WO2024026687A1 - 一种高效率橙红色电致发光器件 - Google Patents

一种高效率橙红色电致发光器件 Download PDF

Info

Publication number
WO2024026687A1
WO2024026687A1 PCT/CN2022/109767 CN2022109767W WO2024026687A1 WO 2024026687 A1 WO2024026687 A1 WO 2024026687A1 CN 2022109767 W CN2022109767 W CN 2022109767W WO 2024026687 A1 WO2024026687 A1 WO 2024026687A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroluminescent device
layer
efficiency
orange
red electroluminescent
Prior art date
Application number
PCT/CN2022/109767
Other languages
English (en)
French (fr)
Inventor
唐建新
唐艳青
周经雄
李艳青
曾馨逸
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2022/109767 priority Critical patent/WO2024026687A1/zh
Publication of WO2024026687A1 publication Critical patent/WO2024026687A1/zh

Links

Definitions

  • the invention relates to the field of organic electroluminescent materials, and in particular to an industrializable and highly efficient orange-red photothermally activated delayed fluorescent material and its electroluminescent device.
  • OLEDs Organic light-emitting diodes
  • An electroluminescent device includes an anode, a hole injection layer, a hole transport layer, an exciton blocking layer, a luminescent layer, an electron transport layer, an electron injection layer, and a cathode.
  • the luminescent layer has a key influence on the efficiency of the device. At present, the efficiency of blue and green light-emitting devices exceeds 30%, but limited by the energy gap law, the development of red devices is still far behind. Therefore, high-efficiency orange-red light devices have become a key issue that needs to be solved urgently in the field of organic electroluminescence.
  • the invention discloses a quinoxaline compound-doped electroluminescent device, which is used to solve the problem of low efficiency of red light thermally activated delayed fluorescent materials.
  • the OLEDs prepared by doping the luminescent layer achieve EQEs as high as 32.0% and 19.9 respectively. %.
  • the present invention adopts the following technical solution: a high-efficiency orange-red electroluminescent device, the luminescent layer of which is prepared by doping quinoxaline fluorescent material with a host material.
  • the quinoxaline fluorescent material is 3,6,11-triTPA-BPQ or 3,6,12-triTPA-BPQ; the doping concentration of the quinoxaline fluorescent material is 5 to 13wt%.
  • the quinoxaline fluorescent material is 3,6,11-triTPA-BPQ
  • the doping concentration of the quinoxaline fluorescent material is 7 to 13 wt%; the quinoxaline fluorescent material is 3,6,12-triTPA-BPQ.
  • the doping concentration of quinoxaline fluorescent material is 5 to 10wt%.
  • the doping concentration refers to the mass percentage of the guest material in the light-emitting layer material.
  • the high-efficiency orange-red electroluminescent device of the invention includes an anode, a hole injection layer, a hole transport layer, an exciton blocking layer, a light-emitting layer, an electron transport layer, an electron injection layer and a cathode.
  • the thickness of the luminescent layer is 10 to 30 nm; the host material is 4, 4’-N,N’-dicarbazolylbiphenyl.
  • the preparation method of the high-efficiency orange-red electroluminescent device is to sequentially evaporate a hole injection layer, a hole transport layer, an exciton blocking layer, a light-emitting layer, an electron transport layer, an electron injection layer, and a cathode on the anode to obtain High efficiency orange-red electroluminescent device.
  • each layer is prepared in a vacuum evaporation chamber, and the specific preparation method is conventional technology.
  • the invention discloses the application of the above-mentioned high-efficiency orange-red electroluminescent device in improving the efficiency of the orange-red electroluminescent device. Or application in preparing organic electroluminescent devices.
  • indium tin oxide ITO
  • HIL hole injection layer
  • TAPC 4,4'-(cyclohexane-1,1-diyl)bis(N,N- Di-p-tolylaniline)
  • EBL exciton blocker Layer
  • quinoxaline fluorescent material as guest material doped with 4,4'-N,N'-dicarbazolylbiphenyl (CBP) host material jointly used as emissive layer (EML)
  • EML exciton blocker Layer
  • the OLED device based on the quinoxaline fluorescent material provided by the present invention has the advantages of low driving voltage, high luminous brightness, and high luminous stability, and the external quantum efficiency EQE of the doped device reaches 32.0% and 19.9% respectively.
  • the organic thin film formed by the present invention has high surface smoothness, stable chemical and physical properties, high luminous efficiency and low concentration quenching properties, and the formed organic electroluminescent device has excellent performance.
  • the OLED based on quinoxaline fluorescent material provided by the present invention achieves its EQE goal of as high as 32%; it is used to solve the problem of low efficiency of red light thermally activated delayed fluorescent materials; and at the same time, it solves the problem of multiple synthesis and preparation steps of existing TADF materials and expensive raw materials , the synthesis and purification processes are complicated, the yield is not high, and it is difficult to produce on a large scale.
  • Figure 1 is an efficiency diagram of Examples 3, 6, and 11-triTPA-BPQ devices.
  • Figure 2 is an efficiency diagram of Examples 3, 6, and 12-triTPA-BPQ devices.
  • Figure 3 is a schematic diagram of the preparation of the quinoxaline fluorescent material of the present invention.
  • Figure 4 is the proton nuclear magnetic spectrum (400 MHz, CDCl 3 ) of compound 3,6,11-triTPA-BPQ prepared in Example 1.
  • Figure 5 is the mass spectrum of compound 3,6,11-triTPA-BPQ prepared in Example 1.
  • Figure 6 is the hydrogen nuclear magnetic spectrum (400 MHz, CDCl 3 ) of compound 3,6,12-triTPA-BPQ prepared in Example 1.
  • Figure 7 is the mass spectrum of compound 3,6,12-triTPA-BPQ prepared in Example 1.
  • the raw materials involved in the present invention are all conventional commercial products, and the specific operating methods and testing methods are conventional methods in the field; especially the specific preparation process of the organic electroluminescent device based on the quinoxaline fluorescent material of the present invention and the materials of each layer are existing Technology, such as vacuum evaporation, vacuum degree ⁇ 2 ⁇ 10 -4 Pa, functional layer deposition rate is 2 ⁇ /s, host material deposition rate is 1 ⁇ /s, LiF layer deposition rate is 0.1 ⁇ /s, Al’s Deposition rate 8 ⁇ /s.
  • the creativity of the present invention is to provide a new thermally activated delayed fluorescent material with non-doped properties, and the doped host material serves as the light-emitting layer of the organic electroluminescent device.
  • the invention provides two high-efficiency quinoxaline fluorescent materials, 3,6,11-triTPA-BPQ or 3,6,12-triTPA-BPQ.
  • the structural formula is as follows: .
  • Example 1 Preparation and performance evaluation of an organic electroluminescent device using 3,6,11-triTPA-BPQ with a doping concentration of 7 wt% as the light-emitting layer.
  • the production steps are as follows: (1) Pretreatment of glass anode: select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film as a transparent electrode; wash the glass substrate with ethanol, and then use UV -Ozone treatment to obtain a pre-treated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation Use the vacuum evaporation method to perform vacuum evaporation of each layer on the pre-treated glass substrate. Place the treated glass substrate into the vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 - 4 Pa, the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP:7 wt%3,6,11-triTPA-BPQ (20 nm)/B3PYMPM ( 45 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology.
  • Device packaging Seal the prepared organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then use a glassy sealing cover with epoxy ultraviolet curing resin to cover the film.
  • the substrate is sealed by UV curing; the specific packaging is conventional technology.
  • Example 2 Preparation and performance evaluation of an organic electroluminescent device using 3,6,11-triBr-BPQ with a doping concentration of 10 wt% as the light-emitting layer.
  • the production steps are as follows: (1) Pretreatment of glass anode: select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film as a transparent electrode; wash the glass substrate with ethanol, and then use UV -Ozone treatment to obtain a pre-treated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation Use the vacuum evaporation method to perform vacuum evaporation of each layer on the pre-treated glass substrate. Place the treated glass substrate into the vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 - 4 Pa, the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP: 10 wt% 3,6,11-triTPA-BPQ (20 nm)/B3PYMPM ( 45 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology.
  • Device packaging Seal the prepared organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then use a glassy sealing cover with epoxy ultraviolet curing resin to cover the film.
  • the substrate is sealed by UV curing; the specific packaging is conventional technology.
  • Example 3 Preparation and performance evaluation of an organic electroluminescent device using 3,6,11-triTPA-BPQ with a doping concentration of 13 wt% as the light-emitting layer.
  • the production steps are as follows: (1) Pretreatment of glass anode: select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film as a transparent electrode; wash the glass substrate with ethanol, and then use UV -Ozone treatment to obtain a pre-treated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation Use the vacuum evaporation method to perform vacuum evaporation of each layer on the pre-treated glass substrate. Place the treated glass substrate into the vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 - 4 Pa, the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP: 13 wt% 3,6,11-triTPA-BPQ (20 nm)/B3PYMPM ( 45 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology.
  • Device packaging Seal the prepared organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then use a glassy sealing cover with epoxy ultraviolet curing resin to cover the film.
  • the substrate is sealed by UV curing; the specific packaging is conventional technology.
  • Example 4 Preparation and performance evaluation of an organic electroluminescent device using 3,6,12-triTPA-BPQ with a doping concentration of 5 wt% as the light-emitting layer.
  • the production steps are as follows: (1) Pretreatment of glass anode: select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film as a transparent electrode; wash the glass substrate with ethanol, and then use UV -Ozone treatment to obtain a pre-treated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation Use the vacuum evaporation method to perform vacuum evaporation of each layer on the pre-treated glass substrate. Place the treated glass substrate into the vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 - 4 Pa, the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP: 5 wt% 3,6,12-triTPA-BPQ (20 nm)/B3PYMPM ( 45 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology.
  • Device packaging Seal the prepared organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then use a glassy sealing cover with epoxy ultraviolet curing resin to cover the film.
  • the substrate is sealed by UV curing; the specific packaging is conventional technology.
  • Example 5 Fabrication and performance evaluation of an organic electroluminescent device using 3,6,12-triTPA-BPQ with a doping concentration of 7 wt% as the light-emitting layer.
  • the production steps are as follows: (1) Pretreatment of glass anode: select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film as a transparent electrode; wash the glass substrate with ethanol, and then use UV -Ozone treatment to obtain a pre-treated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation Use the vacuum evaporation method to perform vacuum evaporation of each layer on the pre-treated glass substrate. Place the treated glass substrate into the vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 - 4 Pa, the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP: 7 wt% 3,6,12-triTPA-BPQ (20 nm)/B3PYMPM ( 45 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology.
  • Device packaging Seal the prepared organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then use a glassy sealing cover with epoxy ultraviolet curing resin to cover the film.
  • the substrate is sealed by UV curing; the specific packaging is conventional technology.
  • Example 6 Preparation and performance evaluation of an organic electroluminescent device using 3,6,12-triTPA-BPQ with a doping concentration of 10 wt% as the light-emitting layer.
  • the production steps are as follows: (1) Pretreatment of glass anode: select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film as a transparent electrode; wash the glass substrate with ethanol, and then use UV -Ozone treatment to obtain a pre-treated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation Use the vacuum evaporation method to perform vacuum evaporation of each layer on the pre-treated glass substrate. Place the treated glass substrate into the vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 - 4 Pa, the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP: 10 wt% 3,6,12-triTPA-BPQ (20 nm)/B3PYMPM ( 45 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology.
  • Device packaging Seal the prepared organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then use a glassy sealing cover with epoxy ultraviolet curing resin to cover the film.
  • the substrate is sealed by UV curing; the specific packaging is conventional technology.
  • the only difference between the above devices is that the quinoxaline fluorescent material is different or the doping concentration is different.
  • a computer-controlled Keithley 2400 digital source meter is used to measure the current-voltage characteristics.
  • the luminescent properties of the organic electroluminescent device are measured under changes in applied DC voltage. The device performance is shown in Table 1 and Figure 1 and Figure 2.
  • 3,6,11-triTPA-BPQ Dissolve a mixture of 3,6-dibromophenanthrenequinone (0.80 g, 2.18 mmol) and 6-bromopyridine-2,3-diamine (0.45 g, 2.40 mmol) in 50 mL ethanol. The mixed solution was refluxed at 90°C under N2 atmosphere for 6 hours. The precipitate was collected by filtration and washed with ethanol to obtain purified 3,6,11-triBr-BPQ (1.03 g, 1.99 mmol) without further purification. The yield is 91%.
  • 3,6,12-triTPA-BPQ The preparation process is the same as 3,6,11-triTPA-BPQ, except that 5-bromopyridine-2,3-diamine (0.45 g, 2.40 mmol) instead of 6-bromopyridine-2,3-diamine to obtain 3,6,12-triBr-BPQ, and then the reaction gave an orange solid 3,6,12-triTPA-BPQ (1.53 g, 1.51 mmol). The yield is 77%.
  • Figure 4 is the proton nuclear magnetic spectrum of the compound 3,6,11-triTPA-BPQ obtained above;
  • Figure 5 is the mass spectrum of the compound 3,6,11-triTPA-BPQ obtained above.
  • Figure 6 is the proton nuclear magnetic spectrum of the compound 3,6,12-triTPA-BPQ obtained above;
  • Figure 7 is the mass spectrum of the compound 3,6,12-triTPA-BPQ obtained above.
  • the organic electroluminescent device based on this material provided by the invention can emit orange-red light (the maximum external quantum efficiency of the doped device can reach 32.0% and 19.9% respectively). These devices have the advantages of low driving voltage and good luminescence stability. Organic electroluminescent devices based on it have great application prospects and economic value in fields such as lighting and flat panel displays.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种高效率橙红色电致发光器件,结构为阳极(ITO)/空穴注入层/空穴传输层/激子阻挡层/发光层/电子传输层/电子注入层/阴极,其中发光层由喹喔啉荧光材料掺杂主体材料制备。本发明以两种新的喹喔啉荧光材料分别为掺杂客体制备的OLED,分别实现了32.0%和19.9%较高的EQE。

Description

一种高效率橙红色电致发光器件 技术领域
本发明涉及有机电致发光材料领域,尤其涉及一种可工业化、效率高的橙红光热激活延迟荧光材料及其电致发光器件。
背景技术
有机发光二极管(OLED)由于其重量轻、响应时间短以及可柔性设计等优势成为了显示和照明领域的热点。传统荧光材料中,只有激发的单线态能进行辐射跃迁发射,因此最大内部量子效率仅为25%,这极大地限制了OLED器件效率的提升。电致发光器件包括阳极、空穴注入层、空穴传输层、激子阻挡层、发光层、电子传输层、电子注入层、阴极,发光层对器件的效率有关键影响。目前,蓝色和绿色发光器件的效率超过30%,但受到能隙定律的限制,红色器件的发展还远远落后。因此,高效率的橙红光器件成为有机电致发光领域亟需解决的关键问题。
技术问题
本发明公开了一种喹喔啉化合物掺杂的电致发光器件,用以解决红光热激活延迟荧光材料效率低的难题,掺杂发光层制备的OLEDs,实现的EQE分别高达32.0%和19.9%。
技术解决方案
本发明采用如下技术方案:一种高效率橙红色电致发光器件,其发光层由喹喔啉荧光材料掺杂主体材料制备。所述喹喔啉荧光材料为3,6,11-triTPA-BPQ或3,6,12-triTPA-BPQ;喹喔啉荧光材料的掺杂浓度为5~13wt%。优选的,喹喔啉荧光材料为3,6,11-triTPA-BPQ时,喹喔啉荧光材料的掺杂浓度为7~13wt%;喹喔啉荧光材料为3,6,12-triTPA-BPQ时,喹喔啉荧光材料的掺杂浓度为5~10wt%。其中,掺杂浓度指,客体材料占发光层材料的质量百分数。
本发明高效率橙红色电致发光器件包括阳极、空穴注入层、空穴传输层、激子阻挡层、发光层、电子传输层、电子注入层、阴极。优选的,所述发光层的厚度为10~30nm;主体材料为4, 4’-N,N’-二咔唑基联苯。所述高效率橙红色电致发光器件的制备方法为,在阳极上依次蒸镀空穴注入层、空穴传输层、激子阻挡层、发光层、电子传输层、电子注入层、阴极,得到高效率橙红色电致发光器件。优选的,各层在真空蒸镀腔内制备,具体制备方法为常规技术。
本发明公开了上述高效率橙红色电致发光器件在提高橙红色电致发光器件效率中的应用。或者在制备有机电致发光装置中的应用。
作为优选,本发明公开的高效率橙红色电致发光器件中,氧化铟锡(ITO)用作阳极、双吡嗪并[2,3-f:2',3'-h]喹喔啉-2,3,6,7,10,11-己腈(HATCN)用作空穴注入层(HIL)、4,4'-(环己烷-1,1-二基)双(N,N-二-对甲苯基苯胺)(TAPC)用作空穴传输层(HTL)、三苯胺化合物4,4',4"-三(咔唑-9-基)三苯胺(TCTA)用作激子阻挡层(EBL)、喹喔啉荧光材料作客体材料掺杂4, 4’-N,N’-二咔唑基联苯(CBP)主体材料共同用作发光层(EML)、4,6-双(3,5-二(3-吡啶)基苯基)-2-甲基嘧啶(B3PYMPM)用作电子传输层(ETL)、氟化锂(LiF)用作电子注入层(EIL)、铝(Al)用作阴极;进一步的,有机电致发光器件各层规格为:ITO/HATCN(10 nm)/TAPC(60 nm)/TCTA(10 nm)/CBP∶TADF材料(X wt%)(20 nm)/B3PYMPM(45 nm)/LiF(1 nm)/Al(100 nm)。
有益效果
基于本发明提供的喹喔啉荧光材料的OLED器件,具有低驱动电压,高发光亮度,高发光稳定性的优点,且掺杂器件的外量子效率EQE分别达到了32.0%和19.9%。对于本发明所述的基于热激活延迟荧光材料所形成的有机电致发光器件的制备方法以及其他原料没有特殊的限制。利用本发明所形成的有机薄膜具有高表面光滑性、化学物理性质稳定高发光效率和低浓度淬灭性质,所形成的有机电致发光器件性能优异。本发明提供的基于喹喔啉荧光材料的OLED,实现其EQE高达32%的目标;用以解决红光热激活延迟荧光材料效率低的难题;同时解决现有TADF材料合成制备步骤多,原料昂贵,合成及纯化工艺复杂,产率不高,难于大规模量产的问题。
附图说明
图1是实施例3,6,11-triTPA-BPQ器件的效率图。
图2是实施例3,6,12-triTPA-BPQ器件的效率图。
图3是本发明喹喔啉荧光材料的制备示意图。
图4是实施例1制备所得的化合物3,6,11-triTPA-BPQ的核磁氢谱(400 MHz, CDCl 3)。
图5是实施例1制备所得的化合物3,6,11-triTPA-BPQ的质谱。
图6是实施例1制备所得的化合物3,6,12-triTPA-BPQ的核磁氢谱(400 MHz, CDCl 3)。
图7是实施例1制备所得的化合物3,6,12-triTPA-BPQ的质谱。
本发明的实施方式
本发明涉及的原料都为常规市售产品,具体操作方法以及测试方法为本领域常规方法;尤其基于本发明喹喔啉荧光材料的有机电致发光器件的具体制备过程以及各层材料为现有技术,比如真空蒸镀,真空度≤2×10 -4 Pa,功能层沉积速率为2 Å/s,主体材料的沉积速率为1 Å/s,LiF层沉积速率为0.1 Å/s,Al的沉积速率8 Å/s。本发明的创造性在于提供新的具有非掺杂性质的热激活延迟荧光材料,掺杂主体材料作为有机电致发光器件的发光层。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明提供两种高效喹喔啉荧光材料3,6,11-triTPA-BPQ或3,6,12-triTPA-BPQ。结构式如下所示:
实施例一 掺杂浓度为7 wt%的3,6,11-triTPA-BPQ为发光层的有机电致发光器件的制作与性能评价。
制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP∶7 wt%3,6,11-triTPA-BPQ (20 nm)/B3PYMPM (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
实施例二 掺杂浓度为10 wt%的3,6,11-triBr-BPQ为发光层的有机电致发光器件的制作与性能评价。
制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP∶10 wt% 3,6,11-triTPA-BPQ (20 nm)/B3PYMPM (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
实施例三  掺杂浓度为13 wt%的3,6,11-triTPA-BPQ为发光层的有机电致发光器件的制作与性能评价。
制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP∶13 wt% 3,6,11-triTPA-BPQ (20 nm)/B3PYMPM (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
实施例四 掺杂浓度为5 wt%的3,6,12-triTPA-BPQ为发光层的有机电致发光器件的制作与性能评价。
制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP∶5 wt% 3,6,12-triTPA-BPQ (20 nm)/B3PYMPM (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
实施例五 掺杂浓度为7 wt%的3,6,12-triTPA-BPQ为发光层的有机电致发光器件的制作与性能评价。
制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP∶7 wt% 3,6,12-triTPA-BPQ (20 nm)/B3PYMPM (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
实施例六 掺杂浓度为10 wt%的3,6,12-triTPA-BPQ为发光层的有机电致发光器件的制作与性能评价。
制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/TCTA (10 nm)/CBP∶10 wt% 3,6,12-triTPA-BPQ (20 nm)/B3PYMPM (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
以上器件唯一的区别在于喹喔啉荧光材料不同或者掺杂浓度不同,使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表1和图1、图2。
合成例 参见图3。
3,6,11-triTPA-BPQ:将3,6-二溴菲醌(0.80 g, 2.18 mmol)和6-溴吡啶-2,3-二胺(0.45 g, 2.40 mmol)的混合物溶解在50 mL乙醇中。混合溶液在90℃、N 2气氛下回流6小时。沉淀物经过滤收集,用乙醇洗涤,得到纯化的3,6,11-triBr-BPQ(1.03 g, 1.99 mmol),无需进一步纯化。产率为91%。将3,6,11-triBr-BPQ (1.00 g, 1.93 mmol)、(4(二苯胺)苯基)硼酸(1.84 g, 6.26 mmol)、K 2CO 3 (0.79 g, 5.75 mmol)加入到60 mL的1,4-二氧六环和水(10/1,v/v)的混合物中。然后,在氮气气氛中添加Pd(PPh 3) 4 (67 mg, 0.058 mmol),90℃加热48 h后,将反应混合物冷却至室温。将本品倒入100 mL水中,用二氯甲烷(DCM)萃取。所得层在减压条件下蒸发,用DCM作洗脱液进一步柱层析纯化,得到橙色固体3,6,11-triTPA-BPQ (1.46 g, 1.39 mmol)。产率为70%。
3,6,12-triTPA-BPQ:与3,6,11-triTPA-BPQ的制备过程相同,只是用5-溴吡啶-2,3-二胺(0.45 g, 2.40 mmol)代替了6-溴吡啶-2,3-二胺得到3,6,12-triBr-BPQ,然后反应得到橙色固体 3,6,12-triTPA-BPQ (1.53 g, 1.51 mmol)。产率为77%。
图4是上述所得的化合物3,6,11-triTPA-BPQ的核磁氢谱;图5是上述所得的化合物3,6,11-triTPA-BPQ的质谱。图6是上述所得的化合物3,6,12-triTPA-BPQ的核磁氢谱;图7是上述所得的化合物3,6,12-triTPA-BPQ的质谱。
本发明提供的基于该材料有机电致发光器件可发射橙红光(掺杂器件最大外量子效率分别可达32.0%和19.9%)。这些器件具有驱动电压低,发光稳定性好等优点。基于其的有机电致发光器件在照明和平板显示等领域具有巨大的应用前景和经济价值。

Claims (10)

  1. 一种高效率橙红色电致发光器件,其特征在于:所述高效率橙红色电致发光器件的发光层由喹喔啉荧光材料掺杂主体材料制备。
  2. 根据权利要求1所述高效率橙红色电致发光器件,其特征在于,喹喔啉荧光材料的掺杂浓度为5~13wt%。
  3. 根据权利要求1所述高效率橙红色电致发光器件,其特征在于,所述喹喔啉荧光材料为3,6,11-triTPA-BPQ或3,6,12-triTPA-BPQ。
  4. 根据权利要求1所述高效率橙红色电致发光器件,其特征在于,所述发光层的厚度为10~30nm。
  5. 根据权利要求1所述高效率橙红色电致发光器件,其特征在于,所述高效率橙红色电致发光器件包括阳极、空穴注入层、空穴传输层、激子阻挡层、发光层、电子传输层、电子注入层、阴极。
  6. 根据权利要求1所述高效率橙红色电致发光器件,其特征在于,主体材料为4, 4’-N,N’-二咔唑基联苯。
  7. 权利要求1所述高效率橙红色电致发光器件的制备方法,其特征在于,包括以下步骤,在阳极上依次蒸镀空穴注入层、空穴传输层、激子阻挡层、发光层、电子传输层、电子注入层、阴极,得到高效率橙红色电致发光器件。
  8. 根据权利要求7所述高效率橙红色电致发光器件的制备方法,其特征在于,各层在真空蒸镀腔内制。
  9. 权利要求7所述高效率橙红色电致发光器件在提高橙红色电致发光器件效率中的应用。
  10. 权利要求1所述高效率橙红色电致发光器件在制备有机电致发光装置中的应用。
PCT/CN2022/109767 2022-08-02 2022-08-02 一种高效率橙红色电致发光器件 WO2024026687A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109767 WO2024026687A1 (zh) 2022-08-02 2022-08-02 一种高效率橙红色电致发光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109767 WO2024026687A1 (zh) 2022-08-02 2022-08-02 一种高效率橙红色电致发光器件

Publications (1)

Publication Number Publication Date
WO2024026687A1 true WO2024026687A1 (zh) 2024-02-08

Family

ID=89848409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109767 WO2024026687A1 (zh) 2022-08-02 2022-08-02 一种高效率橙红色电致发光器件

Country Status (1)

Country Link
WO (1) WO2024026687A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110147720A1 (en) * 2009-12-18 2011-06-23 Min Sheng Chen Novel Quinoxaline Derivatives and Their Use in Organic Light-Emitting Diode Device
CN104638114A (zh) * 2013-11-12 2015-05-20 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN106711351A (zh) * 2017-01-25 2017-05-24 上海道亦化工科技有限公司 含有喹喔啉和联苯基团的化合物及其有机电致发光器件
CN112038494A (zh) * 2020-09-08 2020-12-04 苏州大学 基于手性热激活延迟荧光材料的电致发光器件及其制备方法
CN112079843A (zh) * 2020-09-08 2020-12-15 苏州大学 手性热激活延迟荧光材料及其制备方法
CN113066935A (zh) * 2021-03-16 2021-07-02 吉林大学 一种双激基复合物为主体的白色有机电致发光器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110147720A1 (en) * 2009-12-18 2011-06-23 Min Sheng Chen Novel Quinoxaline Derivatives and Their Use in Organic Light-Emitting Diode Device
CN104638114A (zh) * 2013-11-12 2015-05-20 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN106711351A (zh) * 2017-01-25 2017-05-24 上海道亦化工科技有限公司 含有喹喔啉和联苯基团的化合物及其有机电致发光器件
CN112038494A (zh) * 2020-09-08 2020-12-04 苏州大学 基于手性热激活延迟荧光材料的电致发光器件及其制备方法
CN112079843A (zh) * 2020-09-08 2020-12-15 苏州大学 手性热激活延迟荧光材料及其制备方法
CN113527322A (zh) * 2020-09-08 2021-10-22 苏州大学 手性热激活延迟荧光材料的制备方法
CN113066935A (zh) * 2021-03-16 2021-07-02 吉林大学 一种双激基复合物为主体的白色有机电致发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINDNER BENJAMIN D., ZHANG YEXIANG, HÖFLE STEFAN, BERGER NANCY, TEUSCH CLAUDIA, JESPER MALTE, HARDCASTLE KENNETH I., QIAN XUHONG, : "N-Fused quinoxalines and benzoquinoxalines as attractive emitters for organic light emitting diodes", JOURNAL OF MATERIALS CHEMISTRY C, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 1, no. 36, 1 January 2013 (2013-01-01), GB , pages 5718, XP093136249, ISSN: 2050-7526, DOI: 10.1039/c3tc30828f *

Similar Documents

Publication Publication Date Title
CN102617477B (zh) 菲并咪唑衍生物及其作为电致发光材料的应用
CN110492009B (zh) 一种基于激基复合物体系搭配含硼有机化合物的电致发光器件
CN110330472B (zh) 一种蓝光材料及其制备方法和应用
Gu et al. Tetrasubstituted adamantane derivatives with arylamine groups: Solution-processable hole-transporting and host materials with high triplet energy and good thermal stability for organic light-emitting devices
WO2023165078A1 (zh) 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件
CN110734446A (zh) 一类有机化合物及其应用
TW201643133A (zh) 有機電子發光材料
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN111187273A (zh) 一类有机化合物及其应用
CN114478574B (zh) 一种有机化合物及其应用
CN114262328B (zh) 有机电致发光化合物及其制备方法和有机电致发光器件
WO2022088113A1 (zh) 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法
CN112679414B (zh) 基于热激活延迟荧光材料的超厚非掺杂电致发光器件及其制备方法
WO2024026687A1 (zh) 一种高效率橙红色电致发光器件
CN115295736B (zh) 一种高效率橙红色电致发光器件
CN110105231B (zh) 一种含薁环的化合物、其用途及包含其的有机光电装置
CN113999215A (zh) 一种有机化合物及其应用
CN113896724A (zh) 基于苯并噻二唑-芘并咪唑的有机红光小分子及其在制备非掺杂有机电致发光器件中的应用
CN115160316B (zh) 一种橙红光热激活延迟荧光材料及其合成方法
WO2024026688A1 (zh) 一种橙红光热激活延迟荧光材料及其合成方法
CN112289942B (zh) 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法
WO2022088111A1 (zh) 基于热激活延迟荧光材料的超厚非掺杂电致发光器件及其制备方法
CN113248522B (zh) 一种有机化合物及使用该化合物的有机发光器件
WO2022088123A1 (zh) 一种绿色热激活延迟荧光材料及其制备方法
CN115521253B (zh) 一种双联喹啉衍生物化合物及其应用