WO2022052135A1 - 手性热激活延迟荧光材料及其制备方法 - Google Patents

手性热激活延迟荧光材料及其制备方法 Download PDF

Info

Publication number
WO2022052135A1
WO2022052135A1 PCT/CN2020/115170 CN2020115170W WO2022052135A1 WO 2022052135 A1 WO2022052135 A1 WO 2022052135A1 CN 2020115170 W CN2020115170 W CN 2020115170W WO 2022052135 A1 WO2022052135 A1 WO 2022052135A1
Authority
WO
WIPO (PCT)
Prior art keywords
chiral
bis
activated delayed
thermally activated
delayed fluorescent
Prior art date
Application number
PCT/CN2020/115170
Other languages
English (en)
French (fr)
Inventor
唐建新
谢凤鸣
李艳青
周经雄
曾馨逸
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2020/115170 priority Critical patent/WO2022052135A1/zh
Publication of WO2022052135A1 publication Critical patent/WO2022052135A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention relates to the field of organic electroluminescent materials, in particular to an industrializable, high-performance chiral thermally activated delayed fluorescent material and an electroluminescent device thereof.
  • OLEDs Organic Light Emitting Diodes
  • the first-generation light-emitting device OLEDs based on conventional fluorescent materials show internal quantum efficiencies (IQEs) as high as 25% and external quantum efficiencies (EQEs) of 5–7.5%, because the emissive materials can only obtain singlet excitons.
  • IQEs internal quantum efficiencies
  • EQEs external quantum efficiencies
  • Second-generation phosphorescent materials containing noble metal atoms can effectively utilize singlet and triplet excitons for spin-orbit coupling, and their IQE can reach 100%; however, considering that iridium (Ir) and platinum (Pt) are scarce and Expensive, their application in the field of organic light-emitting materials is greatly limited.
  • TADF third-generation light-emitting materials-thermally activated delayed fluorescence
  • T 1 triplet excited state
  • S 1 inverse intersystem to single In the reexcited state
  • CPL Circularly polarized luminescence
  • TADF organic light-emitting materials can theoretically achieve 100% internal quantum efficiency without noble metals, which has become a research hotspot.
  • CPL-TADF is mainly realized by grafting chiral small molecular fragments directly to the TADF molecular framework. Due to the complexity of molecular design and synthesis, its further expansion is limited. Therefore, the development of new simple and efficient chiral TADF materials has become a current research topic. hot spot.
  • the invention discloses a chiral thermally activated delayed fluorescent material and a preparation method thereof.
  • the chemical name of the chiral thermally activated delayed fluorescent material is R/S-18,21-bis(10H-phenoxazine-10-yl)- 3,4,5,6,7,8,9,10-Octahydrodibenzo[a,c]dinaphtho[2',1':5,6;1'',2'':7, 8] [1,4]dioxin[2,3-i]phenazine or R/S-16,17-bis(4-(10H-phenoxazin-10-yl)phenyl)-3,4 ,5,6,7,8,9,10-Octahydrodinaphtho[2',1':5,6;1'',2'':7,8][1,4]dioxane[ 2,3-g]quinoxaline is used to solve the problems of difficult synthesis and preparation of chiral delayed fluorescent light
  • a chiral thermally activated delayed fluorescent material is compound R-ODPPXZ, compound S-ODPPXZ, compound R-ODQPXZ or compound S-ODQPXZ, and its chemical structural formula is as follows: .
  • the preparation method of the above chiral orange-red photothermally activated delayed fluorescent material comprises the following steps: using 10,10'-(11,12-difluorodibenzo[a,c]phenazine-3,6-diyl ) bis(10H-phenoxazine), 5,5',6,6',7,7',8,8'-octahydrobinaphthol as raw materials, the chiral orange-red photothermal activation delay was prepared by reaction Fluorescent materials R1 and S1; the reaction can be referred to as follows: .
  • the molar ratio of ',7,7',8,8'-octahydrobinaphthol is 1:0.8 to 1.1; the reaction is carried out in the presence of a base and under nitrogen protection; the reaction temperature is 40 to 100 °C, and the reaction time for 12 to 24 hours.
  • the extraction solvent can be dichloromethane, chloroform, ethyl acetate, ice Either acetic acid or some combination of these solvents.
  • 10,10'-(11,12-dibenzoxazine is prepared by reaction Fluorodibenzo[a,c]phenazine-3,6-diyl)bis(10H-phenoxazine); preferably, 3,6-dibromo-11,12-difluorodibenzo[a, c] the molar ratio of phenazine and 10H-phenoxazine is 1: 2.2 ⁇ 2.6; the reaction is carried out in the presence of a palladium catalyst; the temperature of the reaction is 90 ⁇ 130°C, and the time of the reaction is 20 ⁇ 28 h; You can refer to the following: .
  • reaction is carried out in the presence of a palladium catalyst, in the presence of sodium tert-butoxide, and in the presence of a phosphine ligand; preferably, sodium tert-butoxide, 3,6-dibromo-11,12-difluorodibenzo[a ,c]
  • a palladium catalyst in the presence of sodium tert-butoxide, and in the presence of a phosphine ligand; preferably, sodium tert-butoxide, 3,6-dibromo-11,12-difluorodibenzo[a ,c]
  • the molar ratio of phenazine and palladium catalyst is 3 ⁇ 6:1:0.01 ⁇ 0.1, and the molar ratio of palladium catalyst and phosphine ligand is 1:1;
  • the palladium catalyst is tris(dibenzylideneacetone)dipalladium ( 0), the phosphine ligand is tri-tert-
  • the chiral orange-red photothermally activated delayed fluorescent material of the present invention is R/S-18,21-bis(10H-phenoxazine-10-yl)-3,4,5,6,7,8,9,10-octa Hydrodibenzo[a,c]dinaphtho[2',1':5,6;1'',2'':7,8][1,4]dioxin[2,3-i] Phenazine, its chemical formula is: C 64 H 44 N 4 O 4 .
  • the preparation method of the above chiral orange-red photothermally activated delayed fluorescent material can be as follows: (1) 4,5-difluorobenzene-1,2-diamine reacts with 3,6-dibromo-9,10-phenanthrenequinone 3,6-Dibromo-11,12-difluorodibenzo[a,c]phenazine was obtained.
  • the molar ratio of 4,5-difluorobenzene-1,2-diamine and 3,6-dibromo-9,10-phenanthrenequinone is 1.1-1.3:1;
  • the solvent for recrystallization is any one of absolute ethanol, dichloromethane, chloroform, acetic acid or A certain combination of these solvents; the reaction of step (1) can be referred to as follows: .
  • the preparation method of the above-mentioned chiral yellow photothermally activated delayed fluorescent material comprises the following steps: using 10,10'-(((6,7-difluoroquinoxaline-2,3-diyl)bis(4) ,1-phenylene)) bis(10H-phenoxazine), 5,5',6,6',7,7',8,8'-octahydrobinaphthol as raw materials, the reaction was prepared to obtain the Chiral yellow photothermal activation of delayed fluorescent materials R2 and S2; the reaction can be referred to as follows: .
  • the molar ratio of 5',6,6',7,7',8,8'-octahydrobinaphthol is 1:0.8 ⁇ 1.1; the reaction is carried out in the presence of a base and under nitrogen protection; the reaction temperature is 40 ⁇ 100 ° C, the reaction time is 12 ⁇ 24 h.
  • reaction solution is extracted, then the organic phases are combined, and suction filtration is performed to obtain the chiral yellow light thermally activated delayed fluorescent material; Any one of methyl chloride, chloroform, ethyl acetate, glacial acetic acid or some combination of these solvents.
  • reaction is carried out in the presence of a palladium catalyst, in the presence of sodium tert-butoxide, and in the presence of a phosphine ligand; preferably, sodium tert-butoxide, 2,3-bis(4-bromophenyl)-6,7-di
  • a palladium catalyst in the presence of sodium tert-butoxide, and in the presence of a phosphine ligand; preferably, sodium tert-butoxide, 2,3-bis(4-bromophenyl)-6,7-di
  • the molar ratio of fluoroquinoxaline and palladium catalyst is 3 ⁇ 6:1:0.01 ⁇ 0.1, and the molar ratio of palladium catalyst and phosphine ligand is 1:1;
  • the palladium catalyst is tris(dibenzylideneacetone)dipalladium (0 ), and the phosphine ligand is tri-tert-butylphosphine te
  • the chiral yellow photothermally activated delayed fluorescent material of the present invention is R/S-16,17-bis(4-(10H-phenoxazin-10-yl)phenyl)-3,4,5,6,7,8 ,9,10-Octahydrodinaphtho[2',1':5,6;1'',2'':7,8][1,4]dioxane[2,3-g]quinoxa
  • the chemical formula is: C 64 H 46 N 4 O 4 .
  • the preparation method of the above-mentioned chiral yellow photothermally activated delayed fluorescent material can be as follows: (1) 4,5-difluorobenzene-1,2-diamine and 1,2-bis(4-bromophenyl)ethane The -1,2-dione reaction gave 2,3-bis(4-bromophenyl)-6,7-difluoroquinoxaline.
  • the molar ratio of 4,5-difluorobenzene-1,2-diamine and 1,2-bis(4-bromophenyl)ethane-1,2-dione The ratio is 1.1-1.3:1; the reaction is carried out under the protection of nitrogen, with absolute ethanol as the solvent, the reaction temperature is 70-90 ° C, and the reaction time is 1.0-4.0 h; after the reaction, the reaction solution is filtered, and the obtained filter cake Recrystallization to obtain light yellow solid 2,3-bis(4-bromophenyl)-6,7-difluoroquinoxaline; further, the solvent for recrystallization is absolute ethanol, dichloromethane, chloroform, Either acetic acid or some combination of these solvents.
  • the invention discloses the application of the above-mentioned chiral thermally activated delayed fluorescent material in the preparation of organic electroluminescence devices.
  • the light-emitting layer of the organic electroluminescence device includes the above-mentioned chiral thermally activated delayed fluorescent material, which is used as a guest material and doped with a host material as the light-emitting layer; further, the doping concentration of the chiral thermally activated delayed fluorescent material is 2 ⁇ 20wt%.
  • the organic electroluminescence device based on the above-mentioned chiral thermally activated delayed fluorescent material disclosed in the present invention is that indium tin oxide (ITO) is used as the anode, bispyrazino[2,3-f:2',3'-h] Quinoxaline-2,3,6,7,10,11-capronitrile (HATCN) was used as a hole injection layer (HIL), 4,4'-(cyclohexane-1,1-diyl)bis( N,N-di-p-tolylaniline) (TAPC) as hole transport layer (HTL) and tris(4-(9H-carbazol-9-yl)phenyl)amine (TCTA) as electron/exciter
  • HIL hole injection layer
  • TAPC 4,4'-(cyclohexane-1,1-diyl)bis( N,N-di-p-tolylaniline)
  • HTL hole transport layer
  • TCTA tris(4-
  • the invention provides a method for synthesizing and preparing a novel chiral thermally activated delayed fluorescent material; and an OLED based on the chiral thermally activated delayed fluorescent material, which achieves the goals of EQE exceeding 20% and asymmetry factor greater than 10 -3 ;
  • a novel chiral thermally activated delayed fluorescent material which achieves the goals of EQE exceeding 20% and asymmetry factor greater than 10 -3 ;
  • it solves the problems of many synthesis and preparation steps of existing orange-red/red light TADF materials, expensive raw materials, and complicated synthesis and purification processes. , the yield is not high, and it is difficult to mass production.
  • the preparation method and other raw materials of the organic electroluminescent device formed based on the chiral orange-red photothermally activated delayed fluorescent material according to the present invention are not particularly limited.
  • the organic thin film formed by the invention has high surface smoothness, stable chemical and physical properties, high luminous efficiency and circularly polarized light properties, and the formed circularly polarized organic electroluminescent device has good performance.
  • R/S-18,21-bis(10H-phenoxazin-10-yl)-3,4,5,6,7,8,9,10-octa provided by the present invention Hydrodibenzo[a,c]dinaphtho[2',1':5,6; 1'',2'':7,8] [1,4]Dioxin[2,3-i]phenazine or R/S-16,17-bis(4-(10H-phenoxazin-10-yl)phenyl)-3,4,5 ,6,7,8,9,10-Octahydrodinaphtho[2',1':5,6;1'',2'':7,8][1,4]dioxane[2, 3-g]quinoxaline thermally activated delayed fluorescence material has the characteristics of rigid large planar twisted structure and remarkable internal charge transfer (ICT), with thermally activated delayed fluorescence (TADF) and circularly polarized
  • the CP-OLED device based on the chiral thermally activated delayed fluorescent material provided by the present invention has the advantages of low driving voltage and good luminous stability, and the external quantum efficiency EQE of the prepared circularly polarized device is as high as 28.3% and 20.3%, respectively. , the misalignment factor g is as high as 6 ⁇ 10 -4 and 2.4 ⁇ 10 -3 , respectively.
  • the chiral thermally activated delayed fluorescent material of the present invention has few synthesis and preparation steps, readily available raw materials, simple synthesis and purification processes, high yield, and can be synthesized and prepared on a large scale.
  • Organic electroluminescent devices based on it have good application prospects in the fields of lighting, flat panel display, sensing, night vision and biological imaging. It also has potential application prospects.
  • FIG. 1 is the hydrogen nuclear magnetic spectrum of the compound R-ODPPXZ prepared in Example 1.
  • FIG. 2 is the carbon nuclear magnetic spectrum of the compound R-ODPPXZ prepared in Example 1.
  • FIG. 3 is the mass spectrum of the compound R-ODPPXZ prepared in Example 1.
  • FIG. 4 is the HPLC spectrum of the compound R-ODPPXZ prepared in Example 1.
  • FIG. 5 is the HPLC spectrum of the compound S-ODPPXZ prepared in Example 1.
  • FIG. 6 is the hydrogen nuclear magnetic spectrum of the compound R-ODQPXZ prepared in Example 2.
  • FIG. 8 is the mass spectrum of compound R-ODQPXZ prepared in Example 2.
  • FIG. 9 is the HPLC spectrum of compound R-ODQPXZ prepared in Example 2.
  • FIG. 10 is the HPLC spectrum of compound S-ODQPXZ prepared in Example 2.
  • FIG. 11 is the circular dichroism spectrum of the compounds prepared in Examples 1 and 2.
  • FIG. 11 is the circular dichroism spectrum of the compounds prepared in Examples 1 and 2.
  • FIG. 13 is a device performance diagram of application examples one and two.
  • FIG. 14 is a device efficiency diagram of the application example (1).
  • FIG. 15 is a device efficiency diagram of the application example (2).
  • Figure 16 is a hydrogen NMR spectrum of compound R-OBPDMAC.
  • Figure 17 is the carbon NMR spectrum of compound R-OBPDMAC.
  • Figure 18 is a mass spectrum of compound R-OBPDMAC.
  • the raw materials involved in the present invention are all conventional commercial products, and the specific operation methods and testing methods are conventional methods in the field; especially the specific preparation process of the organic electroluminescent device based on the chiral thermally activated delayed fluorescent material of the present invention and the materials of each layer are as follows:
  • Existing technologies such as vacuum evaporation, the degree of vacuum is ⁇ 2 ⁇ 10 -4 Pa, the deposition rate of functional layer is 2 ⁇ /s, the deposition rate of host material is 1 ⁇ /s, the deposition rate of LiF layer is 0.1 ⁇ /s, and the deposition rate of Al
  • the deposition rate is 8 ⁇ /s.
  • the inventiveness of the present invention is to provide a new chiral thermally activated delayed fluorescent material, and the doped host material is used together as a light-emitting layer of an organic electroluminescent device.
  • the invention provides a chiral thermally activated delayed fluorescent material R/S-18,21-bis(10H-phenoxazine-10-yl)-3,4,5,6,7,8,9,10-octa Hydrodibenzo[a,c]dinaphtho[2',1':5,6;1'',2'':7,8][1,4]dioxin[2,3-i] Phenazine (R/S-ODPPXZ) and R/S-16,17-bis(4-(10H-phenoxazin-10-yl)phenyl)-3,4,5,6,7,8,9 ,10-Octahydrodinaphtho[2',1':5,6;1'',2'':7,8][1,4]dioxane[2,3-g]quinoxaline ( R/S-ODQPXZ).
  • the structural formula is shown above.
  • reaction formula is as follows: .
  • the specific reaction is as follows: add 0.45 g (3.12 g) to a 150 mL three-necked flask mmol) 4,5-difluorobenzene-1,2-diamine and 1.12 g (3.06 mmol) 3,6-dibromo-9,10-phenanthrenequinone, then add 100 mL of absolute ethanol as a solvent, stir under the protection of nitrogen, react at 80 °C for 2 hours, then filter the reaction solution, filter cake with Recrystallization from absolute ethanol gave 3,6-dibromo-11,12-difluorodibenzo[a,c]phenazine as a pale yellow solid with a yield of 95%.
  • the eluent used in column chromatography is one of organic solvents with low polarity such as petroleum ether, isopentane, n-pentane, hexane, cyclohexane, etc., and another organic solvent with high polarity.
  • the volume ratio is 1:2 ⁇ 5.
  • Fig. 1 is the hydrogen nuclear magnetic spectrum of the compound R-ODPPXZ obtained above;
  • Fig. 2 is the carbon nuclear magnetic spectrum of the compound R-ODPPXZ obtained above;
  • Fig. 3 is the mass spectrum of the compound R-ODPPXZ obtained above;
  • Fig. 4 is the compound obtained above The HPLC spectrum of R-ODPPXZ;
  • Fig. 5 is the HPLC spectrum of the compound S-ODPPXZ obtained above.
  • reaction formula is as follows: .
  • the specific reaction is as follows: add 0.45 g (3.12 g) to a 150 mL three-necked flask mmol) 4,5-difluorobenzene-1,2-diamine and 1.12 g (3.04 mmol) 1,2-bis(4-bromophenyl)ethane-1,2-dione, then 100 mL of absolute ethanol was added as a solvent, stirred under the protection of nitrogen, and reacted at 80 °C for 2 hours, Then the reaction solution was filtered, and the filter cake was recrystallized with absolute ethanol to obtain 2,3-bis(4-bromophenyl)-6,7-difluoroquinoxaline as a light yellow solid with a yield of 95%.
  • the eluent used in column chromatography is one of organic solvents with low polarity such as petroleum ether, isopentane, n-pentane, hexane, cyclohexane, etc., and another organic solvent with high polarity.
  • the volume ratio is 1:2 ⁇ 5.
  • Fig. 6 is the hydrogen nuclear magnetic spectrum of the compound R-ODQPXZ obtained above;
  • Fig. 7 is the carbon nuclear magnetic spectrum of the compound R-ODQPXZ obtained above;
  • Fig. 8 is the mass spectrum of the compound R-ODQPXZ obtained above;
  • Fig. 9 is the compound obtained above The HPLC spectrum of R-ODQPXZ;
  • Figure 10 is the HPLC spectrum of the compound S-ODQPXZ obtained above.
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP: 7wt%R-ODPPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm); the specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • Performance evaluation of organic electroluminescent devices with the doping concentration of 7wt% R-ODPPXZ as the light-emitting layer Direct current was applied to the fabricated organic electroluminescent devices, using PhotoResearch A PR655 luminance meter was used to evaluate luminous performance; a computer-controlled Keithley Model 2400 SourceMeter was used to measure current-voltage characteristics. The luminescence properties of the organic electroluminescent device were measured under the condition of changing the applied DC voltage. Device performance is shown in Table 1, Table 2, and Figure 13.
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP: 15wt%R-ODQPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm); the specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • Performance evaluation of organic electroluminescent devices with 15wt% doping concentration of R-ODQPXZ as the light-emitting layer Direct current was applied to the fabricated organic electroluminescent devices, using PhotoResearch A PR655 luminance meter was used to evaluate luminous performance; a computer-controlled Keithley Model 2400 SourceMeter was used to measure current-voltage characteristics. The luminescence properties of the organic electroluminescent device were measured under the condition of changing the applied DC voltage. Device performance is shown in Table 1, Table 2, and Figure 13.
  • FIG. 14 is the device efficiency diagram of the application example (1)
  • FIG. 15 is the device efficiency diagram of the application example (2).
  • Application example (3) the fabrication and performance evaluation of an organic electroluminescent device with a doping concentration of 3wt% R-ODPPXZ as the light-emitting layer, is the same as the above application example (1) R-ODPPXZ with a doping concentration of 7wt%
  • the fabrication and performance evaluation of organic electroluminescent devices with the light-emitting layer are consistent with the performance evaluation, in which CBP: 3wt% R-ODPPXZ (20 nm) is used as the light-emitting layer, and the rest remain unchanged.
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/ /B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm); the specific layer evaporation is a conventional technique; the organic electro- The luminescence properties of the light-emitting device were measured under the condition of changing the applied DC voltage; the maximum external quantum efficiency of the device was 12.9%.
  • Application Example (4) the fabrication and performance evaluation of an organic electroluminescent device with a doping concentration of 15wt% R-ODPPXZ as the light-emitting layer, and the fabrication and performance of the organic electroluminescent device in the above-mentioned Application Example (1)
  • the evaluation is consistent, in which CBP: 15wt%R-ODPPXZ (20 nm) is used as the light-emitting layer, and the rest remain unchanged.
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP: 15wt%R-ODPPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm); the specific layer evaporation is a conventional technique; the luminescence properties of the organic electroluminescence device are in the case of applying a DC voltage change The maximum external quantum efficiency of the device is 7.6%.
  • the circularly polarized organic electroluminescence device prepared by the R-ODPPXZ chiral orange-red photothermally activated delayed fluorescent material of the present invention has high external quantum efficiency, high luminous efficiency and low open circuit voltage, and is an excellent OLED material.
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP:10wt%R-ODQPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm); the specific layer evaporation is a conventional technique; the luminescence properties of the organic electroluminescence device are in the case of applying a DC voltage change The maximum external quantum efficiency of the device was 18.0%.
  • Application Example (6) Fabrication and performance evaluation of an organic electroluminescent device with a doping concentration of 20 wt% R-ODQPXZ as the light-emitting layer, and the fabrication and performance evaluation of the organic electroluminescent device in the above application example (1) Consistent, in which CBP: 20wt%R-ODQPXZ (20 nm) is used as the light-emitting layer, and the rest remain unchanged.
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP: 20wt%R-ODQPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm); the specific layer evaporation is a conventional technique; the luminescence properties of the organic electroluminescence device are in the case of applying a DC voltage change The maximum external quantum efficiency of the device is 20.7%.
  • the chiral thermally activated delayed fluorescent material and organic electroluminescent devices based on it have broad application prospects in the fields of 3D display, information storage and processing, circularly polarized light-emitting lasers, biological probes, and photocatalytic asymmetric synthesis.
  • the specific reaction is as follows: add 0.45 g (3.12 g) to a 150 mL three-necked flask mmol) 4,5-difluorobenzene-1,2-diamine and 1.12 g (3.06 mmol) 3,6-dibromo-9,10-phenanthrenequinone, then add 100 mL of absolute ethanol as a solvent, stir under the protection of nitrogen, react at 80 °C for 2 hours, then filter the reaction solution, filter cake with Recrystallization from absolute ethanol gave 3,6-dibromo-11,12-difluorodibenzo[a,c]phenazine as a pale yellow solid with a yield of 95%.
  • the eluent used in column chromatography is one of organic solvents with low polarity such as petroleum ether, isopentane, n-pentane, hexane, cyclohexane, etc., and another organic solvent with high polarity.
  • the volume ratio is 1:2 ⁇ 5.
  • Fig. 16 is the H NMR spectrum of the compound R-OBPDMAC obtained above;
  • Fig. 17 is the C NMR spectrum of the compound R-OBPDMAC obtained above;
  • Fig. 18 is the mass spectrum of the compound R-OBPDMAC obtained above.
  • Comparative application example Fabrication and performance evaluation of organic electroluminescent devices with 7wt% doping concentration of R-OBPDMAC as light-emitting layer: Organic electroluminescent devices with 7wt% doping concentration of R-OBPDMAC as light-emitting layer The fabrication steps are as follows: (1) Pretreatment of glass anode: select a glass substrate (3 ⁇ 3 mm) with an indium tin oxide (ITO) film pattern as a transparent electrode; Treated with UV-ozone, a pretreated glass substrate was obtained.
  • ITO indium tin oxide
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa
  • the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP: 7wt%R-OBPDMAC (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm); specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • Performance evaluation of organic electroluminescent devices with 7wt% doping concentration of R-OBPDMAC as the light-emitting layer Direct current was applied to the fabricated organic electroluminescent devices, using PhotoResearch A PR655 luminance meter was used to evaluate luminous performance; a computer-controlled Keithley Model 2400 SourceMeter was used to measure current-voltage characteristics. The luminescence properties of the organic electroluminescence device were measured under the condition of changing the applied DC voltage; the maximum external quantum efficiency of the device was 13.0%.
  • the device structure was as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP:15wt%R-OBPDMAC (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm); the specific layer evaporation is a conventional technique.
  • the luminescence properties of the organic electroluminescence device were measured under the condition of changing the applied DC voltage; the maximum external quantum efficiency of the device was 10.5%.
  • Vacuum evaporation carry out vacuum evaporation of each layer on the pretreated glass substrate by vacuum evaporation method, put the treated glass substrate into a vacuum evaporation chamber, and the degree of vacuum is ⁇ 2 ⁇ 10 ⁇ 4 Pa, the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm); specific layer evaporation is a conventional technique.
  • Device packaging seal the fabricated organic electroluminescent device in a nitrogen atmosphere glove box with a water oxygen concentration of less than 1 ppm, and then cover the above-mentioned film formation with a sealing cover with epoxy UV-curable resin glass.
  • the substrate is sealed by UV curing; the specific encapsulation is conventional technology.
  • Performance evaluation of organic electroluminescent devices with undoped light-emitting layers Direct current was applied to the fabricated organic electroluminescent devices, using PhotoResearch A PR655 luminance meter was used to evaluate luminous performance; a computer-controlled Keithley Model 2400 SourceMeter was used to measure current-voltage characteristics. The luminescence properties of the organic electroluminescence device were measured under the condition of changing the applied DC voltage; the maximum external quantum efficiency of the device was 2.7%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

涉及一种手性热激活延迟荧光材料及其制备方法,为R/S-18,21-二(10H-吩恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6;1",2":7,8][1,4]二恶英[2,3-i]吩嗪或者R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6;1",2":7,8][1,4]二恶烷[2,3-g]喹喔啉。所提供的化合物具有刚性大平面扭曲结构和显著的内电荷转移(ICT)效应的特点,具有典型的热激活延迟荧光性质(TADF)、圆偏振(CPL)性质、高荧光量子产率(PLQY)和热稳定性好等优点。且其合成制备步骤少,原料易得,合成及纯化工艺简单,产率高,可大规模合成制备。

Description

手性热激活延迟荧光材料及其制备方法 技术领域
本发明涉及有机电致发光材料领域,尤其涉及一种可工业化、性能好的手性热激活延迟荧光材料及其电致发光器件。
背景技术
有机发光二极管(OLED)由于其在光源、柔性平板显示中有巨大的应用而广受关注。基于常规荧光材料的第一代发光器件OLED显示内部量子效率(IQE)高达25%,外部量子效率(EQE)为5-7.5%,这是因为发射材料只能获得单重态激子。含有贵金属原子的第二代磷光材料可以有效的利用单线态和三线态激子来通过自旋-轨道耦合,其IQE可达100%;然而,考虑到铱(Ir)和铂(Pt)稀少且昂贵,它们在有机发光材料领域中的应用受到很大的限制。近些年新兴的第三代发光材料-热活化延迟荧光(TADF)材料不含金属,且TADF材料可以通过将三线态激子通过从最低三重激发态(T 1)通过逆系间穿越到单重激发态(S 1)上,转化成光子而使IQE也可达到100%,是磷光发光材料极具潜力和前景广阔的替代品,因而在过去几年,在有机电致发光领域引起了极大的关注。圆偏振发光(CPL)在3D成像、信息存储、量子计算等方面的潜在应用而受到广泛关注。同时,TADF有机发光材料无需贵金属即可理论上实现100 %的内量子效率而成为研究的热点。目前主要通过手性小分子片段直接嫁接到TADF分子骨架上而实现CPL-TADF,由于分子设计合成复杂而限制了其进一步的扩展,因此开发新型简单、高效的手性TADF材料成为当前的一个研究热点。
技术问题
本发明公开了一种手性热激活延迟荧光材料及其制备方法,手性热激活延迟荧光材料的化学名称为R/S-18,21-二(10H-吩恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪或者R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8] [1,4]二恶烷[2,3-g]喹喔啉,用以解决手性延迟荧光发光材料合成制备难、材料种类少、圆偏振延迟荧光器件效率低的难题;同时解决现有橙红光/红光TADF材料合成制备步骤多,原料昂贵,合成及纯化工艺复杂,产率不高,难于大规模量产的问题;尤其是,该手性热激活延迟荧光材料掺杂发光层制备的CP-OLED,实现其EQE超过20%,不对称因子g大于10 -3的目标。
技术解决方案
本发明采用如下技术方案:一种手性热激活延迟荧光材料,为化合物R-ODPPXZ、化合物S-ODPPXZ、化合物R-ODQPXZ或者化合物S-ODQPXZ,其化学结构式如下:
Figure 230007dest_path_image001
一方面:上述手性橙红光热激活延迟荧光材料的制备方法包括以下步骤:以10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚为原料,反应制备得到所述手性橙红光热激活延迟荧光材料R1和S1;反应可参考如下:
Figure 615989dest_path_image002
   进一步的,10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚的摩尔比1∶0.8~1.1;反应在碱存在下、氮气保护下进行;反应的温度为40~100 °C,反应的时间为12~24 h。反应完毕后,萃取反应液,然后合并有机相,再抽滤,得到所述手性橙红光热激活延迟荧光材料;优选的,萃取溶剂可以是二氯甲烷、三氯甲烷、乙酸乙酯、冰醋酸中的任意一种或这些溶剂的某种组合。
本发明中,以3,6-二溴-11,12-二氟二苯并[a,c]吩嗪、10H-吩恶嗪为原料,反应制备10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪);优选的,3,6-二溴-11,12-二氟二苯并[a,c]吩嗪、10H-吩恶嗪的摩尔比为1∶2.2~2.6;所述反应在钯催化剂存在下进行;反应的温度为90~130°C,反应的时间为20~28 h;反应可参考如下:
Figure 598989dest_path_image003
进一步的,反应在钯催化剂存在下、叔丁醇钠存在下、膦配体存在下进行;优选的,叔丁醇钠、3,6-二溴-11,12-二氟二苯并[a,c]吩嗪、钯催化剂的摩尔比为3~6∶1∶0.01~0.1,钯催化剂与膦配体的摩尔比为1∶1;钯催化剂为三(二亚苄基丙酮)二钯(0)、膦配体为四氟硼酸三叔丁基膦。
本发明手性橙红光热激活延迟荧光材料为R/S-18,21-二(10H-吩恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪,其化学式为:C 64H 44N 4O 4
上述手性橙红光热激活延迟荧光材料的制备方法可以为以下步骤:(1)4,5-二氟苯-1,2-二胺和3,6-二溴-9,10-菲醌反应得到3,6-二溴-11,12-二氟二苯并[a,c]吩嗪。
(2)将步骤(1)所得的3,6-二溴-11,12-二氟二苯并[a,c]吩嗪与10H-吩恶嗪通过C-N偶合反应得到10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪)。
(3)将步骤(2)所得的10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪)与R/S-5,5',6,6',7,7',8,8'-八氢联萘酚反应得到手性热激活延迟荧光材料R/S-18,21-二(10H-吩恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪。
进一步地,所述步骤(1)中,4,5-二氟苯-1,2-二胺、3,6-二溴-9,10-菲醌的摩尔比为1.1~1.3∶1;反应在氮气保护下进行,以无水乙醇为溶剂,反应温度为70~90℃,反应时间为1.0~4.0h;反应结束后,过滤反应液,将得到的滤饼重结晶,得淡黄色固体3,6-二溴-11,12-二氟二苯并[a,c]吩嗪;进一步的,重结晶的溶剂为无水乙醇、二氯甲烷、三氯甲烷、乙酸中的任意一种或这些溶剂的某种组合;步骤(1)反应可参考如下:
Figure 259777dest_path_image004
另一方面:上述手性黄光热激活延迟荧光材料的制备方法包括以下步骤:以10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚为原料,反应制备得到所述手性黄光热激活延迟荧光材料R2和S2;反应可参考如下:
Figure 277412dest_path_image005
进一步的,10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚的摩尔比1∶0.8~1.1;反应在碱存在下、氮气保护下进行;反应的温度为40~100 °C,反应的时间为12~24 h。反应完毕后,萃取反应液,然后合并有机相,再抽滤,得到所述手性黄光热激活延迟荧光材料;优选的,萃取溶剂可以是二氯甲烷、三氯甲烷、乙酸乙酯、冰醋酸中的任意一种或这些溶剂的某种组合。
本发明中,以2,3-双(4-溴苯基)-6,7-二氟喹喔啉、10H-吩恶嗪为原料,反应制备10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪);优选的,2,3-双(4-溴苯基)-6,7-二氟喹喔啉、10H-吩恶嗪的摩尔比为1∶2.2~2.6;所述反应在钯催化剂存在下进行;反应的温度为90~130°C,反应的时间为20~28 h。
进一步的,反应在钯催化剂存在下、叔丁醇钠存在下、膦配体存在下进行;优选的,叔丁醇钠、2,3-双(4-溴苯基)-6,7-二氟喹喔啉、钯催化剂的摩尔比为3~6∶1∶0.01~0.1,钯催化剂与膦配体的摩尔比为1∶1;钯催化剂为三(二亚苄基丙酮)二钯(0)、膦配体为四氟硼酸三叔丁基膦。
本发明手性黄光热激活延迟荧光材料为R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8] [1,4]二恶烷[2,3-g]喹喔啉,其化学式为:C 64H 46N 4O 4
上述手性黄光热激活延迟荧光材料的制备方法可以为以下步骤:(1)4,5-二氟苯-1,2-二胺和1,2-双(4-溴苯基)乙烷-1,2-二酮反应得到2,3-双(4-溴苯基)-6,7-二氟喹喔啉。
(2)将步骤(1)所得的2,3-双(4-溴苯基)-6,7-二氟喹喔啉与10H-吩恶嗪通过C-N偶合反应得到10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪)。
(3)将步骤(2)所得的10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪)与R/S-5,5',6,6',7,7',8,8'-八氢联萘酚反应得到手性热激活延迟荧光材料R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8] [1,4]二恶烷[2,3-g]喹喔啉。
进一步地,所述步骤(1)中,4,5-二氟苯-1,2-二胺、1,2-双(4-溴苯基)乙烷-1,2-二酮的摩尔比为1.1~1.3∶1;反应在氮气保护下进行,以无水乙醇为溶剂,反应温度为70~90℃,反应时间为1.0~4.0h;反应结束后,过滤反应液,将得到的滤饼重结晶,得淡黄色固体2,3-双(4-溴苯基)-6,7-二氟喹喔啉;进一步的,重结晶的溶剂为无水乙醇、二氯甲烷、三氯甲烷、乙酸中的任意一种或这些溶剂的某种组合。
本发明公开了上述手性热激活延迟荧光材料在制备有机电致发光器件中的应用。所述有机电致发光器件的发光层包括上述手性热激活延迟荧光材料,其作为客体材料掺杂主体材料作为发光层;进一步的,所述手性热激活延迟荧光材料的掺杂浓度为2~20wt%。
本发明公开的基于上述手性热激活延迟荧光材料的有机电致发光器件为,氧化铟锡(ITO)用作阳极、双吡嗪并[2,3-f:2',3'-h]喹喔啉-2,3,6,7,10,11-己腈(HATCN)用作空穴注入层(HIL)、4,4'-(环己烷-1,1-二基)双(N,N-二-对甲苯基苯胺)(TAPC)用作空穴传输层(HTL)、三(4-(9H-咔唑-9-基)苯基)胺(TCTA)用作电子/激子阻挡层(EBL)、所述手性热激活延迟荧光材料掺杂4,4'-二(9H-咔唑-9-基)-1,1'-联苯(CBP)主体材料共同用作发光层(EML)、4,6-双(3,5-二(吡啶-3-基)苯基)-2-甲基嘧啶(B3PYMPM)用作电子传输层(ETL)、8-羟基喹啉-锂(Liq)用作电子注入层(EIL)、铝(Al)用作阴极;有机电致发光器件各层规格为:ITO/HATCN(10 nm)/TAPC(40 nm)/TCTA(10 nm)/CBP:R/S-TADF材料(X wt%)(20 nm)/B3PYMPM(50 nm)/Liq(2 nm)/Al(100 nm)。
本发明提供一种新型手性热激活延迟荧光材料的合成制备方法;以及基于所述手性热激活延迟荧光材料的OLED,实现其EQE超过20%,不对称因子大于10 -3的目标;用以解决手性延迟荧光发光材料合成制备难、材料种类少、圆偏振延迟荧光器件效率低的难题;同时解决现有橙红光/红光TADF材料合成制备步骤多,原料昂贵,合成及纯化工艺复杂,产率不高,难于大规模量产的问题。
本发明所述的基于手性橙红光热激活延迟荧光材料所形成的有机电致发光器件的制备方法以及其他原料没有特殊的限制。利用本发明所形成的有机薄膜具有高表面光滑性、化学物理性质稳定高发光效率和圆偏振光性质,所形成的圆偏振有机电致发光器件性能良好。
有益效果
本发明有益效果如下:1.本发明提供的R/S-18,21-二(10H-苯恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪或者R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8] [1,4]二恶烷[2,3-g]喹喔啉热激活延迟荧光材料具有刚性大平面扭曲结构和显著的内电荷转移(ICT)的特点,具有热激活延迟荧光性质(TADF)和圆偏振发光(CPL)性质,高荧光量子产率(PLQY)、热稳定性好等优点。
2. 基于本发明提供的手性热激活延迟荧光材料的CP-OLED器件,具有驱动电压低,发光稳定性好的优点,且制备的圆偏振器件的外量子效率EQE分别高达28.3%和20.3%,不对成因子g分别高达6×10 -4 和 2.4×10 -3
3. 本发明手性热激活延迟荧光材料合成制备步骤少,原料易得,合成及纯化工艺简单,产率高,可大规模合成制备。基于其的有机电致发光器件在照明、平板显示、传感、夜视及生物成像等领域具有很好的应用前景,基于此的圆偏振发光器件在3D成像、信息存储、量子计算等方面的也具有潜在的应用前景。
附图说明
图1是实施例1制备所得的化合物R-ODPPXZ的核磁氢谱。
图2是实施例1制备所得的化合物R-ODPPXZ的核磁碳谱。
图3是实施例1制备所得的化合物R-ODPPXZ的质谱。
图4是实施例1制备所得的化合物R-ODPPXZ的HPLC谱。
图5是实施例1制备所得的化合物S-ODPPXZ的HPLC谱。
图6是实施例2制备所得的化合物R-ODQPXZ的核磁氢谱。
图7是实施例2制备所得的化合物R-ODQPXZ的核磁碳谱。
图8是实施例2制备所得的化合物R-ODQPXZ的质谱。
图9是实施例2制备所得的化合物R-ODQPXZ的HPLC谱。
图10是实施例2制备所得的化合物S-ODQPXZ的HPLC谱。
图11是实施例1和2制备所得化合物的圆二色光谱。
图12是实施例1和2制备所得化合物在薄膜条件下的圆偏振光谱。
图13是应用实施例一和二的器件性能图。
图14是应用实施例(一)的器件效率图。
图15是应用实施例(二)的器件效率图。
图16是化合物R-OBPDMAC的核磁氢谱。
图17是化合物R-OBPDMAC的核磁碳谱。
图18是化合物R-OBPDMAC的质谱。
本发明的实施方式
本发明涉及的原料都为常规市售产品,具体操作方法以及测试方法为本领域常规方法;尤其基于本发明手性热激活延迟荧光材料的有机电致发光器件的具体制备过程以及各层材料为现有技术,比如真空蒸镀,真空度≤2×10 -4Pa,功能层沉积速率为2Å/s,主体材料的沉积速率为1Å/s,LiF层沉积速率为0.1Å/s,Al的沉积速率8Å/s。本发明的创造性在于提供新的手性热激活延迟荧光材料,掺杂主体材料共同用作有机电致发光器件的发光层。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明的限制。
本发明提供一种手性热激活延迟荧光材料R/S-18,21-二(10H-苯恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪(R/S-ODPPXZ)和R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8] [1,4]二恶烷[2,3-g]喹喔啉(R/S-ODQPXZ)。结构式如前文所示。
实施例1。
反应式如下:
Figure 99874dest_path_image006
反应具体如下:150 mL三口烧瓶中加入0.45 g(3.12 mmol) 4,5-二氟苯-1,2-二胺和1.12 g(3.06 mmol)3,6-二溴-9,10-菲醌,再加入100 mL无水乙醇作为溶剂,在氮气的保护下搅拌,80 ℃反应2小时,然后过滤反应液,滤饼用无水乙醇重结晶,得淡黄色固体3,6-二溴-11,12-二氟二苯并[a,c]吩嗪,产率为95%。
150 mL三口烧瓶中先后加入0.50 g(1.05 mmol)3,6-二溴-11,12-二氟二苯并[a,c]吩嗪、0.40 g(2.18 mmol)10H-吩恶嗪、0.41 g(4.27 mmol)叔丁醇钠、0.016 g(0.055 mmol)四氟硼酸三叔丁基膦、0.05 g(0.055 mmol)三(二亚苄基丙酮)二钯(0),再加入50 mL甲苯作溶剂,氮气保护下100 ℃加热反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤,产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到深红色固体10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪),产率为80%。
150 mL三口烧瓶中加入0.50 g(0.74 mmol) 10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪),0.22 g(0.75 mmol) R/S-5,5',6,6',7,7',8,8'-八氢联萘酚和0.35 g(2.53 mmol)碳酸钾,再加入DMF(50 mL)作为溶剂,在氮气的保护下70 ℃搅拌反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤;产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到最终产物R/S-18,21-二(10H-苯恶嗪-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1':5,6; 1 '',2'':7,8] [1,4]二恶英[2,3-i]吩嗪,产率为70%。
柱层析采用洗脱剂是由石油醚、异戊烷、正戊烷、己烷、环己烷等极性较小的有机溶剂中的一种与另一种极性较大的有机溶剂配比而成,如二氯甲烷、三氯甲烷、乙酸乙酯、乙醇等,其体积比为1:2~5。
R/S-5,5',6,6',7,7',8,8'-八氢联萘酚的选择可得到对应的手性产物。图1是上述所得的化合物R-ODPPXZ的核磁氢谱;图2是上述所得的化合物R-ODPPXZ的核磁碳谱;图3是上述所得的化合物R-ODPPXZ的质谱;图4是上述所得的化合物R-ODPPXZ的HPLC谱;图5是上述所得的化合物S-ODPPXZ的HPLC谱。化合物R-ODPPXZ结构检测具体如下: 1H NMR (400 MHz, CDCl 3) δ 9.65 (d, J = 8.5 Hz, 2H), 8.50 (d, J = 1.8 Hz, 2H), 8.15 (s, 2H), 7.77 (dd, J = 8.5, 1.8 Hz, 2H), 7.16 (s, 4H), 6.75 (dd, J = 7.9, 1.5 Hz, 4H), 6.68 (td, J = 7.6, 1.4 Hz, 4H), 6.59 (td, J = 7.7, 1.6 Hz, 4H), 6.05 (dd, J = 7.9, 1.4 Hz, 4H), 2.92 – 2.75 (m, 6H), 2.53 (dt, J = 17.6, 6.0 Hz, 2H), 1.92 – 1.84 (m, 6H), 1.78 – 1.71 (m, 2H); 13C NMR (101 MHz, CDCl 3) δ 153.29, 150.97, 143.98, 141.12, 140.99, 140.61, 137.00, 135.53, 134.13, 133.73, 130.94, 130.35, 130.02, 129.46, 125.73, 123.33, 121.69, 119.72, 118.61, 115.65, 113.32, 29.39, 27.76, 22.80, 22.66;MALDI-TOF MS (ESI, m/z) calcd for C 64H 44N 4O 4 [M +]: 932.34, Found: 932.701。
实施例2。
反应式如下:
Figure 632487dest_path_image007
反应具体如下:150 mL三口烧瓶中加入0.45 g(3.12 mmol) 4,5-二氟苯-1,2-二胺和1.12 g(3.04 mmol) 1,2-双(4-溴苯基)乙烷-1,2-二酮,再加入100 mL无水乙醇作为溶剂,在氮气的保护下搅拌,80 ℃反应2小时,然后过滤反应液,滤饼用无水乙醇重结晶,得淡黄色固体2,3-双(4-溴苯基)-6,7-二氟喹喔啉,产率为95%。
150 mL三口烧瓶中先后加入1.00 g(2.10 mmol)2,3-双(4-溴苯基)-6,7-二氟喹喔啉、0.80 g(4.36 mmol)10H-吩恶嗪、1.00 g(10.4 mmol)叔丁醇钠、0.032 g(0.11 mmol)四氟硼酸三叔丁基膦、0.10 g(0.11 mmol)三(二亚苄基丙酮)二钯(0),再加入50 mL甲苯作溶剂,氮气保护下100 ℃加热反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤,产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到橙色固体10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪),产率为80%。
150 mL三口烧瓶中加入0.50 g(0.73 mmol) 10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪),0.21 g(0.71 mmol) R/S-5,5',6,6',7,7',8,8'-八氢联萘酚和0.25 g(1.81 mmol)碳酸钾,再加入DMF(50 mL)作为溶剂,在氮气的保护下70 ℃搅拌反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤;产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到最终产物R/S-16,17-双(4-(10H-吩恶嗪-10-基)苯基)-3,4,5,6,7,8,9,10-八氢二萘并[2',1':5,6; 1' ',2'':7,8] [1,4]二恶烷[2,3-g]喹喔啉,产率为70%。
柱层析采用洗脱剂是由石油醚、异戊烷、正戊烷、己烷、环己烷等极性较小的有机溶剂中的一种与另一种极性较大的有机溶剂配比而成,如二氯甲烷、三氯甲烷、乙酸乙酯、乙醇等,其体积比为1:2~5。
R/S-5,5',6,6',7,7',8,8'-八氢联萘酚的选择可得到对应的手性产物。图6是上述所得的化合物R-ODQPXZ的核磁氢谱;图7是上述所得的化合物R-ODQPXZ的核磁碳谱;图8是上述所得的化合物R-ODQPXZ的质谱;图9是上述所得的化合物R-ODQPXZ的HPLC谱;图10是上述所得的化合物S-ODQPXZ的HPLC谱。化合物R-ODQPXZ结构检测具体如下: 1H NMR (400 MHz, CDCl 3) δ 8.04 (s, 2H), 7.77 (d, J = 8.3 Hz, 4H), 7.40 (d, J = 8.3 Hz, 4H), 7.15 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 6.71 (dd, J = 7.8, 1.3 Hz, 4H), 6.64 (t, J = 7.0 Hz, 2H), 6.57-6.49 (m, 4H), 5.97 (d, J = 7.9 Hz, 4H), 2.92-2.74 (m, 7H), 2.51 (dt, J = 16.9, 5.7 Hz, 2H), 1.92-1.82 (m, 7H), 1.73 (dt, J = 13.3, 5.5 Hz, 2H). 13C NMR (101 MHz, CDCl 3) δ 153.06, 151.86, 150.86, 143.90, 139.30, 139.06, 136.96, 135.52, 133.94, 132.59, 130.86, 130.07, 130.04, 123.41, 121.56, 120.00, 118.50, 115.55, 113.15, 29.37, 27.74, 22.78, 22.64. MALDI-TOF MS (ESI, m/z) calcd for C 64H 46N 4O 4 [M +]: 934.35, Found: 935.660。
由上述检测结果可知,化合物R-ODPPXZ和R-ODQPXZ的结构正确。
以下通过应用实施例说明本发明手性化合物在器件中作为发光层客体材料的效果。
应用实施例(一)掺杂浓度为7wt%的R-ODPPXZ为发光层的有机电致发光器件的制作与性能评价:掺杂浓度为7wt%的R-ODPPXZ为发光层的有机电致发光器件的制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶7wt%R-ODPPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm);具体各层蒸镀为常规技术。(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为7wt%的R-ODPPXZ为发光层的有机电致发光器件的性能评价:对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表1、表2和图13。
(二)掺杂浓度为15wt%的R-ODQPXZ为发光层的有机电致发光器件的制作与性能评价:掺杂浓度为15wt%的R-ODQPXZ为发光层的有机电致发光器件的制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶15wt%R-ODQPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm);具体各层蒸镀为常规技术。(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为15wt%的R-ODQPXZ为发光层的有机电致发光器件的性能评价:对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表1、表2和图13。
Figure 552426dest_path_image008
Figure 424567dest_path_image009
图14是应用实施例(一)器件效率图;图15是应用实施例(二)器件效率图。
应用实施例(三),掺杂浓度为3wt%的R-ODPPXZ为发光层的有机电致发光器件的制作与性能评价,与上述应用实施例(一)掺杂浓度为7wt%的R-ODPPXZ为发光层的有机电致发光器件的制作与性能评价一致,其中CBP∶3wt%R-ODPPXZ (20 nm)作为发光层,其余不变,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/ /B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm);具体各层蒸镀为常规技术;所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为12.9%。
应用实施例(四),掺杂浓度为15wt%的R-ODPPXZ为发光层的有机电致发光器件的制作与性能评价,与上述应用实施例(一)的有机电致发光器件的制作与性能评价一致,其中CBP∶15wt%R-ODPPXZ (20 nm) 作为发光层,其余不变,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶15wt%R-ODPPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm);具体各层蒸镀为常规技术;所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为7.6%。
可看出,本发明R-ODPPXZ手性橙红光热激活延迟荧光材料制备的圆偏振有机电致发光器件外量子效率高,具有高的发光效率、开路电压低,是一种优异的OLED材料。
应用实施例(五),掺杂浓度为10wt%的R-ODQPXZ为发光层的有机电致发光器件的制作与性能评价,与上述应用实施例(一)掺杂浓度为7wt%的R-ODPPXZ为发光层的有机电致发光器件的制作与性能评价一致,其中CBP∶10wt%R-ODQPXZ (20 nm) 作为发光层,其余不变,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶10wt%R-ODQPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm);具体各层蒸镀为常规技术;所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为18.0%。
应用实施例(六)掺杂浓度为20wt%的R-ODQPXZ为发光层的有机电致发光器件的制作与性能评价,与上述应用实施例(一)的有机电致发光器件的制作与性能评价一致,其中CBP∶20wt%R-ODQPXZ (20 nm) 作为发光层,其余不变,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶20wt%R-ODQPXZ (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm);具体各层蒸镀为常规技术;所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为20.7%。
本发明提供的基于该材料有机电致发光器件可发射黄色或者橙红色荧光(λ=548或600 nm),器件外量子效率EQE高达28.3%和20.3%,不对称因子为6.0×10 -4和2.4×10 -3,且具有驱动电压低,发光稳定性好等优点。该手性热激活延迟荧光材料和基于其的有机电致发光器件在3D显示,信息存储与处理,圆偏振发光激光器,生物探针,光催化不对称合成等领域具有广泛的应用前景。
以R/S-18,21-双(9,9-二甲基吖啶-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1': 5,6; 1'',2'':7,8] [1,4]二恶英[2,3-i]吩嗪(R/S-OBPDMAC)作对比。
Figure 683510dest_path_image010
反应具体如下:150 mL三口烧瓶中加入0.45 g(3.12 mmol) 4,5-二氟苯-1,2-二胺和1.12 g(3.06 mmol)3,6-二溴-9,10-菲醌,再加入100 mL无水乙醇作为溶剂,在氮气的保护下搅拌,80 ℃反应2小时,然后过滤反应液,滤饼用无水乙醇重结晶,得淡黄色固体3,6-二溴-11,12-二氟二苯并[a,c]吩嗪,产率为95%。
150 mL三口烧瓶中先后加入0.50 g(1.05 mmol)3,6-二溴-11,12-二氟二苯并[a,c]吩嗪、0.50 g(2.38 mmol)9,9-二甲基吖啶、0.41 g(4.27 mmol)叔丁醇钠、0.016 g(0.055 mmol)四氟硼酸三叔丁基膦、0.05 g(0.055 mmol)三(二亚苄基丙酮)二钯(0),再加入50 mL甲苯作溶剂,氮气保护下100 ℃加热反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤,产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到橙色固体3,6-双(9,9-二甲基吖啶-10-基)-11,12-二氟二苯并[a,c]吩嗪,产率为80%。
150 mL三口烧瓶中加入0.50 g(0.68 mmol) 3,6-双(9,9-二甲基吖啶-10-基)-11,12-二氟二苯并[a,c]吩嗪,0.22 g(0.75 mmol) R/S-5,5',6,6',7,7',8,8'-八氢联萘酚和0.35 g(2.53 mmol)碳酸钾,再加入DMF(50 mL)作为溶剂,在氮气的保护下70 ℃搅拌反应;反应完毕后,用100 mL二氯甲烷萃取后,合并有机相并抽滤;产物采用柱层析(石油醚/二氯甲烷,体积比为1:2)的方法进行分离提纯,得到最终产物R/S-18,21-双(9,9-二甲基吖啶-10-基)-3,4,5,6,7,8,9,10-八氢二苯并[a,c]二萘并[2',1': 5,6; 1'',2'':7,8] [1,4]二恶英[2,3-i]吩嗪,产率为70%。
柱层析采用洗脱剂是由石油醚、异戊烷、正戊烷、己烷、环己烷等极性较小的有机溶剂中的一种与另一种极性较大的有机溶剂配比而成,如二氯甲烷、三氯甲烷、乙酸乙酯、乙醇等,其体积比为1:2~5。
R/S-5,5',6,6',7,7',8,8'-八氢联萘酚的选择可得到对应的手性产物。图16是上述所得的化合物R-OBPDMAC的核磁氢谱;图17是上述所得的化合物R-OBPDMAC的核磁碳谱;图18是上述所得的化合物R-OBPDMAC的质谱。化合物R-OBPDMAC结构检测具体如下: 1H NMR (400 MHz, CDCl 3) δ 9.67 (d, J = 8.5 Hz, 2H), 8.41 (d, J = 1.8 Hz, 2H), 8.15 (s, 2H), 7.73 (dd, J = 8.5, 1.8 Hz, 2H), 7.52-7.40 (m, 4H), 7.18-7.10 (m, 4H), 6.99-6.83 (m, 8H), 6.39-6.24 (m, 4H), 2.94-2.72 (m, 6H), 2.51 (dt, J = 17.6, 5.8 Hz, 2H), 1.84 (dd, J = 12.8, 6.2 Hz, 6H), 1.77 (t, J = 10.4 Hz, 2H), 1.71 (s, 12H); 13C NMR (101 MHz, CDCl 3) δ 153.19, 151.02, 143.30, 141.35, 140.68, 140.58, 136.98, 135.49, 133.92, 131.61, 130.19, 130.11, 130.02, 129.18, 126.47, 126.04, 125.52, 120.76, 119.74, 118.65, 114.05, 36.01, 31.70, 29.39, 27.75, 22.80, 22.67;MALDI-TOF MS (ESI, m/z) calcd for C 70H 56N 4O 2 [M +]: 984.44, Found: 984.827。
对比应用例(一)掺杂浓度为7wt%的R-OBPDMAC为发光层的有机电致发光器件的制作与性能评价:掺杂浓度为7wt%的R-OBPDMAC为发光层的有机电致发光器件的制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶7wt%R-OBPDMAC (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm) ;具体各层蒸镀为常规技术。(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
掺杂浓度为7wt%的R-OBPDMAC为发光层的有机电致发光器件的性能评价:对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为13.0%。
(二)掺杂浓度为15wt%的R-OBPDMAC为发光层的有机电致发光器件的制作与性能评价,与对比应用例(一)有机电致发光器件的制作与性能评价一致,其中CBP∶15wt%R-OBPDMAC (20 nm)作为发光层,其余不变,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP∶15wt%R-OBPDMAC (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm) ;具体各层蒸镀为常规技术。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为10.5%。
 (三) 未掺杂发光层的有机电致发光器件的制作与性能评价:未掺杂发光层的有机电致发光器件的制作步骤如下:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜图案作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板。(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/CBP (20 nm)/B3PYMPM (45 nm)/Liq (2 nm)/Al (100 nm) ;具体各层蒸镀为常规技术。(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
未掺杂发光层的有机电致发光器件的性能评价:对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的;器件的最大外量子效率为2.7%。

Claims (10)

  1. 一种手性热激活延迟荧光材料,其特征在于:所述手性热激活延迟荧光材料为化合物R-ODPPXZ、化合物S-ODPPXZ、化合物R-ODQPXZ或者化合物S-ODQPXZ。
  2. 权利要求1所述手性热激活延迟荧光材料的制备方法,其特征在于,包括以下步骤:以10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚为原料,反应制备得到所述手性热激活延迟荧光材料R1和S1;或者以10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚为原料,反应制备得到所述手性热激活延迟荧光材料R2和S2。
  3. 根据权利要求2所述手性热激活延迟荧光材料的制备方法,其特征在于,以3,6-二溴-11,12-二氟二苯并[a,c]吩嗪、10H-吩恶嗪为原料,反应制备得到10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪);以2,3-双(4-溴苯基)-6,7-二氟喹喔啉、10H-吩恶嗪为原料,反应制备得到10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪)。
  4. 根据权利要求3所述手性热激活延迟荧光材料的制备方法,其特征在于,3,6-二溴-11,12-二氟二苯并[a,c]吩嗪、10H-吩恶嗪的摩尔比为1∶2.2~2.6;2,3-双(4-溴苯基)-6,7-二氟喹喔啉、10H-吩恶嗪的摩尔比为1∶2.2~2.6;所述反应在钯催化剂存在下进行,反应的温度为90~130 ℃,反应的时间为20~28 h。
  5. 根据权利要求2所述手性热激活延迟荧光材料的制备方法,其特征在于,10,10'-(11,12-二氟二苯并[a,c]吩嗪-3,6-二基)双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚的摩尔比1∶0.8~1.1;10,10'-(((6,7-二氟喹喔啉-2,3-二基)双(4,1-亚苯基))双(10H-吩恶嗪)、5,5',6,6',7,7',8,8'-八氢联萘酚的摩尔比1∶0.8~1.1;所述反应在碱存在下、氮气保护下进行,反应的温度为40~100 ℃,反应的时间为12~24 h。
  6. 根据权利要求2所述手性热激活延迟荧光材料的制备方法,其特征在于,反应完毕后,萃取反应液,然后合并有机相,再抽滤,得到所述手性光热激活延迟荧光材料。
  7. 权利要求1所述手性热激活延迟荧光材料在制备有机电致发光器件中的应用。
  8. 权利要求1所述手性热激活延迟荧光材料在制备有机电致发光器件发光层中的应用。
  9. 根据权利要求8所述的应用,其特征在于,所述手性热激活延迟荧光材料作为客体材料掺杂主体材料作为发光层。
  10. 根据权利要求9所述的应用,其特征在于,所述手性热激活延迟荧光材料的掺杂浓度为2~20wt%。
PCT/CN2020/115170 2020-09-14 2020-09-14 手性热激活延迟荧光材料及其制备方法 WO2022052135A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115170 WO2022052135A1 (zh) 2020-09-14 2020-09-14 手性热激活延迟荧光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115170 WO2022052135A1 (zh) 2020-09-14 2020-09-14 手性热激活延迟荧光材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022052135A1 true WO2022052135A1 (zh) 2022-03-17

Family

ID=80630158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115170 WO2022052135A1 (zh) 2020-09-14 2020-09-14 手性热激活延迟荧光材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2022052135A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106047337A (zh) * 2016-06-20 2016-10-26 武汉大学 一种含有喹喔啉单元的有机热致延迟荧光材料及其应用
CN111574514A (zh) * 2020-05-29 2020-08-25 盐城工学院 一种基于二苯并吩嗪衍生物的热激活延迟荧光材料及其制备方法与应用
CN112038494A (zh) * 2020-09-08 2020-12-04 苏州大学 基于手性热激活延迟荧光材料的电致发光器件及其制备方法
CN112079843A (zh) * 2020-09-08 2020-12-15 苏州大学 手性热激活延迟荧光材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106047337A (zh) * 2016-06-20 2016-10-26 武汉大学 一种含有喹喔啉单元的有机热致延迟荧光材料及其应用
CN111574514A (zh) * 2020-05-29 2020-08-25 盐城工学院 一种基于二苯并吩嗪衍生物的热激活延迟荧光材料及其制备方法与应用
CN112038494A (zh) * 2020-09-08 2020-12-04 苏州大学 基于手性热激活延迟荧光材料的电致发光器件及其制备方法
CN112079843A (zh) * 2020-09-08 2020-12-15 苏州大学 手性热激活延迟荧光材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU YANG, CHEN YONGHONG, LI HUA, WANG SHUAI, WU XIAOFU, TONG HUI, WANG LIXIANG: "High-Performance Solution-Processed Red Thermally Activated Delayed Fluorescence OLEDs Employing Aggregation-Induced Emission-Active Triazatruxene-Based Emitters", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 27, 8 July 2020 (2020-07-08), US , pages 30652 - 30658, XP055911015, ISSN: 1944-8244, DOI: 10.1021/acsami.0c07906 *
YU LING, WU ZHONGBIN, XIE GUOHUA, ZHONG CHENG, ZHU ZECE, MA DONGGE, YANG CHULUO: "An efficient exciton harvest route for high-performance OLEDs based on aggregation-induced delayed fluorescence", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 54, no. 11, 1 January 2018 (2018-01-01), UK , pages 1379 - 1382, XP055911013, ISSN: 1359-7345, DOI: 10.1039/C7CC09925H *

Similar Documents

Publication Publication Date Title
CN113527322B (zh) 手性热激活延迟荧光材料的制备方法
EP2873667B1 (en) Heterocyclic compound and organic electronic element containing same
CN112038494B (zh) 基于手性热激活延迟荧光材料的电致发光器件及其制备方法
CN109678844B (zh) 一种橙红光热激活延迟荧光材料及有机电致发光器件
WO2018033086A1 (zh) 一种以氧杂蒽酮为核心的二苯并六元环取代化合物及其应用
TWI490188B (zh) 胺衍生物及有機電致發光元件
CN110698458A (zh) 一种有机发光材料及其应用
CN114649489B (zh) 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件
CN107021925B (zh) 一种以氮杂二苯并环庚酮为核心的化合物及其在oled上的应用
WO2023165077A1 (zh) 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用
CN110256473B (zh) 一种化合物、有机光电装置和电子设备
CN115557920A (zh) 一种发光辅助材料、其制备方法及有机电致发光器件
CN110294735B (zh) 一种以蒽和菲为核心的化合物及其在有机电致发光器件上的应用
CN112939993B (zh) 一种苯并吡喃类发光辅助材料及其制备方法和有机电致发光器件
CN112125813B (zh) 一种化合物、空穴传输材料和有机电致发光器件
CN110551132A (zh) 一种含酮的化合物及其在有机电致发光器件上的应用
CN113321649B (zh) 一种化合物、电子传输材料和有机电致发光器件
WO2022052135A1 (zh) 手性热激活延迟荧光材料及其制备方法
CN115991699A (zh) 一种萘桥联双吸电片段化合物
CN110343049B (zh) 一种以螺二苯并环庚烯芴为骨架的有机化合物及其应用
WO2022052134A1 (zh) 基于手性热激活延迟荧光材料的电致发光器件及其制备方法
CN115160316B (zh) 一种橙红光热激活延迟荧光材料及其合成方法
CN112480092A (zh) 一种以二苯基吖啶为核心的化合物及其在有机电致发光器件上的应用
CN117069597B (zh) 一种化合物及其应用
CN112159406B (zh) 一种化合物、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952923

Country of ref document: EP

Kind code of ref document: A1