011002103A CN 112063572 B CN112063572 B CN 112063572B
Authority
CN
China
Prior art keywords
homoserine
gene
acetyl
strain
oah
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011002103.3A
Other languages
English (en)
Other versions
CN112063572A (zh
Inventor
柳志强
刘鹏
张博
牛坤
郑裕国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202011002103.3A priority Critical patent/CN112063572B/zh
Publication of CN112063572A publication Critical patent/CN112063572A/zh
Application granted granted Critical
Publication of CN112063572B publication Critical patent/CN112063572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05003Glycerol-3-phosphate dehydrogenase (1.1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01031Homoserine O-acetyltransferase (2.3.1.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0103Glycerol kinase (2.7.1.30)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及一种高产O‑乙酰‑L‑高丝氨酸重组大肠杆菌,及在微生物发酵制备O‑乙酰‑L‑高丝氨酸中的应用。本发明首先通过敲除甘油代谢途径中负责编码阻遏蛋白的基因glpR,使得甘油激酶基因glpK和甘油3‑磷酸脱氢酶基因的组成型表达,以增强菌株甘油代谢途径的通量;其次通过过表达glpD基因发现该基因为菌株甘油代谢途径中的关键基因;最后通过trc启动子替换glpD基因的原位启动子表明菌株发酵产O‑乙酰‑L高丝氨酸的水平与glpD基因的表达水平密切相关。通过以上改造策略的组合,获得了高产O‑乙酰‑L‑高丝氨酸的大肠杆菌菌株。

Description

一种高产O-乙酰-L-高丝氨酸的重组大肠杆菌及其应用
(一)技术领域
本发明属于代谢工程领域,具体涉及一种高产O-乙酰-L-高丝氨酸重组大肠杆菌及其应用。
(二)背景技术
在微生物细胞代谢过程中,L-高丝氨酸的衍生物有O-琥珀酰-L-高丝氨酸(OSH)和O-乙酰高丝氨酸(OAH)。OSH不仅可以作为生物合成L-蛋氨酸的前体,而且是合成多种C4化合物的平台化合物。此外,OAH也是具有潜在工业应用价值的前体化合物,可用于制备高丝氨酸与蛋氨酸等。OAH经水解可以产生高丝氨酸,而高丝氨酸可以作为L-高丝氨酸内酯、γ-丁内酯、1,4-丁二醇等平台化合物以及农药草铵膦合成的原料。另外,OAH能够在乙酰高丝氨酸巯解酶的作用下直接与甲硫醇反应生成蛋氨酸和乙酸,该方法是偶联发酵-酶法合成蛋氨酸的重要工艺路线,并具有较高的产率。
目前据报道的生产菌株中,主要通过苏氨酸生产菌株的改造,最终通过利用葡萄糖为碳源获得产OAH的重组菌株。杨静等以一株改造自苏氨酸产生菌的Escherichia coliThr L为出发菌株,过表达O-乙酰-L-高丝氨酸合成途径中的关键酶高丝氨酸脱氢酶基因thr A和高丝氨酸乙酰基转移酶基因met X,摇瓶发酵50h后,其OAH产量为1.98g/L。此外,专利报道中,以苏氨酸高产菌株为出发菌株进行改造使其具有生产O-乙酰-L-高丝氨酸的能力,然后通过质粒过表达acs和coaA(R106A)基因,在摇瓶中发酵64h,最终得到20.3g/L的O-乙酰-L-高丝氨酸。而通过改造菌株利用甘油为碳源生物合成OAH的代谢途径改造还未见报道。甘油是生物柴油的一种副产物,在生产生物柴油的过程中粗甘油的产量约占10%。随着生物柴油产业的发展,粗甘油的产量也越来越多,如何有效地将甘油转化为更高附加值的产品对于产业的发展以及环境保护领域显得十分迫切。
(三)发明内容
本发明的目的是通过代谢工程技术,通过改造大肠杆菌的甘油代谢途径,提供一种高产O-乙酰-L-高丝氨酸重组大肠杆菌,及在微生物发酵制备O-乙酰-L-高丝氨酸中的应用。
为实现本发明的上述目的,本发明采用的技术方案:
本发明涉及一种高产O-乙酰-L-高丝氨酸的重组大肠杆菌,由如下方法构建获得:
一种高产O-乙酰-L-高丝氨酸的重组大肠杆菌,由如下方法构建获得:
(1)运用CRISPR-Cas9基因编辑技术,将大肠杆菌E.coli W3110中的metJ、metI、metB、thrB、metA、lysA和iclR基因敲除,并将rhtA、thrA和eamA基因的原位启动子替换为trc启动子,得到重组菌株OAH-1;
(2)运用CRISPR-Cas9基因编辑技术,敲除菌株OAH-1中的glpR基因(阻遏蛋白基因),和/或过表达glpF基因(甘油3-磷酸脱氢酶基因),和/或用trc启动子替换glpF基因或glpD基因的原位启动子,得到重组菌株OAH-II;
(3)将来源于谷氨酸棒杆菌的高丝氨酸乙酰基转移酶基因met X连接到质粒pTrc99A中,得到表达载体pTrc99A-metX,将pTrc99A-metX导入重组菌株OAH-II中,即得所述高产O-乙酰-L-高丝氨酸重组大肠杆菌。
优选的,所述重组大肠杆菌按如下方法构建:
(1)运用CRISPR-Cas9基因编辑技术,将大肠杆菌E.coli W3110中的metJ、metI、metB、thrB、metA、lysA和iclR基因敲除,并将rhtA、thrA和eamA基因的原位启动子替换为trc启动子,得到重组菌株OAH-1;
(2)运用CRISPR-Cas9基因编辑技术,敲除菌株OAH-1中的glpR基因,得到重组菌株OAH-2;
(3)运用CRISPR-Cas9基因编辑技术,用trc启动子替换重组菌株OAH-2中glpF和glpD基因的原位启动子,得到重组菌株OAH-8;
(4)将来源于谷氨酸棒杆菌的高丝氨酸乙酰基转移酶基因met X连接到质粒pTrc99A中,得到表达载体pTrc99A-metX,将pTrc99A-metX导入重组菌株OAH-8中,即得所述高产O-乙酰-L-高丝氨酸重组大肠杆菌。
具体的,所述步骤(1)和步骤(4)中trc启动子核苷酸序列为SEQ ID NO.1所示。
所述高丝氨酸乙酰基转移酶基因met X核苷酸序列如SEQ ID NO.5所示。
本发明还涉及所述高产O-乙酰-L-高丝氨酸的重组大肠杆菌在微生物发酵制备O-乙酰-L-高丝氨酸中的应用。
具体的,所述应用为:将所述高产O-乙酰-L-高丝氨酸的重组大肠杆菌菌株接种至含40~80mg/L Kan的MS培养基中,在28~35℃、100~200rpm培养发酵到OD600=0.8~1.0时,添加终浓度为0.05~0.1mM的IPTG,继续培养至48~56h,得到含有O-乙酰-L-高丝氨酸发酵液;所述MS培养基终浓度组成如下:甘油40~50g/L、硫酸铵15~20g/L、KH2PO4 0.5~1.0g/L、酵母提取物1~5g/L、MgSO4 0.2~0.8g/L、CaCO3 10~20g/L、0.5~2mL/L微量元素溶液,溶剂为去离子水。
优选的,所述MS培养基终浓度组成如下:甘油40g/L、硫酸铵16g/L、KH2PO4 0.8g/L、酵母提取物2g/L、MgSO4 0.5g/L、CaCO3 15g/L、1mL/L微量元素溶液,溶剂为去离子水,pH7.0;微量元素溶液组成:CuCl2 10g/L、FeSO4·7H2O 10g/L、ZnSO4·7H2O 1g/L、CuSO40.20g/L、NiCl2·7H2O 0.02g/L,溶剂为去离子水。
进一步,所述重组基因工程菌株发酵前,可先接种至LB培养基中,于温度37℃、转速200rpm的摇床上过夜培养,然后以体积浓度5%接种量接种到发酵培养基(MS培养基)中培养。
与现有技术相比,本发明有益效果主要体现在:
本发明通过对大肠杆菌甘油代谢途径中的相关基因进行研究发现:敲降glpR基因有利于甘油途径中的甘油激酶基因glpK和甘油3-磷酸脱氢酶基因glpD的表达,可使O-乙酰-L-高丝氨酸的产量提高近2.1倍;对甘油3-磷酸脱氢酶基因glpD的过表达,可使O-乙酰-L-高丝氨酸的产量大幅提高;而利用trc启动子替换glpD基因的原位启动子,可使glpD基因的表达水平达到最高;综合以上改造策略,最终所得高产O-乙酰-L-高丝氨酸的重组大肠杆菌产量可达到9g/L以上。
(四)附图说明
图1为加强甘油氧化途径对O-乙酰-L-高丝氨酸产量的影响;
图2为不同强度启动子替换glpD基因原位启动子的效果;
图3为甘油代谢途径的改造对glpD基因转录水平的影响。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
以下实施例中,所述卡那霉素在培养基中终浓度为0.05mg/L。
实施例1:表达L-高丝氨酸乙酰基转移酶的质粒pTrc99A-metX的构建
以野生型谷氨酸棒杆菌ATCC13032基因组作为模板,连同引物MetX-F和引物MetX-R进行PCR扩增。PCR反应条件:预变性95℃5min,95℃30s,60℃30s,72℃1min,共30个循环,最后72℃延伸10min。PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化该片段。
以空载体pTrc99A作为模板,连同引物pTrc99A-F和引物pTrc99A-R进行PCR扩增。PCR反应条件:预变性95℃5min,95℃30s,60℃30s,72℃4min,共30个循环,最后72℃延伸10min。PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化质粒骨架片段。
将胶回收的两个片段,利用一步克隆试剂盒进行连接,构建表达载体pTrc99A-metX。
表1:引物序列
pTrc99A-F CTACATCTAAATCCTCTAGAGTCGACCTGC
pTrc99A-R GGGTGGGCATGGTCTGTTTCCTGTGTGAAA
MetX-F GAAACAGACCATGCCCACCCTCGCGCCTTC
MetX-R TCTAGAGGATTTAGATGTAGAACTCGATGT
实施例2:菌株OAH-1的构建
运用CRISPR-Cas9基因编辑技术,将大肠杆菌E.coli W3110(购自大肠杆菌遗传育种中心The Coli Genetic Stock Center)中的metJ、metI、metB、thrB、metA、lysA和iclR基因敲除,得到大肠杆菌E.coli W3110ΔmetJΔmetIΔmetBΔthrBΔmetAΔlysAΔiclR(Peng Liu et al.2020.Multiplex design of metabolic network for production ofL-homoserine in Escherichia coli.Applied and Environmental Microbiology)。以大肠杆菌E.coli W3110ΔmetJΔmetIΔmetBΔthrBΔmetAΔlysAΔiclR为出发菌株,运用CRISPR-Cas9基因编辑技术(Yu Jiang et al.2015Multigene Editing in theEscherichia coli Genome via the CRISPR-Cas9 System.Applied EnvironmentalMicrobiology.81:2506-2514),将rhtA、thrA和eamA基因的原位启动子替换为trc启动子,得到重组菌株OAH-1:
构建pTarget质粒:以pTarget F质粒(Addgene Plasmid#62226)为模版,将质粒上转录sgRNA的20bp碱基通过PCR方式突变为与基因组同源的N20序列,PCR产物经过Dpn I在37℃保温消化3h,再转化到E.coli DH5α,壮观酶素平板筛选,测序验证获得正确的pTarget质粒。
构建同源臂donor:将trc启动子序列加在待上调基因原始启动子-35区上游500bp及该基因起始密码子(ATG)下游500bp之间,通过overlap PCR技术扩增获得完整的donorDNA片段,用于基因编辑。
将pCas质粒(Addgene Plasmid#62225)导入出发菌株中,单克隆接种到LB试管中,30℃过夜培养,再以体积浓度1%的接种量接种到含50ml LB培养基的250ml摇瓶中,并加入500μL 1mol/L的L-阿拉伯糖,150rpm,30℃培养至OD600 0.4~0.6,4000rpm,4℃离心10min收集细胞,制备电转化感受态,详细过程见(Molecular Cloning:ALaboratory Manual,3edEdition,99-102)的描述。
取5μl基因对应的donor DNA和1μl对应的pTarget质粒与100μl电击感受态细胞混合,转入预冷的2mm电击杯中,冰浴1min左右,用电穿孔仪(MicroPluserTM,BIO-RAD)进行电击转化,电击完成后立即加入1ml LB培养基并立即轻柔吸出,转移到1.5ml离心管中,30℃复苏2~3h后涂布含0.05mg/L卡那霉素和0.05mg/L壮观霉素的LB平板,37℃倒置培养12-16h,单菌落通过菌落PCR并测序验证,获得基因型为E.coli W3110ΔmetJΔmetIΔmetBΔthrBΔmetAΔlysAΔiclR Trc-metL Trc-thrA Trc-rhtA Trc-eamA的菌株OAH-1。
实施例3:增强甘油代谢途径通量产O-乙酰-L-高丝氨酸的菌株OAH-2/pTrc99A-metX,OAH-3/pTrc99A-metX,OAH-4/pTrc99A-metX的构建及摇瓶发酵
以菌株OAH-1(W3110,ΔmetJΔmetIΔmetBΔthrBΔmetAΔlysAΔlacI::Trc-rhtAΔiclR Trc-metL Trc-thrA Trc-rhtA Trc-eamA)出发菌株,使用CRISPR-Cas9介导的基因编辑技术(Yu Jiang et al.2015Multigene Editing in the Escherichia coliGenome via the CRISPR-Cas9 System.Applied Environmental Microbiology.81:2506-2514),分别敲除glpR基因,过表达glpF基因和过表达glpD基因(方法同实施例2),得到菌株OAH-2,OAH-3和OAH-4。将构建好的质粒pTrc99A-metX转入上述基因工程菌及对照菌株OAH-1中,获得重组菌株OAH-1/pTrc99A-metX,OAH-2/pTrc99A-metX,OAH-3/pTrc99A-metX和OAH-4/pTrc99A-metX。
将重组菌株OAH-1/pTrc99A-metX,OAH-2/pTrc99A-metX,OAH-3/pTrc99A-metX和OAH-4/pTrc99A-metX分别接种到10mL的LB培养基中,37℃、200rpm培养用作预培养物;8~12h后,接种1mL预培养物到装有50mL的MS培养基的500mL摇瓶中,然后在30℃、150rpm培养发酵到OD600=0.8~1.0时,添加终浓度为0.1mM的IPTG,继续培养48h;发酵结束后取1mL发酵液测定OD600,取1mL发酵液进行HPLC检测。
结果如图1所示,由图可见,敲除glpR基因后,使得glpFK和glpD基因的表达不受阻遏蛋白的调控,能够有效的提升菌株OAH-2发酵产O-乙酰-L-高丝氨酸的水平。而通过单独的过表达glpF基因使得菌株OAH-3发酵产O-乙酰-L-高丝氨酸的水平下降,但是通过单独的过表达glpD基因使得菌株OAH-4发酵产O-乙酰-L-高丝氨酸的水平可以得到大幅度提升。综上所述,glpD基因在菌株利用甘油代谢途径产O-乙酰-L-高丝氨酸中属于关键基因。
LB培养基:10g/L蛋白胨,5g/L酵母提取物,10g/L NaCl,溶剂为去离子水,pH值自然。
MS培养基:甘油40g/L、氯化铵16g/L、KH2PO4 1.0g/L、MgSO4 1g/L、酵母提取物2g/L、CaCO3 25g/L(单独灭菌)、1mL/L微量元素溶液,溶剂为去离子水,pH值自然;微量元素溶液组成:10g/L CuCl2、10g/L FeSO4·7H2O、1g/L ZnSO4·7H2O、0.20g/L CuSO4、0.02g/LNiCl2·7H2O,溶剂为去离子水。
实施例4:甘油代谢途径中关键基因glpD不同强度启动子的菌株OAH-5/pTrc99A-metX,OAH-6/pTrc99A-metX,OAH-7/pTrc99A-metX的构建及摇瓶发酵
以菌株OAH-1(W3110,ΔmetJΔmetIΔmetBΔthrBΔmetAΔlysAΔlacI::Trc-rhtAΔiclR Trc-metL Trc-thrA Trc-rhtA Trc-eamA)出发菌株,使用CRISPR-Cas9介导的基因编辑技术,分别使用J23100(SEQ ID NO.2),J23106(SEQ ID NO.3)和J23114(SEQ IDNO.4)三个不同强度的启动子替换glpD基因原位启动子序列,得到菌株OAH-5,OAH-6和OAH-7。将构建好的质粒pTrc99A-metX转入上述基因工程菌中,获得重组菌株OAH-5/pTrc99A-metX,OAH-6/pTrc99A-metX和OAH-7/pTrc99A-metX。
将重组菌株OAH-3/pTrc99A-metX,OAH-4/pTrc99A-metX OAH-5/pTrc99A-metX,OAH-6/pTrc99A-metX和OAH-7/pTrc99A-metX分别接种到10mL的LB培养基中,37℃、200rpm培养用作预培养物;8-12h后,接种1mL预培养物到装有50mL的MS培养基的500mL摇瓶中,然后在30℃、150rpm培养发酵到OD600=0.8-1.0时,添加终浓度为0.1mM的IPTG,继续培养48h;发酵条件如实施例3中所述。发酵结束后取1mL发酵液测定OD600,取1mL发酵液进行HPLC检测。
结果如图2所示,由图可见,在不同强度的启动子作用下,菌株产O-乙酰-L-高丝氨酸的水平出现差异,强度越强的启动子使得菌株产O-乙酰-L-高丝氨酸的水平越高。同时,使用trc启动子替换glpD基因的原位启动子使得菌株产O-乙酰-L-高丝氨酸的水平最高,产量为6.79g/L。而敲除glpR基因后,使得glpD基因的表达不受阻遏蛋白的调控,能够一定程度的提高菌株产O-乙酰-L-高丝氨酸的水平。通过RT-qPCR的实验发现,glpD基因的转录水平和启动子的强度相关,这与上述结果一致(图3)。
综上所述,glpD基因在菌株利用甘油代谢途径产O-乙酰-L-高丝氨酸中属于关键基因,其表达的强度与菌株代谢产O-乙酰-L-高丝氨酸的水平密切相关。
实施例5:甘油代谢途径中glpR,glpF和glpD基因的叠加改造构建菌株OAH-8/pTrc99A-metX及其摇瓶发酵
以菌株OAH-1为出发菌株,使用CRISPR-Cas9介导的基因编辑技术,对其甘油代谢途径中的glpR,glpF和glpD基因进行叠加改造,即敲除glpR基因,利用trc启动子替换glpF和glpD基因的原位启动子,最终得到菌株OAH-8。将构建好的质粒pTrc99A-metX转入上述基因工程菌中,获得重组菌株OAH-8/pTrc99A-metX。
将重组菌株OAH-8/pTrc99A-metX接种到10mL的LB培养基中,37℃、200rpm培养用作预培养物;8~12h后,接种1mL预培养物到装有50mL的MS培养基的500mL摇瓶中,然后在30℃、150rpm培养发酵到OD600=0.8-1.0时,添加终浓度为0.1mM的IPTG,继续培养48h;发酵条件如实施例3中所述。发酵结束后取1mL发酵液测定OD600,取1mL发酵液进行HPLC检测。发酵结果表明,叠加改造后菌株产OAH的水平可达到9g/L以上。
本发明不受上述具体文字描述的限制,本发明可在权利要求书所概括的范围内做各种改变,如以其他属于大肠杆菌属的微生物作为出发菌株,对代谢途径中其他基因的调节,对其他碳源的利用,以及发酵过程优化、补料工艺开发均在本发明的范围之内。
序列表
<110> 浙江工业大学
<120> 一种高产O-乙酰-L-高丝氨酸的重组大肠杆菌及其应用
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 52
<212> DNA
<213> trc启动子(Unknown)
<400> 1
ttgacaatta atcatccggc tcgtataatg tgtggtcaca aaggagatat ac 52
<210> 2
<211> 47
<212> DNA
<213> J23100启动子(Unknown)
<400> 2
ttgacggcta gctcagtcct aggtacagtg ctagcaagga gatatac 47
<210> 3
<211> 47
<212> DNA
<213> J23106启动子(Unknown)
<400> 3
tttacggcta gctcagtcct aggtatagtg ctagcaagga gatatac 47
<210> 4
<211> 47
<212> DNA
<213> J23114启动子(Unknown)
<400> 4
tttatggcta gctcagtcct aggtacaatg ctagcaagga gatatac 47
<210> 5
<211> 1134
<212> DNA
<213> Corynebacterium glutamicum
<400> 5
atgcccaccc tcgcgccttc aggtcaactt gaaatccaag cgatcggtga tgtctccacc 60
gaagccggag caatcattac aaacgctgaa atcgcctatc accgctgggg tgaataccgc 120
gtagataaag aaggacgcag caatgtcgtt ctcatcgaac acgccctcac tggagattcc 180
aacgcagccg attggtgggc tgacttgctc ggtcccggca aagccatcaa cactgatatt 240
tactgcgtga tctgtaccaa cgtcatcggt ggttgcaacg gttccaccgg acctggctcc 300
atgcatccag atggaaattt ctggggtaat cgcttccccg ccacgtccat tcgtgatcag 360
gtaaacgccg aaaaacaatt cctcgacgca ctcggcatca ccacggtcgc cgcagtactt 420
ggtggttcca tgggtggtgc ccgcacccta gagtgggccg caatgtaccc agaaactgtt 480
ggcgcagctg ctgttcttgc agtttctgca cgcgccagcg cctggcaaat cggcattcaa 540
tccgcccaaa ttaaggcgat tgaaaacgac caccactggc acgaaggcaa ctactacgaa 600
tccggctgca acccagccac cggactcggc gccgcccgac gcatcgccca cctcacctac 660
cgtggcgaac tagaaatcga cgaacgcttc ggcaccaaag cccaaaagaa cgaaaaccca 720
ctcggtccct accgcaagcc cgaccagcgc ttcgccgtgg aatcctactt ggactaccaa 780
gcagacaagc tagtacagcg tttcgacgcc ggctcctacg tcttgctcac cgacgccctc 840
aaccgccacg acattggtcg cgaccgcgga ggcctcaaca aggcactcga atccatcaaa 900
gttccagtcc ttgtcgcagg cgtagatacc gatattttgt acccctacca ccagcaagaa 960
cacctctcca gaaacctggg aaatctactg gcaatggcaa aaatcgtatc ccctgtcggc 1020
cacgatgctt tcctcaccga aagccgccaa atggatcgca tcgtgaggaa cttcttcagc 1080
ctcatctccc cagacgaaga caacccttcg acctacatcg agttctacat ctaa 1134

Claims (8)

1.一种高产O-乙酰-L-高丝氨酸的重组大肠杆菌,由如下方法构建获得:
(1)运用CRISPR-Cas9基因编辑技术,将大肠杆菌E. coli W3110中的metJmetI、metB、 thrB、metA、lysAiclR基因敲除,并将rhtA、thrA和eamA基因的原位启动子替换为trc启动子,得到重组菌株OAH-1;
(2)运用CRISPR-Cas9基因编辑技术,敲除菌株OAH-1中的glpR基因,并用trc启动子替换glpF基因和glpD基因的原位启动子,得到重组菌株OAH-II;
(3)将来源于谷氨酸棒杆菌的高丝氨酸乙酰基转移酶基因met X连接到质粒pTrc99A中,得到表达载体pTrc99A-metX,将pTrc99A-metX导入重组菌株OAH-II中,即得所述高产O-乙酰-L-高丝氨酸重组大肠杆菌。
2.一种高产O-乙酰-L-高丝氨酸的重组大肠杆菌,其特征在于所述重组大肠杆菌按如下方法构建:
(1)运用CRISPR-Cas9基因编辑技术,将大肠杆菌E. coli W3110中的metJmetI、metB、 thrB、metA、lysAiclR基因敲除,并将rhtA、thrA和eamA基因的原位启动子替换为trc启动子,得到重组菌株OAH-1;
(2)运用CRISPR-Cas9基因编辑技术,敲除菌株OAH-1中的glpR基因,得到重组菌株OAH-2;
(3)运用CRISPR-Cas9基因编辑技术,用trc启动子替换重组菌株OAH-2中glpFglpD基因的原位启动子,得到重组菌株OAH-8;
(4)将来源于谷氨酸棒杆菌的高丝氨酸乙酰基转移酶基因met X连接到质粒pTrc99A中,得到表达载体pTrc99A-metX,将pTrc99A-metX导入重组菌株OAH-8中,即得所述高产O-乙酰-L-高丝氨酸重组大肠杆菌。
3.如权利要求1所述O-乙酰-L-高丝氨酸的重组大肠杆菌,其特征在于所述步骤(1)和步骤(2)中trc启动子核苷酸序列为SEQ ID NO.1所示。
4.如权利要求2所述O-乙酰-L-高丝氨酸的重组大肠杆菌,其特征在于所述步骤(1)和步骤(3)中trc启动子核苷酸序列为SEQ ID NO.1所示。
5.如权利要求1或2所述O-乙酰-L-高丝氨酸的重组大肠杆菌,其特征在于所述高丝氨酸乙酰基转移酶基因met X核苷酸序列如SEQ ID NO.5所示。
6.权利要求1或2所述高产O-乙酰-L-高丝氨酸的重组大肠杆菌在微生物发酵制备O-乙酰-L-高丝氨酸中的应用。
7.如权利要求6所述的应用,其特征在于所述应用为:将所述高产O-乙酰-L-高丝氨酸的重组大肠杆菌菌株接种至含40~80 mg/L Kan 的MS培养基中,在28~35℃、100~200 rpm培养发酵到OD600=0.8~1.0时,添加终浓度为0.05~0.1 mM的IPTG,继续培养至48~56 h,得到含有O-乙酰-L-高丝氨酸发酵液;所述MS培养基终浓度组成如下:甘油 40~50 g/L、硫酸铵 15~20 g/L、KH2PO4 0.5~1.0 g/L、酵母提取物 1~5 g/L、MgSO4 0.2~0.8 g/L、CaCO3 10~20 g/L、0.5~2 mL/L微量元素溶液,溶剂为去离子水。
8.如权利要求7所述的应用,其特征在于所述MS培养基终浓度组成如下:甘油 40 g/L、硫酸铵 16 g/L、KH2PO4 0.8 g/L、酵母提取物 2 g/L、MgSO4 0.5 g/L、CaCO3 15 g/L、1 mL/L微量元素溶液,溶剂为去离子水,pH7.0;1 mL/L微量元素溶液组成:CuCl2 10 g/L、FeSO4·7H2O 10 g/L、ZnSO4·7H2O 1 g/L、CuSO4 0.20 g/L、NiCl2·7H2O 0.02 g/L,溶剂为去离子水。
CN202011002103.3A 2020-09-22 2020-09-22 一种高产o-乙酰-l-高丝氨酸的重组大肠杆菌及其应用 Active CN112063572B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011002103.3A CN112063572B (zh) 2020-09-22 2020-09-22 一种高产o-乙酰-l-高丝氨酸的重组大肠杆菌及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011002103.3A CN112063572B (zh) 2020-09-22 2020-09-22 一种高产o-乙酰-l-高丝氨酸的重组大肠杆菌及其应用

Publications (2)

Publication Number Publication Date
CN112063572A CN112063572A (zh) 2020-12-11
CN112063572B true CN112063572B (zh) 2022-07-19

Family

ID=73682272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011002103.3A Active CN112063572B (zh) 2020-09-22 2020-09-22 一种高产o-乙酰-l-高丝氨酸的重组大肠杆菌及其应用

Country Status (1)

Country Link
CN (1) CN112063572B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019877B (zh) * 2019-12-31 2022-04-19 浙江工业大学 一种产l-半胱氨酸的基因工程菌、构建方法及应用
CN113956992B (zh) * 2021-03-18 2023-09-01 中国科学院微生物研究所 一株耐受l-高丝氨酸的大肠杆菌及其应用
CN113388564B (zh) * 2021-06-04 2022-03-01 浙江工业大学 一种o-乙酰-l-高丝氨酸生产菌、构建方法及应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005952B2 (en) * 2008-04-04 2015-04-14 Cj Cheiljedang Corporation Microorganism producing L-methionine precursor and the method of producing L-methionine precursor using the microorganism
US8609396B2 (en) * 2009-08-28 2013-12-17 Cj Cheiljedang Corporation Microorganism producing O-acetyl-homoserine and the method of producing O-acetyl-homoserine using the microorganism
US8283152B2 (en) * 2009-08-28 2012-10-09 Cj Cheiljedang Corporation Microorganism producing O-acetyl-homoserine and the method of producing O-acetyl-homoserine using the microorganism
CN103842495B (zh) * 2011-07-22 2018-04-13 麦兰特公司 甘油发酵为有机酸
TWI481711B (zh) * 2013-12-04 2015-04-21 Univ Feng Chia 可提升甘油代謝的菌株及其應用
EP2940039A1 (de) * 2014-04-30 2015-11-04 Evonik Degussa GmbH Verfahren zur Produktion von L-Aminosäuren in Corynebakterien unter Verwendung eines Glycin spaltenden Systems
US11142779B2 (en) * 2017-06-30 2021-10-12 Cj Cheiljedang Corporation O-succinyl homoserine transferase variant and method of producing O-succinyl homoserine using the same
CN108949661B (zh) * 2018-07-27 2021-06-08 浙江工业大学 一种产o-琥珀酰-l-高丝氨酸重组大肠杆菌及其应用
CN110317766B (zh) * 2019-05-23 2020-08-28 浙江工业大学 一种高产l-半胱氨酸的基因工程菌、构建方法及应用

Also Published As

Publication number Publication date
CN112063572A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
CN112063572B (zh) 一种高产o-乙酰-l-高丝氨酸的重组大肠杆菌及其应用
EP2379730B1 (en) Method for the preparation of diols
CN113151127B (zh) 一种l-高丝氨酸生产菌株及其构建方法和应用
WO2010022763A1 (en) Method for the preparation of 2-hydroxy-isobutyrate
CN106574237B (zh) 生产o-乙酰高丝氨酸的微生物和使用其生产o-乙酰高丝氨酸的方法
CN112877270B (zh) 一种生产羟基四氢嘧啶的基因工程菌及其应用
CN106868030B (zh) 重组载体、含有其的工程菌及在产α-酮戊二酸的应用
CN109777763A (zh) 一株用于l-茶氨酸生产的基因工程菌及其构建与应用
WO2022174597A1 (zh) 一种用于l-肌氨酸生产的基因工程菌及构建方法与应用
CN111705030B (zh) 高产l-高丝氨酸的大肠杆菌基因工程菌、构建方法及菌株
CN107603998B (zh) 利用乙酸生产乙醇酸的基因工程菌及其构建方法和应用
KR101223904B1 (ko) 니코틴산의 제조 방법
CN117660277A (zh) 代谢工程改造大肠杆菌及其在发酵制备红景天苷中的应用
CN112592875B (zh) 一株高丝氨酸生产菌及其构建方法和应用
CN116904416A (zh) 一种高效生产四氢嘧啶的重组大肠杆菌及其构建方法
CN113122563B (zh) 构建r-3-氨基丁酸生产菌的方法
CN112779200B (zh) 高产l-甲硫氨酸的基因工程菌及其构建与应用
EP3153575B1 (en) Microorganism having ability to produce o-succinylhomoserine or succinic acid, and method for producing succinic acid or o-succinylhomoserine by using same
CN109593697B (zh) 一种产3-羟基丙酸的重组假单胞菌及其构建方法
CN108866017B (zh) 一种酶法制备β-羟基-β-甲基丁酸的方法
JP7556793B2 (ja) コリネ型細菌由来のD-キシロースデヒドロゲナーゼおよびD-キシロネートの生産(Herstellung)方法
CN113817659B (zh) 一种代谢工程改造大肠杆菌发酵制备β-丙氨酸的方法
CN116536234A (zh) 一种高产l-高丝氨酸的工程菌及其应用
WO2024011666A1 (zh) 一种l-高丝氨酸高产菌株及其构建方法和应用
CN117286087A (zh) 高产l-高丝氨酸的基因工程菌及其构建方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant