CN112038494B - 基于手性热激活延迟荧光材料的电致发光器件及其制备方法 - Google Patents

基于手性热激活延迟荧光材料的电致发光器件及其制备方法 Download PDF

Info

Publication number
CN112038494B
CN112038494B CN202010937459.XA CN202010937459A CN112038494B CN 112038494 B CN112038494 B CN 112038494B CN 202010937459 A CN202010937459 A CN 202010937459A CN 112038494 B CN112038494 B CN 112038494B
Authority
CN
China
Prior art keywords
electroluminescent device
chiral
layer
thermal activation
delayed fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010937459.XA
Other languages
English (en)
Other versions
CN112038494A (zh
Inventor
李艳青
谢凤鸣
唐建新
周经雄
曾馨逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010937459.XA priority Critical patent/CN112038494B/zh
Publication of CN112038494A publication Critical patent/CN112038494A/zh
Application granted granted Critical
Publication of CN112038494B publication Critical patent/CN112038494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种基于手性热激活延迟荧光材料的电致发光器件,包括手性热激活延迟荧光材料掺杂的发光层,在阳极上依次真空蒸镀空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极,得到所述基于手性热激活延迟荧光材料的电致发光器件。本发明提供的基于手性热激活延迟荧光材料的圆偏振电致发光器件可发射黄色或者橙红色荧光(λ=548或600 nm),器件外量子效率EQE高达28.3%和20.3%,不对称因子为6.0×10‑4和2.4×10‑3,且具有驱动电压低,发光稳定性好等优点。

Description

基于手性热激活延迟荧光材料的电致发光器件及其制备方法
技术领域
本发明涉及有机电致发光材料领域,尤其涉及一种可工业化、性能好的基于手性热激活延迟荧光材料的电致发光器件及其制备方法。
背景技术
电致发光(英文electroluminescent),又可称电场发光,简称EL,是通过加在两电极的电压产生电场,被电场激发的电子碰击发光中心,而引致电子在能级间的跃迁、变化、复合导致发光的一种物理现象。一般认为是在强电场作用下,电子的能量相应增大,直至远远超过热平衡状态下的电子能量而成为过热电子,这过热电子在运动过程中可以通过碰撞使晶格离化形成电子、空穴对,当这些被离化的电子、空穴对复合或被激发的发光中心回到基态时便发出光来。从发光原理电致发光可以分为高场电致发光和低场电致发光。高场电致发光是一种体内发光效应。
发光材料是一种半导体化合物,掺杂适当的杂质引进发光中心或形成某种介电状态。当它与电极或其他介质接触时,其势垒处于反向时,来自电极或界面态的电子,进人发光材料的高场区,被加速并成为过热电子。圆偏振发光(CPL)在3D成像、信息存储、量子计算等方面的潜在应用而受到广泛关注。同时,TADF有机发光材料无需贵金属即可理论上实现100 %的内量子效率而成为研究的热点。目前主要通过手性小分子片段直接嫁接到TADF分子骨架上而实现CPL-TADF,然而由于分子设计合成复杂而限制了其进一步的扩展,因此开发新型简单、高效的手性TADF材料成为当前的一个研究热点。
发明内容
本发明公开了一种基于手性热激活延迟荧光材料的电致发光器件及其制备方法,手性热激活延迟荧光材料的化学名称为R/S-18,21-二(10H-吩恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪或者R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8] [1,4]二恶烷[2,3-g]喹喔啉,用以解决手性延迟荧光发光材料合成制备难、材料种类少、圆偏振延迟荧光器件效率低的难题;同时解决现有橙红光/红光TADF材料合成制备步骤多,原料昂贵,合成及纯化工艺复杂,产率不高,难于大规模量产的问题;尤其是,该手性热激活延迟荧光材料掺杂发光层制备的CP-OLED,实现其EQE超过20%,不对称因子g大于10-3的目标。
本发明采用如下技术方案:
一种基于手性热激活延迟荧光材料的电致发光器件,包括手性热激活延迟荧光材料掺杂的发光层;本发明所述电致发光器件的发光层包括手性热激活延迟荧光材料,所述手性热激活延迟荧光材料作为客体材料掺杂主体材料作为发光层;进一步的,所述手性热激活延迟荧光材料的掺杂浓度为2~20wt%,指手性热激活延迟荧光材料占发光层总量的质量百分数。
本发明公开的基于手性热激活延迟荧光材料的电致发光器件由阳极、空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极组成;具体可以为,氧化铟锡(ITO)用作阳极、双吡嗪并[2,3-f:2',3'-h]喹喔啉-2,3,6,7,10,11-己腈(HATCN)用作空穴注入层(HIL)、4,4'-(环己烷-1,1-二基)双(N,N-二-对甲苯基苯胺)(TAPC)用作空穴传输层(HTL)、三(4-(9H-咔唑-9-基)苯基)胺(TCTA)用作电子/激子阻挡层(EBL)、所述手性热激活延迟荧光材料作客体材料掺杂4,4'-二(9H-咔唑-9-基)-1,1'-联苯(CBP)主体材料共同用作发光层(EML)、4,6-双(3,5-二(吡啶-3-基)苯基)-2-甲基嘧啶(B3PYMPM)用作电子传输层(ETL)、8-羟基喹啉-锂(Liq)用作电子注入层(EIL)、铝(Al)用作阴极;进一步的,有机电致发光器件各层规格为:ITO/HATCN(10 nm)/TAPC(40 nm)/TCTA(10 nm)/CBP:R/S-TADF材料(X wt%)(20 nm)/B3PYMPM(50 nm)/Liq(2 nm)/Al(100 nm)。
本发明公开了一种电致发光器件用发光层,为手性热激活延迟荧光材料掺杂4,4'-二(9H-咔唑-9-基)-1,1'-联苯。
上述基于手性热激活延迟荧光材料的电致发光器件的制备方法为,在阳极上依次真空蒸镀空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极,得到所述基于手性热激活延迟荧光材料的电致发光器件。真空蒸镀为常规技术。
本发明所述手性热激活延迟荧光材料,其化学结构式如下:
Figure 381619DEST_PATH_IMAGE001
一方面:
上述手性橙红光热激活延迟荧光材料的制备方法包括以下步骤:以10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚为原料,反应制备得到所述手性橙红光热激活延迟荧光材料R1和S1;反应可参考如下:
Figure 62873DEST_PATH_IMAGE002
进一步的,10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚的摩尔比1∶0.8~1.1;反应在碱存在下、氮气保护下进行;反应的温度为40~100 °C,反应的时间为12~24 h。反应完毕后,萃取反应液,然后合并有机相,再抽滤,得到所述手性橙红光热激活延迟荧光材料;优选的,萃取溶剂可以是二氯甲烷、三氯甲烷、乙酸乙酯、冰醋酸中的任意一种或这些溶剂的某种组合。
另一方面:
上述手性黄光热激活延迟荧光材料的制备方法包括以下步骤:以10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚为原料,反应制备得到所述手性黄光热激活延迟荧光材料R2和S2;反应可参考如下:
Figure 373769DEST_PATH_IMAGE003
进一步的,10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚的摩尔比1∶0.8~1.1;反应在碱存在下、氮气保护下进行;反应的温度为40~100 °C,反应的时间为12~24 h。反应完毕后,萃取反应液,然后合并有机相,再抽滤,得到所述手性黄光热激活延迟荧光材料;优选的,萃取溶剂可以是二氯甲烷、三氯甲烷、乙酸乙酯、冰醋酸中的任意一种或这些溶剂的某种组合。
本发明提供一种新型手性热激活延迟荧光材料的合成制备方法;以及基于所述手性热激活延迟荧光材料的OLED,实现其EQE超过20%,不对称因子大于10-3的目标;用以解决手性延迟荧光发光材料合成制备难、材料种类少、圆偏振延迟荧光器件效率低的难题;同时解决现有橙红光/红光TADF材料合成制备步骤多,原料昂贵,合成及纯化工艺复杂,产率不高,难于大规模量产的问题。
对于本发明所述的基于手性橙红光热激活延迟荧光材料所形成的有机电致发光器件的制备方法以及其他原料没有特殊的限制。利用本发明所形成的有机薄膜具有高表面光滑性、化学物理性质稳定高发光效率和圆偏振光性质,所形成的圆偏振有机电致发光器件性能良好。
本发明有益效果如下:
1.本发明提供的R/S-18,21-二(10H-苯恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪或者R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8] [1,4]二恶烷[2,3-g]喹喔啉热激活延迟荧光材料具有刚性大平面扭曲结构和显著的内电荷转移(ICT)的特点,具有热激活延迟荧光性质(TADF)和圆偏振发光(CPL)性质,高荧光量子产率(PLQY)、热稳定性好等优点。
2. 基于本发明提供的手性热激活延迟荧光材料的CP-OLED器件,具有驱动电压低,发光稳定性好的优点,且制备的圆偏振器件的外量子效率EQE分别高达28.3%和20.3%,不对成因子g分别高达6×10-4 和 2.4×10-3
3. 本发明提供的手性热激活延迟荧光材料合成制备步骤少,原料易得,合成及纯化工艺简单,产率高,可大规模合成制备。基于其的有机电致发光器件在照明、平板显示、传感、夜视及生物成像等领域具有很好的应用前景,手性单元的引入是本发明所述的材料不仅限于以上应用,居于此的圆偏振发光器件在3D成像、信息存储、量子计算等方面的也具有潜在的应用前景。
附图说明
图1是实施例1制备所得的化合物R-ODPPXZ的核磁氢谱。
图2是实施例1制备所得的化合物R-ODPPXZ的核磁碳谱。
图3是实施例1制备所得的化合物R-ODPPXZ的质谱。
图4是实施例1制备所得的化合物R-ODPPXZ的HPLC谱。
图5是实施例1制备所得的化合物S-ODPPXZ的HPLC谱。
图6是实施例2制备所得的化合物R-ODQPXZ的核磁氢谱。
图7是实施例2制备所得的化合物R-ODQPXZ的核磁碳谱。
图8是实施例2制备所得的化合物R-ODQPXZ的质谱。
图9是实施例2制备所得的化合物R-ODQPXZ的HPLC谱。
图10是实施例2制备所得的化合物S-ODQPXZ的HPLC谱。
图11是实施例1和2制备所得化合物的圆二色光谱。
图12是实施例1和2制备所得化合物在薄膜条件下的圆偏振光谱。
图13是应用实施例一和二的器件性能图。
图14是应用实施例(一)的器件效率图。
图15是应用实施例(二)的器件效率图。
图16是化合物R-OBPDMAC的核磁氢谱。
图17是化合物R-OBPDMAC的核磁碳谱。
图18是化合物R-OBPDMAC的质谱。
具体实施方式
本发明涉及的原料都为常规市售产品,具体操作方法以及测试方法为本领域常规方法;尤其基于本发明手性热激活延迟荧光材料的电致发光器件的具体制备过程以及各层材料为现有技术,比如真空蒸镀,真空度≤2×10-4Pa,功能层沉积速率为2Å/s,主体材料的沉积速率为1Å/s,LiF层沉积速率为0.1Å/s,Al的沉积速率8Å/s。
本发明的创造性在于提供新的手性热激活延迟荧光材料,掺杂主体材料共同用作有机电致发光器件的发光层。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制
本发明提供手性热激活延迟荧光材料R/S-18,21-二(10H-苯恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪(R/S-ODPPXZ)和R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8] [1,4]二恶烷[2,3-g]喹喔啉(R/S-ODQPXZ)。
结构式如下所示:
Figure 34558DEST_PATH_IMAGE004
实施例1
反应式如下:
Figure 114509DEST_PATH_IMAGE005
反应具体如下:
150 mL三口烧瓶中加入0.45 g(3.12 mmol) 4,5-二氟苯-1,2-二胺和1.12 g(3.06 mmol)3,6-二溴-9,10-菲醌,再加入100 mL无水乙醇作为溶剂,在氮气的保护下搅拌,80 ℃反应2小时,然后过滤反应液,滤饼用无水乙醇重结晶,得淡黄色固体3,6-二溴-11,12-二氟二苯并[a,c]吩嗪,产率为95%。
150 mL三口烧瓶中先后加入0.50 g(1.05 mmol)3,6-二溴-11,12-二氟二苯并[a,c]吩嗪、0.40 g(2.18 mmol)10H-吩恶嗪、0.41 g(4.27 mmol)叔丁醇钠、0.016 g(0.055mmol)四氟硼酸三叔丁基膦、0.05 g(0.055 mmol)三(二亚苄基丙酮)二钯(0),再加入50 mL甲苯作溶剂,氮气保护下100 ℃加热反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤,产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到深红色固体10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪),产率为80%。
150 mL三口烧瓶中加入0.50 g(0.74 mmol) 10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪),0.22 g(0.75 mmol) R/S-5,5',6,6',7,7',8,8'-八氢联萘酚和0.35 g(2.53 mmol)碳酸钾,再加入DMF(50 mL)作为溶剂,在氮气的保护下70 ℃搅拌反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤;产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到最终产物R/S-18,21-二(10H-苯恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪,产率为70%。
柱层析采用洗脱剂是由石油醚、异戊烷、正戊烷、己烷、环己烷等极性较小的有机溶剂中的一种与另一种极性较大的有机溶剂配比而成,如二氯甲烷、三氯甲烷、乙酸乙酯、乙醇等,其体积比为1:2~5。
R/S-5,5',6,6',7,7',8,8'-八氢联萘酚的选择可得到对应的手性产物。图1是上述所得的化合物R-ODPPXZ的核磁氢谱;图2是上述所得的化合物R-ODPPXZ的核磁碳谱;图3是上述所得的化合物R-ODPPXZ的质谱;图4是上述所得的化合物R-ODPPXZ的HPLC谱;图5是上述所得的化合物S-ODPPXZ的HPLC谱。化合物R-ODPPXZ结构检测具体如下:
1H NMR (400 MHz, CDCl3) δ 9.65 (d, J = 8.5 Hz, 2H), 8.50 (d, J = 1.8Hz, 2H), 8.15 (s, 2H), 7.77 (dd, J = 8.5, 1.8 Hz, 2H), 7.16 (s, 4H), 6.75(dd, J = 7.9, 1.5 Hz, 4H), 6.68 (td, J = 7.6, 1.4 Hz, 4H), 6.59 (td, J = 7.7,1.6 Hz, 4H), 6.05 (dd, J = 7.9, 1.4 Hz, 4H), 2.92 – 2.75 (m, 6H), 2.53 (dt, J= 17.6, 6.0 Hz, 2H), 1.92 – 1.84 (m, 6H), 1.78 – 1.71 (m, 2H);
13C NMR (101 MHz, CDCl3) δ 153.29, 150.97, 143.98, 141.12, 140.99,140.61, 137.00, 135.53, 134.13, 133.73, 130.94, 130.35, 130.02, 129.46,125.73, 123.33, 121.69, 119.72, 118.61, 115.65, 113.32, 29.39, 27.76, 22.80,22.66;
MALDI-TOF MS (ESI, m/z) calcd for C64H44N4O4 [M+]: 932.34, Found:932.701。
实施例2
反应式如下:
Figure 202551DEST_PATH_IMAGE006
反应具体如下:
150 mL三口烧瓶中加入0.45 g(3.12 mmol) 4,5-二氟苯-1,2-二胺和1.12 g(3.04 mmol) 1,2-双(4-溴苯基)乙烷-1,2-二酮,再加入100 mL无水乙醇作为溶剂,在氮气的保护下搅拌,80 ℃反应2小时,然后过滤反应液,滤饼用无水乙醇重结晶,得淡黄色固体2,3-双(4-溴苯基)-6,7-二氟喹喔啉,产率为95%。
150 mL三口烧瓶中先后加入1.00 g(2.10 mmol)2,3-双(4-溴苯基)-6,7-二氟喹喔啉、0.80 g(4.36 mmol)10H-吩恶嗪、1.00 g(10.4 mmol)叔丁醇钠、0.032 g(0.11 mmol)四氟硼酸三叔丁基膦、0.10 g(0.11 mmol)三(二亚苄基丙酮)二钯(0),再加入50 mL甲苯作溶剂,氮气保护下100 ℃加热反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤,产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到橙色固体10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪),产率为80%。
150 mL三口烧瓶中加入0.50 g(0.73 mmol) 10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪),0.21 g(0.71 mmol) R/S-5,5',6,6',7,7',8,8'-八氢联萘酚和0.25 g(1.81 mmol)碳酸钾,再加入DMF(50 mL)作为溶剂,在氮气的保护下70℃搅拌反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤;产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到最终产物R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8][1,4]二恶烷[2,3-g]喹喔啉,产率为70%。
柱层析采用洗脱剂是由石油醚、异戊烷、正戊烷、己烷、环己烷等极性较小的有机溶剂中的一种与另一种极性较大的有机溶剂配比而成,如二氯甲烷、三氯甲烷、乙酸乙酯、乙醇等,其体积比为1:2~5。
R/S-5,5',6,6',7,7',8,8'-八氢联萘酚的选择可得到对应的手性产物。图6是上述所得的化合物R-ODQPXZ的核磁氢谱;图7是上述所得的化合物R-ODQPXZ的核磁碳谱;图8是上述所得的化合物R-ODQPXZ的质谱;图9是上述所得的化合物R-ODQPXZ的HPLC谱;图10是上述所得的化合物S-ODQPXZ的HPLC谱。化合物R-ODQPXZ结构检测具体如下:
1H NMR (400 MHz, CDCl3) δ 8.04 (s, 2H), 7.77 (d, J = 8.3 Hz, 4H), 7.40(d, J = 8.3 Hz, 4H), 7.15 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 6.71(dd, J = 7.8, 1.3 Hz, 4H), 6.64 (t, J = 7.0 Hz, 2H), 6.57-6.49 (m, 4H), 5.97(d, J = 7.9 Hz, 4H), 2.92-2.74 (m, 7H), 2.51 (dt, J = 16.9, 5.7 Hz, 2H),1.92-1.82 (m, 7H), 1.73 (dt, J = 13.3, 5.5 Hz, 2H).
13C NMR (101 MHz, CDCl3) δ 153.06, 151.86, 150.86, 143.90, 139.30,139.06, 136.96, 135.52, 133.94, 132.59, 130.86, 130.07, 130.04, 123.41,121.56, 120.00, 118.50, 115.55, 113.15, 29.37, 27.74, 22.78, 22.64.
MALDI-TOF MS (ESI, m/z) calcd for C64H46N4O4 [M+]: 934.35, Found:935.660.
由上述检测结果可知,化合物R-ODPPXZ和R-ODQPXZ的结构正确。
以下通过应用实施例说明本发明合成的化合物在器件中作为发光层客体材料的应用效果。
应用实施例
(一)掺杂浓度为7wt%的R-ODPPXZ为发光层的有机电致发光器件的制作与性能评价
掺杂浓度为7wt%的R-ODPPXZ为发光层的有机电致发光器件的制作步骤如下:
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10-4Pa,器件结构如下:ITO/HAT-CN (10nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶7wt%R-ODPPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2nm)/Al (100 nm);具体各层蒸镀为常规技术;
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为7wt%的R-ODPPXZ为发光层的有机电致发光器件的性能评价
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表1、表2和图13。
(二)掺杂浓度为15wt%的R-ODQPXZ为发光层的有机电致发光器件的制作与性能评价
掺杂浓度为15wt%的R-ODQPXZ为发光层的有机电致发光器件的制作步骤如下:
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10-4Pa,器件结构如下:ITO/HAT-CN (10nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶15wt%R-ODQPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2nm)/Al (100 nm);具体各层蒸镀为常规技术;
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为15wt%的R-ODQPXZ为发光层的有机电致发光器件的性能评价
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表1、表2和图13。
Figure 735163DEST_PATH_IMAGE007
Figure 199643DEST_PATH_IMAGE008
图14是应用实施例(一)的器件效率图;图15是应用实施例(二)的器件效率图。
应用实施例
(三)掺杂浓度为3wt%的R-ODPPXZ为发光层的有机电致发光器件的制作与性能评价
掺杂浓度为3wt%的R-ODPPXZ为发光层的有机电致发光器件的制作步骤如下:
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10-4Pa,器件结构如下:ITO/HAT-CN (10nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶3wt%R-ODPPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2nm)/Al (100 nm);具体各层蒸镀为常规技术;
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为3wt%的R-ODPPXZ为发光层的有机电致发光器件的性能评价
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为12.9%。
(四)掺杂浓度为15wt%的R-ODPPXZ为发光层的有机电致发光器件的制作与性能评价
掺杂浓度为15wt%的R-ODPPXZ为发光层的有机电致发光器件的制作步骤如下:
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10-4Pa,器件结构如下:ITO/HAT-CN (10nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶15wt%R-ODPPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2nm)/Al (100 nm);具体各层蒸镀为常规技术;
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为15wt%的R-ODPPXZ为发光层的有机电致发光器件的性能评价
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为7.6%。
可以看出,使用本发明提供的R-ODPPXZ的手性橙红光热激活延迟荧光材料制备的圆偏振有机电致发光器件,外量子效率高,而且具有较高的发光效率、开路电压低,是一种优异的OLED材料。
(五)掺杂浓度为10wt%的R-ODQPXZ为发光层的有机电致发光器件的制作与性能评价
掺杂浓度为10wt%的R-ODQPXZ为发光层的有机电致发光器件的制作步骤如下:
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10-4Pa,器件结构如下:ITO/HAT-CN (10nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶10wt%R-ODQPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2nm)/Al (100 nm);具体各层蒸镀为常规技术;
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为10wt%的R-ODQPXZ为发光层的有机电致发光器件的性能评价
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为18.0%。
(六)掺杂浓度为20wt%的R-ODQPXZ为发光层的有机电致发光器件的制作与性能评价
掺杂浓度为20wt%的R-ODQPXZ为发光层的有机电致发光器件的制作步骤如下:
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10-4Pa,器件结构如下:ITO/HAT-CN (10nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶20wt%R-ODQPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2nm)/Al (100 nm);具体各层蒸镀为常规技术;
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为20wt%的R-ODQPXZ为发光层的有机电致发光器件的性能评价
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为20.7%。
本发明提供的基于该材料有机电致发光器件可发射黄色或者橙红色荧光(λ=548或600 nm),器件外量子效率EQE高达28.3%和20.3%,不对称因子为6.0×10-4和2.4×10-3,且具有驱动电压低,发光稳定性好等优点。该手性热激活延迟荧光材料和基于其的有机电致发光器件在3D显示,信息存储与处理,圆偏振发光激光器,生物探针,光催化不对称合成等领域具有广泛的应用前景。
以R/S-18,21-双(9,9-二甲基吖啶-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1': 5,6; 1'',2'':7,8] [1,4]二恶英[2,3-i]吩嗪(R/S-OBPDMAC)作对比:
Figure 134101DEST_PATH_IMAGE009
反应式如下:
Figure 393044DEST_PATH_IMAGE010
反应具体如下:
150 mL三口烧瓶中加入0.45 g(3.12 mmol) 4,5-二氟苯-1,2-二胺和1.12 g(3.06 mmol)3,6-二溴-9,10-菲醌,再加入100 mL无水乙醇作为溶剂,在氮气的保护下搅拌,80 ℃反应2小时,然后过滤反应液,滤饼用无水乙醇重结晶,得淡黄色固体3,6-二溴-11,12-二氟二苯并[a,c]吩嗪,产率为95%。
150 mL三口烧瓶中先后加入0.50 g(1.05 mmol)3,6-二溴-11,12-二氟二苯并[a,c]吩嗪、0.50 g(2.38 mmol)9,9-二甲基吖啶、0.41 g(4.27 mmol)叔丁醇钠、0.016 g(0.055 mmol)四氟硼酸三叔丁基膦、0.05 g(0.055 mmol)三(二亚苄基丙酮)二钯(0),再加入50 mL甲苯作溶剂,氮气保护下100 ℃加热反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤,产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到橙色固体3,6-双(9,9-二甲基吖啶-10-基)-11,12-二氟二苯并[a,c]吩嗪,产率为80%。
150 mL三口烧瓶中加入0.50 g(0.68 mmol) 3,6-双(9,9-二甲基吖啶-10-基)-11,12-二氟二苯并[a,c]吩嗪,0.22 g(0.75 mmol) R/S-5,5',6,6',7,7',8,8'-八氢联萘酚和0.35 g(2.53 mmol)碳酸钾,再加入DMF(50 mL)作为溶剂,在氮气的保护下70 ℃搅拌反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤;产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到最终产物R/S-18,21-双(9,9-二甲基吖啶-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1': 5,6; 1'',2'':7,8][1,4]二恶英[2,3-i]吩嗪,产率为70%。
柱层析采用洗脱剂是由石油醚、异戊烷、正戊烷、己烷、环己烷等极性较小的有机溶剂中的一种与另一种极性较大的有机溶剂配比而成,如二氯甲烷、三氯甲烷、乙酸乙酯、乙醇等,其体积比为1:2~5。
R/S-5,5',6,6',7,7',8,8'-八氢联萘酚的选择可得到对应的手性产物。图16是上述所得的化合物R-OBPDMAC的核磁氢谱;图17是上述所得的化合物R-OBPDMAC的核磁碳谱;图18是上述所得的化合物R-OBPDMAC的质谱。化合物R-OBPDMAC结构检测具体如下:
1H NMR (400 MHz, CDCl3) δ 9.67 (d, J = 8.5 Hz, 2H), 8.41 (d, J = 1.8Hz, 2H), 8.15 (s, 2H), 7.73 (dd, J = 8.5, 1.8 Hz, 2H), 7.52-7.40 (m, 4H),7.18-7.10 (m, 4H), 6.99-6.83 (m, 8H), 6.39-6.24 (m, 4H), 2.94-2.72 (m, 6H),2.51 (dt, J = 17.6, 5.8 Hz, 2H), 1.84 (dd, J = 12.8, 6.2 Hz, 6H), 1.77 (t, J= 10.4 Hz, 2H), 1.71 (s, 12H);
13C NMR (101 MHz, CDCl3) δ 153.19, 151.02, 143.30, 141.35, 140.68,140.58, 136.98, 135.49, 133.92, 131.61, 130.19, 130.11, 130.02, 129.18,126.47, 126.04, 125.52, 120.76, 119.74, 118.65, 114.05, 36.01, 31.70, 29.39,27.75, 22.80, 22.67;MALDI-TOF MS (ESI, m/z) calcd for C70H56N4O2 [M+]: 984.44,Found: 984.827。
对比应用例
(一)掺杂浓度为7wt%的R-OBPDMAC为发光层的有机电致发光器件的制作与性能评价
掺杂浓度为7wt%的R-OBPDMAC为发光层的有机电致发光器件的制作步骤如下:
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10-4Pa,器件结构如下:ITO/HAT-CN (10nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶7wt%R-OBPDMAC (20 nm)/B3PYMPM (45 nm)/Liq (2nm)/Al (100 nm) ;具体各层蒸镀为常规技术;
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为7wt%的R-OBPDMAC为发光层的有机电致发光器件的性能评价:
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为13.0%。
(二)掺杂浓度为15wt%的R-OBPDMAC为发光层的有机电致发光器件的制作与性能评价
掺杂浓度为15wt%的R-OBPDMAC为发光层的有机电致发光器件的制作步骤如下:
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10-4Pa,器件结构如下:ITO/HAT-CN (10nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶15wt%R-OBPDMAC (20 nm)/B3PYMPM (45 nm)/Liq(2 nm)/Al (100 nm) ;具体各层蒸镀为常规技术;
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为15wt%的R-OBPDMAC为发光层的有机电致发光器件的性能评价:
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为10.5%。
(三) 未掺杂发光层的有机电致发光器件的制作与性能评价
未掺杂发光层的有机电致发光器件的制作步骤如下:
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10-4Pa,器件结构如下:ITO/HAT-CN (10nm)/TAPC (45 nm)/TCTA (5 nm)/CBP (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100nm) ;具体各层蒸镀为常规技术;
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
未掺杂发光层的有机电致发光器件的性能评价:
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为2.7%。
显然,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于所述技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (8)

1.一种基于手性热激活延迟荧光材料的电致发光器件,包括手性热激活延迟荧光材料掺杂的发光层,其特征在于:所述手性热激活延迟荧光材料的化学结构式如下:
Figure DEST_PATH_IMAGE001
Figure 512413DEST_PATH_IMAGE002
2.根据权利要求1所述基于手性热激活延迟荧光材料的电致发光器件,其特征在于,所述基于手性热激活延迟荧光材料的电致发光器件由阳极、空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极组成。
3.根据权利要求1所述基于手性热激活延迟荧光材料的电致发光器件,其特征在于,所述手性热激活延迟荧光材料的掺杂浓度为2~20wt%。
4.根据权利要求1所述基于手性热激活延迟荧光材料的电致发光器件,其特征在于,所述发光层由所述手性热激活延迟荧光材料掺杂4,4'-二(9H-咔唑-9-基)-1,1'-联苯得到。
5.电致发光器件用发光层,其特征在于,为权利要求1所述手性热激活延迟荧光材料掺杂4,4'-二(9H-咔唑-9-基)-1,1'-联苯。
6.权利要求5所述电致发光器件用发光层在制备权利要求1所述基于手性热激活延迟荧光材料的电致发光器件中的应用。
7.权利要求1所述基于手性热激活延迟荧光材料的电致发光器件在制备电致发光设备中的应用。
8.权利要求1所述基于手性热激活延迟荧光材料的电致发光器件的制备方法,其特征在于,在阳极上依次真空蒸镀空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极,得到所述基于手性热激活延迟荧光材料的电致发光器件。
CN202010937459.XA 2020-09-08 2020-09-08 基于手性热激活延迟荧光材料的电致发光器件及其制备方法 Active CN112038494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010937459.XA CN112038494B (zh) 2020-09-08 2020-09-08 基于手性热激活延迟荧光材料的电致发光器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010937459.XA CN112038494B (zh) 2020-09-08 2020-09-08 基于手性热激活延迟荧光材料的电致发光器件及其制备方法

Publications (2)

Publication Number Publication Date
CN112038494A CN112038494A (zh) 2020-12-04
CN112038494B true CN112038494B (zh) 2021-11-09

Family

ID=73585738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010937459.XA Active CN112038494B (zh) 2020-09-08 2020-09-08 基于手性热激活延迟荧光材料的电致发光器件及其制备方法

Country Status (1)

Country Link
CN (1) CN112038494B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022052135A1 (zh) * 2020-09-14 2022-03-17 苏州大学 手性热激活延迟荧光材料及其制备方法
WO2022052134A1 (zh) * 2020-09-14 2022-03-17 苏州大学 基于手性热激活延迟荧光材料的电致发光器件及其制备方法
CN112939944B (zh) * 2021-02-05 2022-05-24 中国科学院化学研究所 一种具有圆偏振发光性质的热激活延迟荧光材料及其制备方法与应用
CN112961148B (zh) * 2021-02-20 2022-06-03 电子科技大学 基于吡嗪受体的有机热致延迟荧光材料及制备方法和应用
WO2024026687A1 (zh) * 2022-08-02 2024-02-08 苏州大学 一种高效率橙红色电致发光器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539749A (zh) * 2013-10-12 2014-01-29 Tcl集团股份有限公司 菲并喔啉类荧光化合物及制备方法和应用及电致发光器件
CN106047337A (zh) * 2016-06-20 2016-10-26 武汉大学 一种含有喹喔啉单元的有机热致延迟荧光材料及其应用
CN109678844A (zh) * 2019-02-02 2019-04-26 苏州科技大学 一种橙红光热激活延迟荧光材料及有机电致发光器件
CN111574514A (zh) * 2020-05-29 2020-08-25 盐城工学院 一种基于二苯并吩嗪衍生物的热激活延迟荧光材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539749A (zh) * 2013-10-12 2014-01-29 Tcl集团股份有限公司 菲并喔啉类荧光化合物及制备方法和应用及电致发光器件
CN106047337A (zh) * 2016-06-20 2016-10-26 武汉大学 一种含有喹喔啉单元的有机热致延迟荧光材料及其应用
CN109678844A (zh) * 2019-02-02 2019-04-26 苏州科技大学 一种橙红光热激活延迟荧光材料及有机电致发光器件
CN111574514A (zh) * 2020-05-29 2020-08-25 盐城工学院 一种基于二苯并吩嗪衍生物的热激活延迟荧光材料及其制备方法与应用

Also Published As

Publication number Publication date
CN112038494A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN112038494B (zh) 基于手性热激活延迟荧光材料的电致发光器件及其制备方法
CN107021926B (zh) 一种含有氮杂螺芴和含氮六元杂环的化合物及其在oled上的应用
CN112079843B (zh) 手性热激活延迟荧光材料及其制备方法
EP2873667A1 (en) Heterocyclic compound and organic electronic element containing same
EP3919482A1 (en) Organic light-emitting compound, and organic electroluminescent device using same
CN110551135A (zh) 一种含有氮杂五元并环的化合物及其在有机电致发光器件上的应用
CN110526901A (zh) 一种有机发光材料及其制备有机电致发光器件的应用
CN111233867A (zh) 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用
CN109748916B (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN114649489A (zh) 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件
CN110835351A (zh) 一种以吡咯亚甲基硼络合物为核心的有机化合物及其制备和应用
CN110776513B (zh) 一类有机化合物及其应用
CN111423390A (zh) 一种新型结构化合物及其应用
CN110294735B (zh) 一种以蒽和菲为核心的化合物及其在有机电致发光器件上的应用
CN111205295B (zh) 一种以咪唑并咔唑为受体的化合物及其应用
KR101612158B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN113861118B (zh) 一种稠环化合物及其有机电致发光器件
KR20200076002A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN112679414B (zh) 基于热激活延迟荧光材料的超厚非掺杂电致发光器件及其制备方法
CN110551112A (zh) 一种含二氰基吡嗪的化合物及其在有机电致发光器件上的应用
CN110343049B (zh) 一种以螺二苯并环庚烯芴为骨架的有机化合物及其应用
CN112851551A (zh) 一种芴基有机电致发光化合物及含有该化合物的有机电致发光器件
KR102673122B1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
CN112480133A (zh) 一种以苯并螺蒽为核心的化合物及其应用
CN112480092A (zh) 一种以二苯基吖啶为核心的化合物及其在有机电致发光器件上的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant