CN111933528A - 一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法 - Google Patents

一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法 Download PDF

Info

Publication number
CN111933528A
CN111933528A CN202010831685.XA CN202010831685A CN111933528A CN 111933528 A CN111933528 A CN 111933528A CN 202010831685 A CN202010831685 A CN 202010831685A CN 111933528 A CN111933528 A CN 111933528A
Authority
CN
China
Prior art keywords
type gan
gan
layer
epitaxial layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010831685.XA
Other languages
English (en)
Other versions
CN111933528B (zh
Inventor
吴素贞
徐政
徐海铭
洪根深
贺琪
赵文彬
吴建伟
谢儒彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 58 Research Institute
Original Assignee
CETC 58 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 58 Research Institute filed Critical CETC 58 Research Institute
Priority to CN202010831685.XA priority Critical patent/CN111933528B/zh
Publication of CN111933528A publication Critical patent/CN111933528A/zh
Application granted granted Critical
Publication of CN111933528B publication Critical patent/CN111933528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,属于功率开关器件技术领域。通过在n+型GaN衬底和n型GaN外延层中间插入一定厚度的高掺杂的n型GaN缓冲层,并结合此垂直器件中的p型GaN:Mg的电流阻挡区域、p型GaN增强型栅的结构特点,使得高能单粒子入射沉积的高密度非平衡载流子,能够高效地消除,减轻非平衡载流子对关态电场的扰动,避免出现电场集中,保证单粒子下的高压GaN器件击穿电压不会显著下降。此外,增加的高掺杂n型GaN缓冲层能够阻挡单粒子径迹前沿对n型GaN外延层/n+型GaN衬底高低结的影响,避免单粒子径迹前沿上的n/n+结提前击穿。

Description

一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法
技术领域
本发明涉及功率开关器件技术领域,特别涉及一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法。
背景技术
氮化镓(GaN)材料是第三代宽禁带半导体的典型代表,禁带宽度3.4eV,具有比传统硅材料更高的临界击穿电场、更高的电子饱和漂移速度、更高的极限工作温度和介电常数小以及良好的化学稳定性等特点,是电力电子功率半导体器件的优良材料,具有广阔的市场前景。目前的GaN功率器件是基于AlGaN/GaN结构所形成的二维电子气的高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)器件。由于目前GaN体材料技术的还不够成熟,GaN HEMT器件通常是基于外延的表面型器件,对于表面型水平结构,击穿电压横向扩展,电流横向流动,带来不利影响。比如,表面态会导致器件性能下降,引起电流崩塌等可靠性问题;此外,表面电流密度高,产生的热量集中,从而引起器件温度上升,而且更高的击穿电压需要更大的横向尺寸,占据更大芯片面积,妨碍器件的可扩展性。因此,平面结构并不是理想的功率电子器件的结构。对于大功率器件,GaN需要像Si器件那样开发出VDMOS、LGBT等垂直型器件结构。近些年来,氮化镓衬底的产量一直在稳定增长,六英寸的大尺寸衬底也开始出现,并且由于氮化镓功率电子和光电器件的市场份额进一步扩大,氮化镓衬底的价格预计将会继续下降。未来,随着GaN体材料技术的够成熟,基于高性能同质衬底上的垂直型氮化镓功率电子器件技术将会逐渐实用化。
相比于Si、GaAs半导体材料,GaN材料具有更高的化学键稳定性,对空间应用等恶劣辐射环境具有更强的抵抗力。目前,国内外已有较多的研究报道证明GaN HEMT功率器件在抵抗α粒子、中子和质子等辐射粒子位移损方面具有比硅功率器件大得多的优势。但是对于空间重离子辐射引起的功率器件单粒子烧毁效应,GaN HEMT功率器件并没有表现出比Si器件更强的抵抗力。特别是对于高压器件,单粒子效应是影响其空间应用的关键因素。单粒子效应是由于入射高能粒子在器件中产生高密度电子空穴对非平衡载流子,影响高压器件电场分布,导致器件在低于正常额定电压下即发生单粒子烧毁,因此对于空间应用,需要有抗单粒子加固的功率器件。硅功率器件的抗单粒子加固技术已经经历了三十多年的发展,而GaN功率器件作为可替代硅器件应用于空间环境的优良器件,也需要发展抗单粒子烧毁的加固技术研究。
发明内容
本发明的目的在于提供一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,以解决现有的GaN HEMT高压功率器件容易受单粒子效应影响,从而导致器件发生烧毁的问题。
为解决上述技术问题,本发明提供一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,包括:
在n+型GaN同质衬底上依次形成n型GaN缓冲层、n-型GaN漂移区外延层、N型GaN外延层;
在所述N型GaN外延层制作p型GaN:Mg的电流阻挡区域;
继续外延生长非掺杂的GaN沟道层、AlxGa1-xN势垒层和p型GaN:Mg层;其中x为15%~25%;
刻蚀掉栅极区域以外的p型GaN:Mg层,形成栅极区域;
进行表面源极接触孔光刻腐蚀、金属淀积并合金形成欧姆接触;
表面淀积钝化层,金属淀积并光刻腐蚀形成栅极金属的互连;
表面淀积金属间介质层,完成表面源极金属互连工艺和栅极引出;
完成背面漏极金属工艺。
可选的,在所述N型GaN外延层制作p型GaN:Mg的电流阻挡区域包括如下两种方法:
采用硬掩模,在所述N型GaN外延层形成p型GaN:Mg的电流阻挡区域:
通过涂胶并曝光出图形窗口,形成作为注入高能Mg离子的硬掩模;
Mg离子注入GaN;
通过退火完成注入杂质的激活和晶格修复,形成p型GaN:Mg的电流阻挡区域;剩余N型GaN外延层的区域为JFET窗口;
或,
采用选区再生长的方法,在所述N型GaN外延层上制作p型GaN:Mg的电流阻挡区域:
刻蚀去掉电流阻挡区域的N型GaN区域形成凹槽;
选凹槽中外延生长并同步掺杂受主型杂质,形成p型GaN:Mg的电流阻挡区域,掺杂浓度为1017~1018cm-3;即通过选区外延将凹槽填平,形成p型GaN:Mg的电流阻挡区域;剩余N型GaN外延层的区域为JFET窗口。
可选的,所述n型GaN缓冲层位于所述n+型GaN同质衬底和所述n-型GaN漂移区外延层中间;所述n型GaN缓冲层的掺杂浓度为所述n-型GaN漂移区外延层的2~5倍,所述n型GaN缓冲层的厚度为所述n-型GaN漂移区外延层的50%~100%。
可选的,所述n+型GaN同质衬底的掺杂浓度为1018~1019cm-3;所述n型GaN缓冲层的厚度为3~4μm,掺杂浓度为3×1016~1×1017cm-3;所述n-型GaN漂移区外延层的厚度为6~8μm,掺杂浓度为8×1015~2×1016cm-3;所述N型GaN外延层的厚度为0.5μm~1μm,掺杂浓度为2×1017~5×1017cm-3
可选的,所述GaN沟道层的厚度为1~2μm,所述AlxGa1-xN势垒层的厚度为15~25nm,所述p型GaN:Mg层的厚度为100~200nm;其中,所述p型GaN:Mg层中Mg掺杂浓度大于1019cm-3,形成的空穴浓度大于1017cm-3
可选的,p型GaN:Mg层的栅极区域覆盖所述JFET窗口,交叠尺寸为1~3μm。
可选的,所述钝化层为Si3N4或者SiO2或者Si3N4/SiO2叠层介质;所述金属间介质层为SiO2或者Si3N4或者SiO2/Si3N4叠层介质。
在本发明中提供了一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,通过在n+型GaN衬底和n-型GaN外延层中间插入一定厚度的高掺杂的n型GaN缓冲层,并结合此垂直器件中的p型GaN:Mg的电流阻挡区域、p型GaN增强型栅的结构特点,使得高能单粒子入射沉积的高密度非平衡载流子,能够高效地消除,减轻非平衡载流子对关态电场的扰动,避免出现电场集中,保证单粒子下的高压GaN器件击穿电压不会显著下降。从栅极正下方打入的单粒子,载流子消除过程中,空穴可以经过栅极区域和p型GaN:Mg的电流阻挡区域抽出,电子主要经n+型GaN衬底流出;不是从栅极区域正下方打入的单粒子,或者说从p型GaN:Mg的电流阻挡区域上方打入的单粒子,载流子可以通过p型GaN:Mg的电流阻挡区域/n-型GaN外延层的pn结构有效移除消。此外,增加的高掺杂n型GaN缓冲层能够阻挡单粒子径迹前沿对n-型GaN外延层/n+型GaN衬底高低结的影响,避免单粒子径迹前沿上的n-/n+结提前击穿。
附图说明
图1是在n+型GaN衬底上依次形成n型GaN缓冲层、n-型GaN外延层、N型GaN外延层的示意图;
图2是光刻注入制作p型GaN:Mg的电流阻挡区域的示意图;
图3是形成的p型GaN:Mg的电流阻挡区域和JFET窗口结构示意图;
图4是形成非掺杂GaN沟道层、AlxGa1-xN势垒层和p型GaN:Mg层的示意图;
图5是形成p型GaN:Mg层的栅极区域的示意图;
图6是形成欧姆接触和栅极金属的示意图;
图7是完成金属互连层示意图。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
本发明提供了一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,包括如下步骤:
提供外延基片作为衬底,所述外延基片为n+型高掺杂同质GaN衬底,掺杂浓度1018~1019cm-3;在n+型GaN衬底1上依次形成n型GaN缓冲层2、n-型GaN外延层3、N型GaN外延层4,如图1所示。所述n型GaN缓冲层2位于所述n+型GaN衬底1和所述n-型GaN外延层3中间;所述n型GaN缓冲层2的掺杂浓度为所述n-型GaN外延层3的2~5倍,所述n型GaN缓冲层2的厚度为所述n-型GaN外延层3的50%~100%。所述n-型GaN外延层3的厚度和掺杂浓度根据器件设计的电压值进行选择;所述N型GaN外延层4为电流垂直流通的区域,其厚度和掺杂浓度根据器件设计的电压值、电阻值和窗口尺寸等结构参数选择,通常掺杂浓度可以比n-型GaN外延层3的掺杂浓度高一个数量级。对于抗单粒子加固的600V GaN器件,可以选择如下参数:所述n型GaN缓冲层2的厚度为3~4μm,掺杂浓度为3×1016~1×1017cm-3;所述n-型GaN外延层3的厚度为6~8μm,掺杂浓度为8×1015~2×1016cm-3;所述N型GaN外延层4的厚度为0.5μm~1μm,掺杂浓度为2×1017~5×1017cm-3
接着在所述N型GaN外延层4制作p型GaN:Mg的电流阻挡区域。通过如下两种方法制作p型GaN:Mg的电流阻挡区域:
(1)采用Ni/Ti/SiO2等硬掩模,在所述N型GaN外延层形成p型GaN:Mg的电流阻挡区域:
如图2所示,通过涂胶并曝光出图形窗口,形成作为注入高能Mg离子的硬掩模Mask;将Mg离子注入N型GaN外延层4;通过退火完成注入杂质的激活和晶格修复,形成p型GaN:Mg的电流阻挡区域5;剩余N型GaN外延层的区域为JFET窗口6,如图3所示;
(2)采用选区再生长的方法,在所述N型GaN外延层上制作p型GaN:Mg的电流阻挡区域:
刻蚀去掉电流阻挡区域的N型GaN区域形成凹槽;选凹槽中外延生长并同步掺杂受主型杂质,形成p型GaN:Mg的电流阻挡区域5,掺杂浓度为1017~1018cm-3;即通过选区外延将凹槽填平,形成p型GaN:Mg的电流阻挡区域;剩余N型GaN外延层的区域为JFET窗口6。
继续外延生长厚度为1~2μm的非掺杂的GaN沟道层7、厚度为15~25nm的AlxGa1-xN势垒层8和厚度为100~200nm的p型GaN:Mg层9,如图4所示;其中x为15%~25%。所述p型GaN:Mg层9中Mg掺杂浓度大于1019cm-3,形成的空穴浓度大于1017cm-3
通过涂胶并曝光出图形窗口,干法刻蚀掉栅极区域以外的p型GaN:Mg层9,形成p型GaN:Mg层的栅极区域10,如图5。所述栅极区域10需要覆盖所述JFET窗口6,即栅极区域10的尺寸大于JFET窗口6的尺寸,请参阅图5,交叠尺寸11会影响器件关态漏电。对于1μm的GaN沟道层7,交叠尺寸11可以选择2~3μm。
进行表面源极接触孔光刻腐蚀,接触孔需要刻蚀到p型GaN:Mg的电流阻挡区域5,然后金属淀积连接p型GaN:Mg的电流阻挡区域5和GaN沟道层7,合金后形成欧姆接触12,如图6所示。
请继续参阅图6,然后在表面淀积Si3N4或者SiO2或者Si3N4/SiO2叠层介质作为钝化层13,用于钝化刻蚀造成的AlxGa1-xN势垒层8表面的损伤;金属淀积并光刻腐蚀形成栅极金属14。
表面淀积SiO2或者Si3N4或者SiO2/Si3N4叠层介质作为金属间介质层15,完成表面源极金属16互连工艺和栅极引出;完成背面漏极金属17。
通过在n+型GaN衬底1和n-型GaN外延层3中间插入一定厚度的高掺杂的n型GaN缓冲层2,并结合此垂直器件中的p型GaN:Mg的电流阻挡区域5、p型GaN:Mg层的栅极区域的结构特点,使得高能单粒子入射沉积的高密度非平衡载流子,能够高效地消除,减轻非平衡载流子对关态电场的扰动,避免出现电场集中,保证单粒子下的高压GaN器件击穿电压不会显著下降。从栅极正下方打入的单粒子,载流子消除过程中,空穴可以经过栅极区域10和p型GaN:Mg的电流阻挡区域5抽出,电子主要经n+型GaN衬底1流出;不是从栅极区域10正下方打入的单粒子,或者说从p型GaN:Mg的电流阻挡区域5上方打入的单粒子,载流子可以通过p型GaN:Mg的电流阻挡区域/n-型GaN外延层的pn结构有效移除消。此外,增加的高掺杂n型GaN缓冲层能够阻挡单粒子径迹前沿对n-型GaN外延层/n+型GaN衬底高低结的影响,避免单粒子径迹前沿上的n-/n+结提前击穿。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (7)

1.一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,其特征在于,包括:
在n+型GaN同质衬底上依次形成n型GaN缓冲层、n-型GaN漂移区外延层、N型GaN外延层;
在所述N型GaN外延层制作p型GaN:Mg的电流阻挡区域;
继续外延生长非掺杂的GaN沟道层、AlxGa1-xN势垒层和p型GaN:Mg层;其中x为15%~25%;
刻蚀掉栅极区域以外的p型GaN:Mg层,形成栅极区域;
进行表面源极接触孔光刻腐蚀、金属淀积并合金形成欧姆接触;
表面淀积钝化层,金属淀积并光刻腐蚀形成栅极金属的互连;
表面淀积金属间介质层,完成表面源极金属互连工艺和栅极引出;
完成背面漏极金属工艺。
2.如权利要求1所述的抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,其特征在于,在所述N型GaN外延层制作p型GaN:Mg的电流阻挡区域包括如下两种方法:
采用硬掩模,在所述N型GaN外延层形成p型GaN:Mg的电流阻挡区域:
通过涂胶并曝光出图形窗口,形成作为注入高能Mg离子的硬掩模;
Mg离子注入GaN;
通过退火完成注入杂质的激活和晶格修复,形成p型GaN:Mg的电流阻挡区域;剩余N型GaN外延层的区域为JFET窗口;
或,
采用选区再生长的方法,在所述N型GaN外延层上制作p型GaN:Mg的电流阻挡区域:
刻蚀去掉电流阻挡区域的N型GaN区域形成凹槽;
选凹槽中外延生长并同步掺杂受主型杂质,形成p型GaN:Mg的电流阻挡区域,掺杂浓度为1017~1018cm-3;即通过选区外延将凹槽填平,形成p型GaN:Mg的电流阻挡区域;剩余N型GaN外延层的区域为JFET窗口。
3.如权利要求1所述的抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,其特征在于,所述n型GaN缓冲层位于所述n+型GaN同质衬底和所述n-型GaN漂移区外延层中间;所述n型GaN缓冲层的掺杂浓度为所述n-型GaN漂移区外延层的2~5倍,所述n型GaN缓冲层的厚度为所述n-型GaN漂移区外延层的50%~100%。
4.如权利要求1所述的抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,其特征在于,所述n+型GaN同质衬底的掺杂浓度为1018~1019cm-3;所述n型GaN缓冲层的厚度为3~4μm,掺杂浓度为3×1016~1×1017cm-3;所述n-型GaN漂移区外延层的厚度为6~8μm,掺杂浓度为8×1015~2×1016cm-3;所述N型GaN外延层的厚度为0.5μm~1μm,掺杂浓度为2×1017~5×1017cm-3
5.如权利要求1所述的抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,其特征在于,所述GaN沟道层的厚度为1~2μm,所述AlxGa1-xN势垒层的厚度为15~25nm,所述p型GaN:Mg层的厚度为100~200nm;其中,所述p型GaN:Mg层中Mg掺杂浓度大于1019cm-3,形成的空穴浓度大于1017cm-3
6.如权利要求2所述的抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,其特征在于,p型GaN:Mg层的栅极区域覆盖所述JFET窗口,交叠尺寸为1~3μm。
7.如权利要求1所述的抗单粒子烧毁的垂直型氮化镓功率器件的制作方法,其特征在于,所述钝化层为Si3N4或者SiO2或者Si3N4/SiO2叠层介质;所述金属间介质层为SiO2或者Si3N4或者SiO2/Si3N4叠层介质。
CN202010831685.XA 2020-08-18 2020-08-18 一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法 Active CN111933528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010831685.XA CN111933528B (zh) 2020-08-18 2020-08-18 一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010831685.XA CN111933528B (zh) 2020-08-18 2020-08-18 一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法

Publications (2)

Publication Number Publication Date
CN111933528A true CN111933528A (zh) 2020-11-13
CN111933528B CN111933528B (zh) 2022-08-02

Family

ID=73306132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010831685.XA Active CN111933528B (zh) 2020-08-18 2020-08-18 一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法

Country Status (1)

Country Link
CN (1) CN111933528B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713190A (zh) * 2020-12-29 2021-04-27 西安电子科技大学芜湖研究院 一种垂直结构氮化镓hemt器件的制备方法
CN114121657A (zh) * 2021-11-25 2022-03-01 深圳大学 一种氮化镓垂直结型场效应管的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035706A (zh) * 2013-01-04 2013-04-10 电子科技大学 一种带有极化掺杂电流阻挡层的垂直氮化镓基异质结场效应晶体管
WO2018120363A1 (zh) * 2016-12-31 2018-07-05 华南理工大学 基于Si衬底的GaN基增强型HEMT器件及其制造方法
CN110610995A (zh) * 2019-08-29 2019-12-24 杭州电子科技大学 一种栅极功率mosfet抗单粒子烧毁器件半元胞结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035706A (zh) * 2013-01-04 2013-04-10 电子科技大学 一种带有极化掺杂电流阻挡层的垂直氮化镓基异质结场效应晶体管
WO2018120363A1 (zh) * 2016-12-31 2018-07-05 华南理工大学 基于Si衬底的GaN基增强型HEMT器件及其制造方法
CN110610995A (zh) * 2019-08-29 2019-12-24 杭州电子科技大学 一种栅极功率mosfet抗单粒子烧毁器件半元胞结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713190A (zh) * 2020-12-29 2021-04-27 西安电子科技大学芜湖研究院 一种垂直结构氮化镓hemt器件的制备方法
CN112713190B (zh) * 2020-12-29 2022-05-03 西安电子科技大学芜湖研究院 一种垂直结构氮化镓hemt器件的制备方法
CN114121657A (zh) * 2021-11-25 2022-03-01 深圳大学 一种氮化镓垂直结型场效应管的制备方法
CN114121657B (zh) * 2021-11-25 2023-10-31 深圳大学 一种氮化镓垂直结型场效应管的制备方法

Also Published As

Publication number Publication date
CN111933528B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN205692835U (zh) 增强型自支撑垂直结构Ⅲ族氮化物HEMT器件及AlGaN/GaN HEMT器件
KR20140042871A (ko) 전류 애퍼쳐 수직 전자 트랜지스터들
DE102004058431A1 (de) III-Nitrid Halbleitervorrichtung mit Grabenstruktur
EP2765611A2 (en) Vertical gallium nitride transistors and methods of fabricating the same
CN109004017B (zh) 具有极化结纵向泄漏电流阻挡层结构的hemt器件及其制备方法
CN104701359B (zh) 垂直结构AlGaN/GaN HEMT器件及其制作方法
CN113380623A (zh) 通过p型钝化实现增强型HEMT的方法
JP2007317794A (ja) 半導体装置およびその製造方法
CN107393956A (zh) 包含p型超晶格的增强型高电子迁移率晶体管及制备方法
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
CN109037326B (zh) 一种具有p型埋层结构的增强型hemt器件及其制备方法
CN111933528B (zh) 一种抗单粒子烧毁的垂直型氮化镓功率器件的制作方法
CN112635544B (zh) 具有偶极子层的增强型AlGaN-GaN垂直型超结HEMT及其制备方法
WO2012060206A1 (ja) 半導体装置およびその製造方法
CN108376707A (zh) 一种GaN基增强型HEMT器件及其制备方法
CN109950323B (zh) 极化超结的ⅲ族氮化物二极管器件及其制作方法
CN108231880B (zh) 一种增强型GaN基HEMT器件及其制备方法
JP2010192745A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
CN104659082B (zh) 垂直结构AlGaN/GaN HEMT器件及其制作方法
KR900000585B1 (ko) 반도체 집적회로 장치 및 그 제조 방법
CN111508839B (zh) 抗单粒子失效的高压增强型GaN功率HEMT器件的制作方法
CN205564759U (zh) 一种新型增强型iii-v异质结场效应晶体管
CN116247094A (zh) 具有抑制衬底漏电结构的GaN HEMT器件与制作方法
CN111668101B (zh) 一种增强型氮化镓高电子迁移率晶体管及其制备方法
CN102983172A (zh) GaAs基垂直结构MOS器件及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant