CN111969063A - 一种具有漏端肖特基接触的超结mosfet - Google Patents

一种具有漏端肖特基接触的超结mosfet Download PDF

Info

Publication number
CN111969063A
CN111969063A CN202010994844.8A CN202010994844A CN111969063A CN 111969063 A CN111969063 A CN 111969063A CN 202010994844 A CN202010994844 A CN 202010994844A CN 111969063 A CN111969063 A CN 111969063A
Authority
CN
China
Prior art keywords
region
drain
drift region
type drift
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010994844.8A
Other languages
English (en)
Other versions
CN111969063B (zh
Inventor
郑崇芝
夏云
吴毅
孙瑞泽
刘超
陈万军
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010994844.8A priority Critical patent/CN111969063B/zh
Publication of CN111969063A publication Critical patent/CN111969063A/zh
Application granted granted Critical
Publication of CN111969063B publication Critical patent/CN111969063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及功率半导体技术,特别涉及一种具有漏端肖特基接触的超结MOSFET。相对于传统的超结MOSFET,本发明在器件的漏极一侧引入肖特基接触,其由延伸到器件漏极的N型漂移区与漏极金属形成。在反向导通时,漂移区内的空穴可以通过此肖特基接触泄放,并且此肖特基接触不向漂移区内注入电子,因此漂移区内的电荷数量极大地降低。本发明的有益成果:体二极管反向导通时注入的电荷降低明显,从而反向恢复过程中的反向恢复电荷极大地降低,反向恢复特性得以显著改善。

Description

一种具有漏端肖特基接触的超结MOSFET
技术领域
本发明属于功率半导体技术领域,特别涉及一种具有低反向恢复电荷的超结MOSFET(金属-氧化物半导体场效应晶体管,Metal-Oxide-Semiconductor Field-EffectTransistor,简称MOSFET)。
背景技术
超结MOSFET在全桥等驱动电机应用电路中,其体二极管起到续流作用。体二极管导通时,漂移区内存储着大量的空穴载流子。体二极管从导通状态到耐压状态切换的过程,需要排出体内存储的载流子,形成较大的反向电流。这不仅会增加了自身的损耗,另一方面会带来电磁干扰噪声,对应用系统造成不利影响。
发明内容
本发明的目的,就是针对上述问题,提出一种具有漏端肖特基接触的低反向恢复电荷超结MOSFET。
本发明的技术方案:一种具有漏端肖特基接触的超结MOSFET,如图1所示,其半元胞包括漏极结构、耐压层结构、源极结构和栅极结构,其中耐压层结构位于漏极结构之上,源极结构和栅极结构位于耐压层结构之上;
所述漏极结构包括漏极金属1以及N+漏区2;所述N+漏区2位于漏极金属1一侧的上表面;所述漏极金属1引出端为漏极D;
所述耐压层结构包括并列设置的N型漂移区4及P型漂移区3,N型漂移区4与P型漂移区3构成超结结构;所述P型漂移区3位于N+漏区2上表面,N型漂移区4位于漏极金属1上表面,N型漂移区4与N+漏区2的侧面接触;
所述源极结构包括P型阱区5、N+源区6、P+短路区7和源极金属8;所述P型阱区5位于P型漂移区3上表面,且P型阱区5沿器件横向方向延伸入N型漂移区4上层,N+源区6和P+短路区7并列设置于P型阱区5上层,且N+源区6位于靠近N型漂移区4的一侧;源极金属8位于P+短路区7和部分N+源区6上表面,源极金属10引出端为源极S;
所述栅极结构为平面栅,所述平面栅由绝缘介质9和位于绝缘介质9之上的导电材料10构成;所述绝缘介质9位于N型漂移区4、P型阱区5和部分N+源区6上表面;导电材料10的引出端为栅极G;
所述源极金属1与N型漂移区4形成肖特基接触。
本发明的有益效果为,本发明的具有低反向恢复电荷的超结MOSFET,极大地减小了反向恢复电荷,优化了反向恢复特性。
附图说明
图1是本发明的超结MOSFET示意图;
图2是常规超结MOSFET示意图;
图3是本发明超结MOSFET与常规超结MOSFET的反向导通I-V曲线示意图;
图4是本发明超结MOSFET与常规超结MOSFET漂移区内空穴载流子分布示意图;
图5是常规超结MOSFET反向导通时空穴分布示意图;
图6是常规超结MOSFET反向导通时电子分布示意图;
图7是本发明超结MOSFET反向导通时空穴分布示意图;
图8是本发明超结MOSFET反向导通时电子分布示意图;
图9是本发明超结MOSFET与常规超结MOSFET反向恢复电流仿真对比图;
具体实施方式
下面结合附图对本发明进行详细的描述
如图1所示,为本发明的具有漏端肖特基接触的低反向恢复电荷超结MOSFET。图2为常规的超结MOSFET。本发明的超结MOSFET与常规超结MOSFET体内都存在由P+短路区7/P型阱区5/P型漂移区3和N型漂移区4/N+漏区2组成的体二极管。本发明的超结MOSFET在漏极一侧引入了由N型漂移区4与漏极金属1组成肖特基接触。
其工作原理如下:
反向导通时,器件栅源极同接高电位,漏极接地。源极向漂移区注入空穴,而N+漏区2往漂移区注入电子。与普通超结MOSFET体二极管对比,一方面,由于本发明器件的N+漏区面积更小,从而电子注入效率更低,从而减少了漂移区内的载流子,另一方面,反偏的N型肖特基二极管给空穴提供了泄放通道,漂移区内的载流子浓度进一步降低。从而,漂移区内的载流子浓度下降,器件反向恢复特性得以改善。
图3为利用二维仿真软件仿真的反向导通特性,可以看出本发明器件的反向导通压降相对于普通超结MOSFET略微更高,这是由于漂移区的空穴载流子数量极大地降低,从而电导调制效应减弱。图4为本发明超结MOSFET与普通超结MOSFET体内空穴载流子分布的对比,可以看出,本发明的超结MOSFET漂移区内的空穴浓度极大地降低了。
图5-图8为普通超结MOSFET与本发明的超结MOSFET反向导通时的空穴载流子分布图,图9为本发明超结MOSFET与常规超结MOSFET反向恢复电流仿真对比图。600V等级的两种MOSFET在400V下进行反向恢复特性仿真,可以看出本发明超结MOSFET较常规超结MOSFET的反向恢复电流和反向恢复电荷下降明显。

Claims (1)

1.一种具有漏端肖特基接触的超结MOSFET,其半元胞包括漏极结构、耐压层结构、源极结构和栅极结构,其中耐压层结构位于漏极结构之上,源极结构和栅极结构位于耐压层结构之上;
所述漏极结构包括漏极金属(1)以及N+漏区(2);所述N+漏区(2)位于漏极金属(1)一侧的上表面;所述漏极金属(1)引出端为漏极;
所述耐压层结构包括并列设置的N型漂移区(4)及P型漂移区(3),N型漂移区(4)与P型漂移区(3)构成超结结构;所述P型漂移区(3)位于N+漏区(2)上表面,N型漂移区(4)位于漏极金属(1)上表面,N型漂移区(4)与N+漏区(2)的侧面接触;
所述源极结构包括P型阱区(5)、N+源区(6)、P+短路区(7)和源极金属(8);所述P型阱区(5)位于P型漂移区(3)上表面,且P型阱区(5)沿器件横向方向延伸入N型漂移区(4)上层,N+源区(6)和P+短路区(7)并列设置于P型阱区(5)上层,且N+源区(6)位于靠近N型漂移区(4)的一侧;源极金属(8)位于P+短路区(7)和部分N+源区(6)上表面,源极金属(10)引出端为源极;
所述栅极结构为平面栅,所述平面栅由绝缘介质(9)和位于绝缘介质(9)之上的导电材料(10)构成;所述绝缘介质(9)位于N型漂移区(4)、P型阱区(5)和部分N+源区(6)上表面;导电材料(10)的引出端为栅极;
所述源极金属(1)与N型漂移区(4)形成肖特基接触。
CN202010994844.8A 2020-09-21 2020-09-21 一种具有漏端肖特基接触的超结mosfet Active CN111969063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010994844.8A CN111969063B (zh) 2020-09-21 2020-09-21 一种具有漏端肖特基接触的超结mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010994844.8A CN111969063B (zh) 2020-09-21 2020-09-21 一种具有漏端肖特基接触的超结mosfet

Publications (2)

Publication Number Publication Date
CN111969063A true CN111969063A (zh) 2020-11-20
CN111969063B CN111969063B (zh) 2021-07-09

Family

ID=73386766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010994844.8A Active CN111969063B (zh) 2020-09-21 2020-09-21 一种具有漏端肖特基接触的超结mosfet

Country Status (1)

Country Link
CN (1) CN111969063B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524998A (zh) * 2020-05-07 2020-08-11 西安电子科技大学 太阳光盲区肖特基背栅金属氧化物半导体场效应光电晶体管
CN117525156A (zh) * 2024-01-05 2024-02-06 深圳天狼芯半导体有限公司 一种具有阳极肖特基接触的mosfet及制备方法
CN117525155A (zh) * 2024-01-05 2024-02-06 深圳天狼芯半导体有限公司 一种集成sbd二极管的mosfet及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791138B2 (en) * 2007-10-30 2010-09-07 Infineon Technologies Austria Ag Semiconductor component and method
CN102610523A (zh) * 2011-01-19 2012-07-25 上海华虹Nec电子有限公司 在超级结mosfet中集成肖特基二极管的方法
CN106887467A (zh) * 2017-03-09 2017-06-23 西安电子科技大学 漏连接半超结氮化镓基垂直型异质结功率器件
US20170301783A1 (en) * 2015-01-07 2017-10-19 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method therefor
CN109755296A (zh) * 2018-12-13 2019-05-14 四川大学 集成肖特基二极管的含有p-SiC的超结MOSFET

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791138B2 (en) * 2007-10-30 2010-09-07 Infineon Technologies Austria Ag Semiconductor component and method
CN102610523A (zh) * 2011-01-19 2012-07-25 上海华虹Nec电子有限公司 在超级结mosfet中集成肖特基二极管的方法
US20170301783A1 (en) * 2015-01-07 2017-10-19 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method therefor
CN106887467A (zh) * 2017-03-09 2017-06-23 西安电子科技大学 漏连接半超结氮化镓基垂直型异质结功率器件
CN109755296A (zh) * 2018-12-13 2019-05-14 四川大学 集成肖特基二极管的含有p-SiC的超结MOSFET

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN,ZHI等: "Low-Reverse Recovery Charge Superjunction", 《IEEE ELECTRON DEVICE LETTERS》 *
MAO, WEI等: "Improvement of reverse blocking performance in vertical power MOSFETs with Schottky-drain-connected semisuperjunctions", 《CHINESE PHYSICS B》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524998A (zh) * 2020-05-07 2020-08-11 西安电子科技大学 太阳光盲区肖特基背栅金属氧化物半导体场效应光电晶体管
CN117525156A (zh) * 2024-01-05 2024-02-06 深圳天狼芯半导体有限公司 一种具有阳极肖特基接触的mosfet及制备方法
CN117525155A (zh) * 2024-01-05 2024-02-06 深圳天狼芯半导体有限公司 一种集成sbd二极管的mosfet及其制备方法

Also Published As

Publication number Publication date
CN111969063B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN111969063B (zh) 一种具有漏端肖特基接触的超结mosfet
CN109830524B (zh) 一种极低反向恢复电荷超结功率vdmos
CN104299995A (zh) 半导体装置
CN111987167A (zh) 一种具有源端肖特基接触的超结mosfet
CN114256331B (zh) 一种具有异质结的超结逆导型igbt
CN109065609B (zh) 一种低导通电阻绝缘体上硅横向绝缘栅双极型晶体管
CN109713041B (zh) 一种适用于超结dmos器件的改良结构
CN110416285A (zh) 一种超结功率dmos器件
CN109166923B (zh) 一种屏蔽栅mosfet
CN113471290A (zh) 隧穿辅助导通的硅/碳化硅异质结mosfet功率器件
CN111969062B (zh) 一种改善反向恢复特性的超结mosfet
CN107452805A (zh) 一种具有低导通电阻高耐压的ldmos器件
CN106920840B (zh) 消除横向绝缘栅双极型晶体管拖尾电流的方法
CN111180518B (zh) 一种具有两种导电模式的超结mosfet
CN113851542B (zh) 一种具有软反向恢复特性的超结mosfet
CN109065629B (zh) 一种槽栅超结器件
KR102585094B1 (ko) 분리 버퍼 구조를 갖는 초접합 igbt
CN111933687B (zh) 具有高安全工作区的横向功率器件
CN103887332A (zh) 一种新型功率半导体器件
CN107342286B (zh) 一种具有表面双栅控制的横向rc-igbt器件
CN219303670U (zh) 一种4H-SiC基超结功率MOSFET
CN111276537A (zh) 一种具有多晶硅耐压层的逆导型rc-ligbt器件
CN109904224B (zh) 一种具有低emi噪声的槽栅双极型晶体管
CN108735801A (zh) 一种超结功率dmos器件
CN217788402U (zh) 一种4H-SiC基超结功率MOSFET器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant