WO2022088113A1 - 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法 - Google Patents

基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法 Download PDF

Info

Publication number
WO2022088113A1
WO2022088113A1 PCT/CN2020/125594 CN2020125594W WO2022088113A1 WO 2022088113 A1 WO2022088113 A1 WO 2022088113A1 CN 2020125594 W CN2020125594 W CN 2020125594W WO 2022088113 A1 WO2022088113 A1 WO 2022088113A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally activated
activated delayed
fluorescent material
delayed fluorescent
doped
Prior art date
Application number
PCT/CN2020/125594
Other languages
English (en)
French (fr)
Inventor
唐建新
谢凤鸣
李艳青
周经雄
曾馨逸
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2020/125594 priority Critical patent/WO2022088113A1/zh
Publication of WO2022088113A1 publication Critical patent/WO2022088113A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass

Definitions

  • the invention relates to the field of organic electroluminescent materials, in particular to a thermally activated delayed fluorescent material that can be industrialized and has good performance and an electroluminescent device thereof.
  • OLEDs Organic Light Emitting Diodes
  • the first-generation light-emitting device OLEDs based on conventional fluorescent materials show internal quantum efficiencies (IQEs) as high as 25% and external quantum efficiencies (EQEs) of 5–7.5%, because the emissive materials can only obtain singlet excitons.
  • IQEs internal quantum efficiencies
  • EQEs external quantum efficiencies
  • Second-generation phosphorescent materials containing noble metal atoms can effectively utilize singlet and triplet excitons for spin-orbit coupling, and their IQE can reach 100%; however, considering that iridium (Ir) and platinum (Pt) are scarce and Expensive, their application in the field of organic light-emitting materials is greatly limited.
  • the emerging third-generation light-emitting materials-thermally activated delayed fluorescence (TADF) materials do not contain metals, and TADF materials can pass triplet excitons from the lowest triplet excited state (T 1 ) through the inverse intersystem to single.
  • T 1 triplet excited state
  • S 1 reexcited state
  • the IQE can also reach 100% by converting into photons, which is a promising and promising alternative to phosphorescent luminescent materials. big attention.
  • TADF materials For the vast majority of TADF materials, they suffer from a serious aggregation concentration quenching (ACQ) phenomenon.
  • ACQ aggregation concentration quenching
  • OLED devices When preparing OLED devices, they are doped in the host material as a guest material at a low concentration. Doped high-efficiency TADF materials are very rare. Therefore, if a TADF material that does not suffer from concentration quenching can be designed and synthesized, and high-efficiency undoped electroluminescent devices can be realized at the same time, it will have huge application prospects and economic value. .
  • the invention discloses a high-efficiency green thermally activated delayed fluorescent material and a preparation method thereof.
  • the chemical name of the thermally activated delayed fluorescent material is 3,5-bis(9H-carbazol-9-yl)-2,4,6-tris (3,6-di-tert-butyl-9H-carbazol-9-yl) benzonitrile, to solve the problems of serious concentration quenching of thermally activated delayed fluorescent materials and low efficiency of non-doped electroluminescent devices;
  • the existing TADF materials have many synthesis and preparation steps, expensive raw materials, complex synthesis and purification processes, low yields, and difficulty in mass production; especially, the OLED prepared by the high-concentration doped light-emitting layer of the thermally activated delayed fluorescent material , to achieve its goal of EQE exceeding 20% with low efficiency roll-off.
  • the present invention adopts the following technical solutions.
  • the invention discloses an organic electroluminescence device, the light-emitting layer of which is prepared by doping a host material with a thermally activated delayed fluorescent material as a guest material; further, the doping concentration of the thermally activated delayed fluorescent material is 10-100wt%, excluding 100wt%, preferably 10-50wt%; the doping concentration refers to the mass percentage of the guest material in the material of the light-emitting layer.
  • a hole injection layer, a hole transport layer, an electron/exciton blocking layer, a light-emitting layer, an electron transport layer, an electron injection layer and a cathode are sequentially prepared on the anode to obtain a doped electronic device based on a green thermally activated delayed fluorescent material.
  • the thickness of the light-emitting layer is preferably 20-100 nm; each layer is prepared in a vacuum evaporation chamber, and the specific preparation method is conventional technology.
  • the thermally activated delayed fluorescent material of the present invention is 3,5-bis(9H-carbazol-9-yl)-2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl) Benzonitrile, its chemical formula is: C 91 H 88 N 6 , and its chemical structural formula is as follows.
  • the preparation method of the above thermally activated delayed fluorescent material comprises the following steps: using 2,3,4,5,6-pentafluorobenzonitrile, 3,6-di-tert-butyl-9H-carbazole and 9H-carbazole as raw materials,
  • the green thermally activated delayed fluorescent material is prepared by a continuous one-pot reaction; the reaction can be referred to as follows.
  • reaction solution was poured into water, and then a large amount of solid was obtained by suction filtration.
  • product was separated and purified by column chromatography (petroleum ether/dichloromethane, volume ratio of 4:1) to obtain the thermal activation delay. fluorescent material.
  • the organic electroluminescent device based on the thermally activated delayed fluorescent material disclosed in the present invention is that indium tin oxide (ITO) is used as the anode, bispyrazino[2,3-f:2',3'-h]quinoxa Lino-2,3,6,7,10,11-capronitrile (HATCN) was used as a hole injection layer (HIL), 4,4'-(cyclohexane-1,1-diyl)bis(N, N-di-p-tolylaniline) (TAPC) was used as the hole transport layer (HTL) and 1,3-bis(9H-carbazol-9-yl)benzene (mCP) was used as the electron/exciton blocking layer ( EBL), the thermally activated delayed fluorescent material is used as a guest material doped with 1,3-bis(9H-carbazol-9-yl)benzene (mCP) host material and used as an emissive layer (EML), 4,6-bis (3,5-
  • the invention provides a method for synthesizing and preparing a novel thermally activated delayed fluorescent material; and an OLED based on the thermally activated delayed fluorescent material, which achieves the goal of having an EQE exceeding 20% and a low-efficiency roll-off; and is used to solve the problem of the thermally activated delayed fluorescent material.
  • the organic thin film formed by the invention has high surface smoothness, stable chemical and physical properties, high luminous efficiency and low concentration quenching properties, and the formed organic electroluminescent device has excellent performance.
  • Thermally activated delayed fluorescence material is characterized by twisted internal charge transfer (TICT), thermally activated delayed fluorescence (TADF) properties, 100% high fluorescence quantum yield (PLQY), good thermal stability, and a pure membrane state Advantages such as no aggregation concentration quenching (ACQ) effect.
  • TICT twisted internal charge transfer
  • TADF thermally activated delayed fluorescence
  • PLQY 100% high fluorescence quantum yield
  • ACQ no aggregation concentration quenching
  • the OLED device based on the thermally activated delayed fluorescent material provided by the present invention has the advantages of low driving voltage, high luminescence brightness, and high luminescence stability, and the external quantum efficiency EQE of the doped device is as high as 26.8%, at 10-100wt%
  • the external quantum efficiency EQE of the doped devices exceeds 20%, and the external quantum efficiency EQE of the undoped devices is also more than 20%. In addition, the efficiency roll-off of these devices is very small.
  • the thermally activated delayed fluorescent material provided by the present invention has few synthesis and preparation steps, cheap and readily available raw materials, simple synthesis and purification processes, high yield, and can be synthesized and prepared on a large scale.
  • Organic electroluminescent devices based on it have great application prospects and economic value in the fields of lighting and flat panel displays.
  • Figure 1 is the hydrogen NMR spectrum of Compound A prepared in Example 1.
  • FIG. 2 is the carbon nuclear magnetic spectrum of compound A prepared in Example 1.
  • FIG. 3 is the mass spectrum of Compound A prepared in Example 1.
  • FIG. 4 is an efficiency graph of an example device.
  • Figure 5 is a graph of the efficiency of devices doped with different thicknesses.
  • the raw materials involved in the present invention are all conventional commercial products, and the specific operation methods and testing methods are conventional methods in the field; especially the specific preparation process and the materials of each layer of the organic electroluminescent device based on the thermally activated delayed fluorescent material of the present invention are existing techniques, such as vacuum evaporation, the vacuum degree is ⁇ 2 ⁇ 10 -4 Pa, the deposition rate of the functional layer is 2 ⁇ /s, the deposition rate of the host material is 1 ⁇ /s, the deposition rate of the LiF layer is 0.1 ⁇ /s, and the deposition rate of the Al The deposition rate was 8 ⁇ /s.
  • the inventive step of the present invention is to provide a new thermally activated delayed fluorescent material with non-doped properties, and the doped host material is used as the light-emitting layer of the organic electroluminescent device.
  • the invention provides a high-efficiency green thermally activated delayed fluorescent material 3,5-bis(9H-carbazol-9-yl)-2,4,6-tris(3,6-di-tert-butyl-9H-carbazole- 9-yl) benzonitrile (compound A).
  • the reaction formula is as follows.
  • the reaction is specifically as follows.
  • the mixed solution was added to 30 mL containing 0.80 g (4.14 mmol) 2,3,4,5,6-pentafluorobenzonitrile in DMF, reacted at room temperature for 12 hours, then added the mixed solution, heated and reacted at 120 °C for 12 hours under nitrogen protection; then poured the reaction solution into water, and precipitated A large amount of solid was filtered with suction, and the product was separated and purified by column chromatography (petroleum ether/dichloromethane, volume ratio 4:1) to obtain a green solid 3,5-bis(9H-carbazol-9-yl) -2,4,6-Tris(3,6-di-tert-butyl-9H-carbazol-9-yl)benzonitrile as compound A in 53% yield.
  • Fig. 1 is the hydrogen nuclear magnetic spectrum of the compound A obtained above;
  • Fig. 2 is the carbon nuclear magnetic spectrum of the compound A obtained above; and
  • Fig. 3 is the mass spectrum of the compound A obtained above.
  • the fabrication steps of the organic electroluminescent device with A doping concentration of 10 wt% as the light-emitting layer are as follows: (1) Pretreatment of the glass anode: a glass substrate with an indium tin oxide (ITO) film pattern is selected as the transparent electrode ( 3 ⁇ 3 mm); the glass substrate was washed with ethanol, and then treated with UV-ozone to obtain a pretreated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP: 10 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm )/Al (100 nm); the specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • the fabrication steps of the organic electroluminescent device with A doping concentration of 15 wt% as the light-emitting layer are as follows.
  • Pretreatment of glass anode select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film pattern as a transparent electrode; after cleaning the glass substrate with ethanol, UV-ozone processing to obtain a pretreated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP: 15 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm )/Al (100 nm); the specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • the fabrication steps of the organic electroluminescent device with A doping concentration of 20 wt% as the light-emitting layer are as follows: (1) Pretreatment of the glass anode: a glass substrate ( 3 ⁇ 3 mm); the glass substrate was washed with ethanol, and then treated with UV-ozone to obtain a pretreated glass substrate.
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP: 20 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm) )/Al (100 nm); the specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • the fabrication steps of the organic electroluminescent device with A doping concentration of 30 wt% as the light-emitting layer are as follows.
  • Pretreatment of glass anode select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film pattern as a transparent electrode; after cleaning the glass substrate with ethanol, UV-ozone processing to obtain a pretreated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP: 30 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm )/Al (100 nm); the specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • the fabrication steps of the organic electroluminescent device with A doping concentration of 50 wt% as the light-emitting layer are as follows.
  • Pretreatment of glass anode select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film pattern as a transparent electrode; after cleaning the glass substrate with ethanol, UV-ozone processing to obtain a pretreated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows. ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP: 50 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm)/Al (100 nm) ; Evaporation of specific layers is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • the fabrication steps of the organic electroluminescent device with A doping concentration of 100 wt% as the light-emitting layer are as follows.
  • Pretreatment of glass anode select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film pattern as a transparent electrode; after cleaning the glass substrate with ethanol, UV-ozone processing to obtain a pretreated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa, the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/100 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm)/ Al (100 nm); Evaporation of specific layers is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • the fabrication steps of an organic electroluminescent device with a 50 nm doping concentration of 20 wt% material A as the light-emitting layer are as follows.
  • Pretreatment of glass anode select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film pattern as a transparent electrode; after cleaning the glass substrate with ethanol, UV-ozone processing to obtain a pretreated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCP (10 nm)/ mCP: 20 wt% A (50 nm)/TMPYPB (45 nm)/LiF (1 nm )/Al (100 nm); the specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • Direct current was applied to the fabricated organic electroluminescent device, and the luminescence performance was evaluated by using an integrating sphere; the current-voltage characteristics were measured by a computer-controlled Keithley 2400 digital source meter.
  • the luminescence properties of the organic electroluminescent device were measured under the condition of changing the applied DC voltage.
  • the device performance is shown in Figure 5.
  • the turn-on voltage is 3.1 V
  • the maximum external quantum efficiency is 21.4%
  • the electroluminescence peak is 494 nm.
  • the fabrication steps of organic electroluminescent devices with 100 nm doping concentration of 20 wt% of material A as the light-emitting layer are as follows: (1) Pretreatment of glass anodes: select a transparent electrode with an indium tin oxide (ITO) film pattern. Glass substrate (3 ⁇ 3 mm); after cleaning the glass substrate with ethanol, UV-ozone treatment is used to obtain a pretreated glass substrate.
  • ITO indium tin oxide
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCP (10 nm)/ mCP: 20 wt% A (100 nm)/TMPYPB (45 nm)/LiF (1 nm )/Al (100 nm); the specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • Direct current was applied to the fabricated organic electroluminescent device, and the luminescence performance was evaluated by using an integrating sphere; the current-voltage characteristics were measured by a computer-controlled Keithley 2400 digital source meter.
  • the luminescence properties of the organic electroluminescent device were measured under the condition of changing the applied DC voltage.
  • the device performance is shown in Figure 5.
  • the turn-on voltage is 3.5 V
  • the maximum external quantum efficiency is 20.2%
  • the electroluminescence peak is 509 nm.
  • the organic electroluminescence device based on the material provided by the present invention can emit sky blue to green fluorescence (luminescence peak at 488 to 509 nm), the maximum external quantum efficiency of the doped device is as high as 26.8%, and the maximum external quantum efficiency of the non-doped device is as high as 21.8% , the maximum external quantum efficiency of ultra-thick doped devices also exceeds 20%, these devices have very small efficiency roll-off, and have the advantages of low driving voltage and good luminescence stability.
  • Organic electroluminescent devices based on it have great application prospects and economic value in the fields of lighting and flat panel displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法,由阳极、空穴注入层、空穴传输层、电子/激子阻挡层、发光层、电子传输层、电子注入层、阴极组成,发光层由绿色热激活延迟荧光材料掺杂主体材料制备;绿色热激活延迟荧光材料为3,5-二(9H-咔唑-9-基)-2,4,6-三(3,6-二叔丁基-9H-咔唑-9-基)苯腈。热激活延迟荧光材料的高浓度掺杂发光层制备的OLED,实现外部量子效率(EQE)超过20%,并且低效率滚降的目标。

Description

基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法 技术领域
本发明涉及有机电致发光材料领域,尤其涉及一种可工业化、性能好的热激活延迟荧光材料及其电致发光器件。
背景技术
有机发光二极管(OLED)由于其在光源、柔性平板显示中有巨大的应用而广受关注。基于常规荧光材料的第一代发光器件OLED显示内部量子效率(IQE)高达25%,外部量子效率(EQE)为5-7.5%,这是因为发射材料只能获得单重态激子。含有贵金属原子的第二代磷光材料可以有效的利用单线态和三线态激子来通过自旋-轨道耦合,其IQE可达100%;然而,考虑到铱(Ir)和铂(Pt)稀少且昂贵,它们在有机发光材料领域中的应用受到很大的限制。近些年新兴的第三代发光材料-热活化延迟荧光(TADF)材料不含金属,且TADF材料可以通过将三线态激子通过从最低三重激发态(T 1)通过逆系间穿越到单重激发态(S 1)上,转化成光子而使IQE也可达到100%,是磷光发光材料极具潜力和前景广阔的替代品,因而在过去几年,在有机电致发光领域引起了极大的关注。
对于绝大多数TADF材料,都会遭受很严重的聚集浓度淬灭(ACQ)现象,在制备OLED器件时都是作为客体材料低浓度掺杂在主体材料中,目前,在高浓度掺杂,甚至非掺杂的高效TADF材料非常罕见,因此,若能设计合成出一种不会遭受浓度淬灭的TADF材料,同时实现高效率非掺杂电致发光器件,将会又巨大的应用前景和经济价值。
技术问题
本发明公开了一种高效绿色热激活延迟荧光材料及其制备方法,热激活延迟荧光材料的化学名称为3,5-二(9H-咔唑-9-基)-2,4,6-三(3,6-二叔丁基-9H-咔唑-9 -基)苯腈,用以解决热激活延迟荧光材料浓度淬灭现象严重、非掺杂电致发光器件效率低的难题;同时解决现有TADF材料合成制备步骤多,原料昂贵,合成及纯化工艺复杂,产率不高,难于大规模量产的问题;尤其是,该热激活延迟荧光材料的高浓度掺杂发光层制备的OLED,实现其EQE超过20%,并且低效率滚降的目标。
技术解决方案
本发明采用如下技术方案。
本发明公开了有机电致发光器件,其发光层由热激活延迟荧光材料作为客体材料掺杂主体材料制备;进一步的,所述热激活延迟荧光材料的掺杂浓度为10~100wt%,不包括100wt%,优选10~50wt%;掺杂浓度指,客体材料占发光层材料的质量百分数。
本发明在阳极上依次制备空穴注入层、空穴传输层、电子/激子阻挡层、发光层、电子传输层、电子注入层、阴极,得到基于绿色热激活延迟荧光材料的掺杂电子器件,优选发光层的厚度为20~100nm;各层在真空蒸镀腔内制备,具体制备方法为常规技术。
本发明热激活延迟荧光材料为3,5-二(9H-咔唑-9-基)-2,4,6-三(3,6-二叔丁基-9H-咔唑-9 -基)苯腈,其化学式为:C 91H 88N 6,其化学结构式如下。
Figure 684181dest_path_image001
上述热激活延迟荧光材料的制备方法包括以下步骤:以2,3,4,5,6-五氟苯腈、3,6-二叔丁基-9H-咔唑和9H-咔唑为原料,连续一锅法反应制备得到所述绿色热激活延迟荧光材料;反应可参考如下。
Figure 995076dest_path_image002
反应完毕后,反应液倒入水中,然后再抽滤得大量固体,产物采用柱层析(石油醚/二氯甲烷,体积比为4∶1)的方法进行分离提纯,得到所述热激活延迟荧光材料。
本发明公开的基于上述热激活延迟荧光材料的有机电致发光器件为,氧化铟锡(ITO)用作阳极、双吡嗪并[2,3-f:2',3'-h]喹喔啉-2,3,6,7,10,11-己腈(HATCN)用作空穴注入层(HIL)、4,4'-(环己烷-1,1-二基)双(N,N-二-对甲苯基苯胺)(TAPC)用作空穴传输层(HTL)、1,3-双(9H-咔唑-9-基)苯(mCP)用作电子/激子阻挡层(EBL)、所述热激活延迟荧光材料作客体材料掺杂1,3-双(9H-咔唑-9-基)苯(mCP)主体材料共同用作发光层(EML)、4,6-双(3,5-二(吡啶-3-基)苯基)-2-甲基嘧啶(TMPYPB)用作电子传输层(ETL)、氟化锂(LiF)用作电子注入层(EIL)、铝(Al)用作阴极;进一步的,有机电致发光器件各层规格为:ITO/HATCN(10 nm)/TAPC(60 nm)/mCP(10 nm)/mCP∶TADF材料(X wt%)(30 nm)/TMPYPB(45 nm)/LiF(1 nm)/Al(100 nm)。
本发明提供一种新型热激活延迟荧光材料的合成制备方法;以及基于所述热激活延迟荧光材料的OLED,实现其EQE超过20%,低效率滚降的目标;用以解决热激活延迟荧光材料浓度淬灭现象严重、非掺杂电致发光器件效率低的难题;同时解决现有TADF材料合成制备步骤多,原料昂贵,合成及纯化工艺复杂,产率不高,难于大规模量产的问题。
对于本发明所述的基于热激活延迟荧光材料所形成的有机电致发光器件的制备方法以及其他原料没有特殊的限制。利用本发明所形成的有机薄膜具有高表面光滑性、化学物理性质稳定高发光效率和低浓度淬灭性质,所形成的有机电致发光器件性能优异。
有益效果
本发明有益效果如下。
1.本发明提供的3,5-二(9H-咔唑-9-基)-2,4,6-三(3,6-二叔丁基-9H-咔唑-9 -基)苯腈热激活延迟荧光材料具有扭曲的内电荷转移(TICT)的特点,具有热激活延迟荧光(TADF)性质,100%的高荧光量子产率(PLQY),热稳定性好,以及在纯膜状态下没有聚集浓度淬灭(ACQ)效应等优点。
2. 基于本发明提供的热激活延迟荧光材料的OLED器件,具有低驱动电压,高发光亮度,高发光稳定性的优点,且掺杂器件的外量子效率EQE高达26.8%,在10-100wt%(不包括100wt%)的掺杂器件的外量子效率EQE都超过20%,非掺杂器件的外量子效率EQE也超过20%,此外,这些器件的效率滚降都非常小。
3. 本发明提供的热激活延迟荧光材料合成制备步骤少,原材料廉价易得,合成及纯化工艺简单,产率高,可大规模合成制备。基于其的有机电致发光器件在照明和平板显示等领域具有巨大的应用前景和经济价值。
附图说明
图1是实施例1制备所得的化合物A的核磁氢谱。
图2是实施例1制备所得的化合物A的核磁碳谱。
图3是实施例1制备所得的化合物A的质谱。
图4是实施例器件的效率图。
图5是不同厚度掺杂器件的效率图。
本发明的实施方式
本发明涉及的原料都为常规市售产品,具体操作方法以及测试方法为本领域常规方法;尤其基于本发明热激活延迟荧光材料的有机电致发光器件的具体制备过程以及各层材料为现有技术,比如真空蒸镀,真空度≤2×10 -4 Pa,功能层沉积速率为2 Å/s,主体材料的沉积速率为1 Å/s,LiF层沉积速率为0.1 Å/s,Al的沉积速率8 Å/s。本发明的创造性在于提供新的具有非掺杂性质的热激活延迟荧光材料,掺杂主体材料作为有机电致发光器件的发光层。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明提供一种高效绿色热激活延迟荧光材料3,5-二(9H-咔唑-9-基)-2,4,6-三(3,6-二叔丁基-9H-咔唑-9 -基)苯腈(化合物A)。
结构式如下所示。
Figure 655865dest_path_image003
合成例。
反应式如下。
Figure 735816dest_path_image004
反应具体如下。
150 mL三口烧瓶中加入3.50 g(12.52 mmol) 3,6-二叔丁基-9H-咔唑和15 mL N,N`-二甲基甲酰胺(DMF),在冰浴条件下加入0.26 g(10.83 mmol)NaH,然后在氮气的保护下搅拌30分钟,得到混合溶液。
150 mL三口烧瓶中加入1.50 g(8.97 mmol)9H-咔唑和10 mL DMF,在冰浴条件下加入0.22 g(9.12 mmol)NaH,然后在氮气的保护下搅拌30分钟,得到混合液。
将混合溶液加入到30 mL含0.80 g(4.14 mmol) 2,3,4,5,6-五氟苯腈的DMF中,室温下反应12小时,然后加入混合液,氮气保护下120 ℃加热反应12小时;然后将反应液倒入水中,析出大量固体,抽滤,产物采用柱层析(石油醚/二氯甲烷,体积比为4:1)的方法进行分离提纯,得到绿色固体3,5-二(9H-咔唑-9-基)-2,4,6-三(3,6-二叔丁基-9H-咔唑-9 -基)苯腈,为化合物A,产率为53%。
图1是上述所得的化合物A的核磁氢谱;图2是上述所得的化合物A的核磁碳谱;图3是上述所得的化合物A的质谱。化合物A结构检测具体如下: 1H NMR (400 MHz, CDCl 3) δ 7.66 (d, J = 1.5 Hz, 4H), 7.26 (d, J = 7.4 Hz, 4H), 7.23 (d, J = 1.8 Hz, 2H), 7.10 (d, J = 8.6 Hz, 4H), 7.04 (dd, J = 8.6, 1.8 Hz, 6H), 6.93 (d, J = 8.2 Hz, 4H), 6.77 (dd, J = 11.0, 3.9 Hz, 4H), 6.61 – 6.55 (m, 6H), 1.35 (s, 36H), 1.12 (s, 18H); 13C NMR (101 MHz, CDCl 3) δ 143.83, 143.42, 143.24, 141.11, 138.18, 137.62, 136.91, 136.02, 124.28, 124.13, 123.99, 123.80, 122.77, 121.96, 119.99, 118.97, 116.67, 115.99, 115.33, 110.46, 110.40, 109.98, 34.53, 34.21, 31.82, 31.57;MALDI-TOF MS (ESI, m/z) calcd for C 91H 88N 6 [M +]: 1264.71, Found: 1265.915。
由上述检测结果可知,化合物A的结构正确。化合物A的物理性质见表1。
以下通过应用实施例说明本发明合成的化合物在器件中作为发光层材料的应用效果。
应用实施例。
(一)掺杂浓度为10 wt%的A为发光层的有机电致发光器件的制作与性能评价。
掺杂浓度为10 wt%的A为发光层的有机电致发光器件的制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP∶10 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为10 wt%的A为发光层的有机电致发光器件的性能评价。
对所制作的有机电致发光器件施加直流电流,使用积分球来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表2和图4。
(二) 掺杂浓度为15 wt%的A为发光层的有机电致发光器件的制作与性能评价。
掺杂浓度为15 wt%的A为发光层的有机电致发光器件的制作步骤如下。
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP∶15 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为15 wt%的A为发光层的有机电致发光器件的性能评价。
对所制作的有机电致发光器件施加直流电流,使用积分球来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表2和图4。
(三) 掺杂浓度为20 wt%的A为发光层的有机电致发光器件的制作与性能评价。
掺杂浓度为20 wt%的A为发光层的有机电致发光器件的制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP∶20 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为20 wt%的A为发光层的有机电致发光器件的性能评价。
对所制作的有机电致发光器件施加直流电流,使用积分球来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表2和图4。
(四) 掺杂浓度为30 wt%的A为发光层的有机电致发光器件的制作与性能评价。
掺杂浓度为30 wt%的A为发光层的有机电致发光器件的制作步骤如下。
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP∶30 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为30 wt%的A为发光层的有机电致发光器件的性能评价。
对所制作的有机电致发光器件施加直流电流,使用积分球来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表2和图4。
(五) 掺杂浓度为50 wt%的A为发光层的有机电致发光器件的制作与性能评价。
掺杂浓度为50 wt%的A为发光层的有机电致发光器件的制作步骤如下。
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下。ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/mCP∶50 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为50 wt%的A为发光层的有机电致发光器件的性能评价。
对所制作的有机电致发光器件施加直流电流,使用积分球来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表2和图4。
(六) 掺杂浓度为100 wt%的A为发光层(即仅以化合物A为发光层)的有机电致发光器件的制作与性能评价。
掺杂浓度为100 wt%的A为发光层的有机电致发光器件的制作步骤如下。
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (60 nm)/mCP (10 nm)/100 wt% A (30 nm)/TMPYPB (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为100 wt%的A为发光层的有机电致发光器件的性能评价。
对所制作的有机电致发光器件施加直流电流,使用积分球来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表2和图4。
Figure 823858dest_path_image005
Figure 356471dest_path_image006
(七) 50 nm掺杂浓度为20 wt%的材料A为发光层的有机电致发光器件的制作与性能评价。
50 nm掺杂浓度为20 wt%的材料A为发光层的有机电致发光器件的制作步骤如下。
(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCP (10 nm)/ mCP∶20 wt% A (50 nm)/TMPYPB (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
50 nm掺杂浓度为20 wt%的材料A为发光层的有机电致发光器件的性能评价。
对所制作的有机电致发光器件施加直流电流,使用积分球来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见图5,开启电压为3.1 V,最大外量子效率为21.4%,电致发光峰值为494 nm。
(八) 100 nm掺杂浓度为20 wt%的材料A为发光层的有机电致发光器件的制作与性能评价。
100 nm掺杂浓度为20 wt%的材料A为发光层的有机电致发光器件的制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。
(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCP (10 nm)/ mCP∶20 wt% A (100 nm)/TMPYPB (45 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术。
(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
100 nm掺杂浓度为20 wt%的材料A为发光层的有机电致发光器件的性能评价。
对所制作的有机电致发光器件施加直流电流,使用积分球来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见图5,开启电压为3.5 V,最大外量子效率为20.2%,电致发光峰值为509 nm。
本发明提供的基于该材料有机电致发光器件可发射天蓝色到绿色荧光(发光峰值488到509 nm),掺杂器件最大外量子效率高达26.8%,非掺杂器件最大外量子效率高达21.8%,超厚掺杂器件最大外量子效率也超过20%,这些器件效率滚降非常小,且具有驱动电压低,发光稳定性好等优点。基于其的有机电致发光器件在照明和平板显示等领域具有巨大的应用前景和经济价值。

Claims (10)

  1. 基于绿色热激活延迟荧光材料的掺杂电子器件,其特征在于:所述基于绿色热激活延迟荧光材料的掺杂电子器件的发光层由绿色热激活延迟荧光材料掺杂主体材料制备;所述绿色热激活延迟荧光材料的化学结构式如下:
    Figure 648022dest_path_image001
  2. 根据权利要求1所述基于绿色热激活延迟荧光材料的掺杂电子器件,其特征在于,以2,3,4,5,6-五氟苯腈、3,6-二叔丁基-9H-咔唑和9H-咔唑为原料,反应制备所述绿色热激活延迟荧光材料。
  3. 根据权利要求1所述基于绿色热激活延迟荧光材料的掺杂电子器件,其特征在于,所述绿色热激活延迟荧光材料的掺杂浓度为10~100wt%,不包括100wt%。
  4. 根据权利要求1所述基于绿色热激活延迟荧光材料的掺杂电子器件,其特征在于,所述发光层的厚度为20~100nm。
  5. 根据权利要求1所述基于绿色热激活延迟荧光材料的掺杂电子器件,其特征在于,所述基于绿色热激活延迟荧光材料的掺杂电子器件由阳极、空穴注入层、空穴传输层、电子/激子阻挡层、发光层、电子传输层、电子注入层、阴极组成。
  6. 根据权利要求1所述基于绿色热激活延迟荧光材料的掺杂电子器件,其特征在于,主体材料为1,3-双(9H-咔唑-9-基)苯。
  7. 权利要求1所述基于绿色热激活延迟荧光材料的掺杂电子器件的制备方法,其特征在于,包括以下步骤,在阳极上依次制备空穴注入层、空穴传输层、电子/激子阻挡层、发光层、电子传输层、电子注入层、阴极,得到基于绿色热激活延迟荧光材料的掺杂电子器件。
  8. 根据权利要求7所述基于绿色热激活延迟荧光材料的掺杂电子器件的制备方法,其特征在于,以2,3,4,5,6-五氟苯腈、3,6-二叔丁基-9H-咔唑和9H-咔唑为原料,反应制备热激活延迟荧光材料,反应制备得到绿色热激活延迟荧光材料;所述绿色热激活延迟荧光材料作为客体材料掺杂主体材料作为发光层。
  9. 根据权利要求7所述基于绿色热激活延迟荧光材料的掺杂电子器件的制备方法,其特征在于,各层在真空蒸镀腔内制备。
  10. 权利要求1所述基于绿色热激活延迟荧光材料的掺杂电子器件在制备有机电致发光器件中的应用。
PCT/CN2020/125594 2020-10-30 2020-10-30 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法 WO2022088113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125594 WO2022088113A1 (zh) 2020-10-30 2020-10-30 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125594 WO2022088113A1 (zh) 2020-10-30 2020-10-30 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2022088113A1 true WO2022088113A1 (zh) 2022-05-05

Family

ID=81383508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125594 WO2022088113A1 (zh) 2020-10-30 2020-10-30 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法

Country Status (1)

Country Link
WO (1) WO2022088113A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939975A (zh) * 2021-02-02 2021-06-11 天津大学 一种热活化延迟荧光材料及制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316924A (zh) * 2015-06-16 2017-01-11 清华大学 一种热活化延迟荧光材料
CN106328828A (zh) * 2015-06-16 2017-01-11 清华大学 一种有机电致发光器件
CN108011040A (zh) * 2016-10-31 2018-05-08 昆山工研院新型平板显示技术中心有限公司 一种绿光有机电致发光器件
CN108695440A (zh) * 2018-05-30 2018-10-23 昆山国显光电有限公司 一种有机电致发光器件
CN109411633A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件及其制备方法和显示装置
CN109994628A (zh) * 2017-12-29 2019-07-09 昆山国显光电有限公司 有机电致发光器件及有机电致发光器件的制备方法
WO2020075971A1 (ko) * 2018-10-11 2020-04-16 울산과학기술원 유기 광촉매 및 이의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316924A (zh) * 2015-06-16 2017-01-11 清华大学 一种热活化延迟荧光材料
CN106328828A (zh) * 2015-06-16 2017-01-11 清华大学 一种有机电致发光器件
CN108011040A (zh) * 2016-10-31 2018-05-08 昆山工研院新型平板显示技术中心有限公司 一种绿光有机电致发光器件
CN109994628A (zh) * 2017-12-29 2019-07-09 昆山国显光电有限公司 有机电致发光器件及有机电致发光器件的制备方法
CN108695440A (zh) * 2018-05-30 2018-10-23 昆山国显光电有限公司 一种有机电致发光器件
CN109411633A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件及其制备方法和显示装置
WO2020075971A1 (ko) * 2018-10-11 2020-04-16 울산과학기술원 유기 광촉매 및 이의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939975A (zh) * 2021-02-02 2021-06-11 天津大学 一种热活化延迟荧光材料及制备方法与应用

Similar Documents

Publication Publication Date Title
CN109678844B (zh) 一种橙红光热激活延迟荧光材料及有机电致发光器件
CN102617477B (zh) 菲并咪唑衍生物及其作为电致发光材料的应用
CN110330472B (zh) 一种蓝光材料及其制备方法和应用
CN114649489B (zh) 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件
CN101899296A (zh) 含芳基联喹唑啉类金属铱配合物红色有机电致磷光材料及其有机电致发光器件
CN113214229A (zh) 芴基热活化延迟荧光材料及其制备方法和应用
CN106941133B (zh) 一种有机发光器件及其制备方法
US20230024427A1 (en) Platinum metal complex and use thereof in organic electroluminescent device
WO2022088113A1 (zh) 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法
CN112679414B (zh) 基于热激活延迟荧光材料的超厚非掺杂电致发光器件及其制备方法
CN114262328B (zh) 有机电致发光化合物及其制备方法和有机电致发光器件
CN112812106B (zh) 一种化合物及有机电致发光器件
CN113896724B (zh) 基于苯并噻二唑-芘并咪唑的有机红光小分子及其在制备非掺杂有机电致发光器件中的应用
CN112289942B (zh) 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法
WO2022088123A1 (zh) 一种绿色热激活延迟荧光材料及其制备方法
CN115295736B (zh) 一种高效率橙红色电致发光器件
CN107325108B (zh) 一种氧杂蒽螺氮杂蒽酮类有机电致发光材料、其制备方法及应用
WO2022088111A1 (zh) 基于热激活延迟荧光材料的超厚非掺杂电致发光器件及其制备方法
CN112125835A (zh) 一种空穴传输材料及使用该种材料的有机电致发光器件
CN112300056A (zh) 一种绿色热激活延迟荧光材料及其制备方法
CN115160316B (zh) 一种橙红光热激活延迟荧光材料及其合成方法
WO2024026687A1 (zh) 一种高效率橙红色电致发光器件
CN103626683A (zh) 一种有机半导体材料、制备方法和电致发光器件
CN114315882B (zh) 一种有机化合物及其应用
EP4079736A1 (en) Thermally-activated delayed fluorescence green light polymer material and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959274

Country of ref document: EP

Kind code of ref document: A1