CN111921497A - 一种利用热解苹果渣制备磁性生物炭的方法 - Google Patents

一种利用热解苹果渣制备磁性生物炭的方法 Download PDF

Info

Publication number
CN111921497A
CN111921497A CN202010680049.1A CN202010680049A CN111921497A CN 111921497 A CN111921497 A CN 111921497A CN 202010680049 A CN202010680049 A CN 202010680049A CN 111921497 A CN111921497 A CN 111921497A
Authority
CN
China
Prior art keywords
apple pomace
magnetic biochar
biochar
soxhlet
mapbc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010680049.1A
Other languages
English (en)
Inventor
张思敬
党晶
陈双莉
刘淼
张苗苗
高亮
陈兆宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN202010680049.1A priority Critical patent/CN111921497A/zh
Publication of CN111921497A publication Critical patent/CN111921497A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种利用热解苹果渣制备磁性生物炭的方法,将苹果渣通过索氏提取脱蜡,纯化,然后在Fe2+/Fe3+水溶液中浸渍陈化,最后在氮气保护下600℃热解苹果渣,制备磁性生物炭,并应用于贵金属富集分离回收。该方法合成的磁性生物炭具有发达的孔结构和丰富的官能团,其制备简单、经济、高效,且性能良好,能有效富集水体中贵金属,磁性生物炭亦可实现分离回收再利用。是一种绿色生产新方法,也是苹果渣资源化利用,实现循环经济的重要途径。

Description

一种利用热解苹果渣制备磁性生物炭的方法
技术领域
本发明属于资源循环利用领域,具体涉及一种利用苹果渣通过热解法制备磁性生物炭富集分离回收水体中贵金属的方法。
背景技术
由于贵金属价格昂贵,资源稀缺,从各种资源中回收贵金属将是一个永恒的主题。在信息化时代,来自各种废弃电子设备产生的电子垃圾越来越多,给环境带来巨大压力,但也为人类提取贵金属提供了重要的二次资源。生物炭因原料来源广泛,且具有较大的孔隙度和比表面积,并含有大量酚羟基、羧基、羰基和高度芳香化等结构特点,使其对贵金属具有良好的吸附和稳定作用,因而生物炭作为一类新型环境功能材料而引起广泛关注。生物炭性能在很大程度上取决于生物质原料和热解温度,热解温度通常介于400-900℃。温度过高会导致产率降低以及生物炭多孔结构的破坏,同时官能团损失也随之增大,而这些官能团通常在吸附目标污染物方面具有重要作用。热解温度过低可能意味着生物炭孔隙结构欠发达。在本领域,热解温度控制是影响生物炭性能的重要因素,而生物炭使用后的分离回收与再利用是应用领域需要解决的一个技术难题。目前磁性生物炭制备多以先热解后赋磁两步法完成,制备过程复杂耗时。
以下是申请人检索得到的与本申请相关参考文献:
[1]马锋锋,赵保卫,刁静茹,等.磁性生物炭对水体中对硝基苯酚的吸附特性[J].中国环境科学,(2019)39(01):170-178。
[2]胡学玉,陈窈君,张沙沙,等.磁性玉米秸秆生物炭对水体中Cd的去除作用及回收利用[J].农业工程学报,(2018)208(34):208-218。
[3]Hao Z,Wang C,Yan Z.Magnetic particles modification of coconutshellderived activated carbon and biochar for effective removal of phenolfrom water[J].Chemosphere,(2018)211:962-969。
[4]LI H,DONG X,DA S E,et al.Mechanisms of metal sorption by biochars:Biochar characteristics and modifications[J].Chemosphere,(2017)178(4):66-78。
[5]M.I.Inyang,B.Gao,Y.Yao,Y.Xue,A.Zimmerman,A.Mosa,P.Pullammanappallil,S.O.Yong,X.Cao,A review of biochar as a low-costadsorbent for aqueous heavy metal removal[J],Critical Reviews inEnvironmental Science&Technology,(2016)46:406-433。
[6]P.Chand,A.Bafana,Y.B.Pakade,Xanthate modified apple pomace as anadsorbent for removal of Cd(II),Ni(II)and Pb(II),and its application to realindustrial wastewater[J],International Biodeterioration&Biodegradation,(2015)97:60-66。
[7]李瑞月,陈德,李恋卿,潘根兴,陈建清,郭虎,不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附[J],农业环境科学学报,(2015)34:1001-1008。
[8]K.R.Reddy,Characteristics and Applications of Biochar forEnvironmental Remediation:A Review[J],Critical Reviews in EnvironmentalScience&Technology,(2015)45:939-969。
[9]S.Wang,B.Gao,A.R.Zimmerman,Y.Li,L.Ma,W.G.Harris,K.W.Migliaccio,Removal of arsenic by magnetic biochar prepared from pinewood and naturalhematite[J],Bioresource technology,(2015)175:391-395。
[10]D.Mohan,P.Singh,A.Sarswat,P.H.Steele,C.U.P.Jr,Lead sorptiveremoval using magnetic and nonmagnetic fast pyrolysis energy cane biochars[J],Journal of colloid and interface science,(2015)448:238-250。
[11]P.Chand,A.K.Shil,M.Sharma,Y.B.Pakade,Improved adsorption ofcadmium ions from aqueous solution using chemically modified apple pomace:Mechanism,kinetics,and thermodynamics[J],International Biodeterioration&Biodegradation,(2014)90:8-16。
[12]徐楠楠,林大松,徐应明,谢忠雷,梁学峰,郭文娟,玉米秸秆生物炭对Cd2+的吸附特性及影响因素[J],农业环境科学学报,(2014)33:958-964。
[13]D.H.K.Reddy,S.M.Lee,Magnetic biochar composite:Facile synthesis,characterization,and application for heavy metal removal[J],Colloids&SurfacesA Physicochemical&Engineering Aspects,(2014)454:96-103。
[14]D.Mohan,H.Kumar,A.Sarswat,M.Alexandre-Franco,C.U.P.Jr,Cadmium andlead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars[J],Chemical Engineering Journal,(2014)236:513-528。
[15]S.A.Baig,J.Zhu,N.Muhammad,T.Sheng,X.Xu,Effect of synthesismethods on magnetic Kans grass biochar for enhanced As(III,V)adsorption fromaqueous solutions[J],Biomass&Bioenergy,(2014)71:299-310。
[16]王震宇,刘国成,Monica,et al.不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J].环境科学,(2014)12:4735-4744。
[17]M.Zhang,B.Gao,S.Varnoosfaderani,A.Hebard,Y.Yao,M.Inyang,Preparation and characterization of a novel magnetic biochar for arsenicremoval[J],Bioresource technology,(2013)130:457-462。
[18]杜磊,苹果渣对Cr(Ⅵ)吸附性能的研究[J],食品科学,(2012)33:78-82。
[19]M.Gurung,B.B.Adhikari,H.Kawakita,K.Ohto,K.Inoue,S.Alam,SelectiveRecovery of Precious Metals from Acidic Leach Liquor of Circuit Boards ofSpent Mobile Phones Using Chemically Modified Persimmon Tannin Gel[J],Industrial&Engineering Chemistry Research,(2012)51:11901-11913。
[20]H.P.Jin,G.K.Choppala,N.S.Bolan,J.W.Chung,T.Chuasavathi,Biocharreduces the bioavailability and phytotoxicity of heavy metals[J],Plant&Soil,(2011)348:439-451。
[21]Z.Liu,F.S.Zhang,R.Sasai,Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass[J],Chemical EngineeringJournal,(2010)160:57-62。
[22]LEHMANNJ,GAUNT J,RONDON M.Bio-char Sequestration in Terre strialEcosystems–A Review[J].Mitigation&Adaptation Strategies for Global Change,(2006)11(2):403-427。
发明内容
针对上述现有技术存在的缺陷或不足,本发明的目的在于,提出一种利用热解苹果渣制备磁性生物炭的方法,该方法通过调节热解温度,获得性能优异的磁性生物炭。
为了实现上述任务,本发明采取如下的技术解决方案:
一种利用热解苹果渣制备磁性生物炭的方法,其特征在于,按照以下步骤操作:
1)使用甲苯-丙酮-甲醇(4:1:1V/V)在120℃下对苹果渣索氏提取12h,进行脱蜡,搅拌浸泡在80℃的水浴中1h,离心,干燥至恒重,粉碎机粉碎至45目,得到索氏提取苹果渣粉末备用;
2)取一定量的索氏提取苹果渣粉末,与一定量的硫酸亚铁和硝酸亚铁及去离子水混合,剧烈搅拌,形成苹果渣悬浮液,然后逐滴加入浓度为10%的氢氧化钠直至悬浮液的pH为10-11,搅拌后室温陈化,去离子水洗涤至中性,干燥后粉碎至45目,得到陈化苹果渣粉末备用;
3)取一定量陈化苹果渣粉末放入瓷舟中,然后放入管式炉中加热至600℃进行炭化,加热速率为10℃/min,氮气流速为80mL/min,保温时间1h,自然冷却至室温后,粉碎至45目,得到磁性生物炭。
本发明利用苹果渣热解法制备磁性生物炭的方法,通过将热解炭化与磁化两个过程一步完成,通过控制热解温度为600℃,以及对生物炭赋磁,得到的磁性生物炭具有发达的孔结构和丰富的官能团,经磁分离可成功解决吸附后生物炭的回收循环利用问题;材料制备简单、经济、高效,且性能良好,能有效富集水体中贵金属。是一种绿色生产新方法,也是苹果渣资源化利用,实现循环经济的重要途径。
附图说明
图1是磁性生物炭的磁滞回线,图中,MAPBC表示磁性生物炭。
图2是磁性生物炭的XRD谱图。
图3是磁性生物炭的氮气吸附/解吸等温线图。
图4是磁性生物炭孔径分布图。
图5是pH对磁性生物炭吸附的影响图。
图6是磁性生物炭投加量对吸附效率的影响图。
图7是磁性生物炭对五组分中金属离子的穿透曲线。
图2、图3和图4中,AP表示苹果渣粉末,MAPBC表示磁性生物炭,MAPBC-Au表示负载有Au的磁性生物炭。
以下结合附图和实施例对本发明作进一步的详细说明。
具体实施方式
本实施例给出一种利用热解苹果渣制备磁性生物炭的方法,具体的实施过程是:
1、苹果渣的预处理
用甲苯-丙酮-甲醇(4:1:1V/V)混合溶液,在120℃下对苹果渣索氏提取12h,进行脱蜡(以利于后续Fe2+/Fe3+浸渍),搅拌浸泡在80℃水浴中1h去除水溶性杂质进一步纯化,然后用离心机离心,在烘箱中60℃干燥24h至恒重,然后粉碎至45目,得到索氏提取苹果渣粉末备用。
2、磁性生物炭的制备
将20.0g的索氏提取苹果渣粉末,8.0g的硫酸亚铁和4.8g的硝酸铁依次加入到400mL去离子水中,搅拌30分钟,形成悬浮液,然后逐滴加入10%氢氧化钠至悬浮液的pH为10-11,搅拌1h后室温陈化24h,过滤悬浮液,去离子水洗成中性,烘箱中50℃干燥12h,粉碎至45目,得到陈化苹果渣粉末备用。
将一定量的陈化苹果渣粉末放入瓷舟中,然后放入管式炉中在600℃下进行炭化,加热速率为10℃/min,氮气流速为80mL/min,保温时间1h。自然冷却至室温后,粉碎至45目,得到磁性生物炭,命名为MAPBC。
通过振动样品磁强计(VSM)在环境温度下评估MAPBC的磁化特性,结果显示在图1中。MAPBC的饱和磁化强度值为1.61emu/g。表明四氧化三铁纳米颗粒有效负载在MAPBC上。此外,如分离图,制备的磁性生物炭(MAPBC)对外部磁场反应良好,这有利于生物炭颗粒从水溶液中分离。
AP,MAPBC的X-射线衍射(XRD)图谱显示在图2中,其清楚地证实了MAPBC中结晶相的存在。在MAPBC的2θ值为30.2°,35.5°,43.1°,53.5°,57.1°和62.6°时的衍射峰归因于(220),(311),(400),(422),(511)和(440)尖晶石铁素体的晶面。MAPBC的峰值为30.2°归因于Fe3O4,而35.5°的峰值归因于γ-Fe2O3。43.1°的峰值,表明MAPBC表面上存在立方氧化铁颗粒,53.5°,57.1°和62.6°峰值主要归因于Fe3O4
AP和MAPBC的氮气吸附/解吸等温线如图3所示,表明生物吸附剂(AP和MAPBC)的中孔结构发达。此外,经BET测试,MAPBC的比表面积为37.04m2/g,与AP的10.94m2/g相比大大增加,造成比表面积增大的原因有,第一,高温炭化增大AP比表面积;第二,可能是Fe3+是一种氧化剂,可作为AP的活化剂。通过分析AP和MAPBC的DFT(密度泛函理论)孔径分布(图4),可以得出结论,所有这两种材料都包括微孔(孔径<2nm)和中孔(2nm<孔径<50nm),其主要是中孔结构。
3、静态吸附实验
称取一定量上述制备的MAPBC置于三角烧瓶中,加入30mL含有C0(Au(III))=86.2mg/L,C0(Pb(II))=1040.8mg/L,C0(Cu(II))=386.6mg/L,C0(Zn(II))=55.3mg/L,C0(Ni(II))=536.5mg/L的溶液,置于恒温振荡反应器中振荡,取样过滤,利用原子吸收分光光度计测定吸附前后溶液中金属离子含量,考察pH、MAPBC投加量对吸附过程的影响。
3.1、溶液pH的影响
依次称取0.5g/L的MAPBC置于100mL三角烧瓶中,加入上述溶液30mL,分别调pH至1、2、3、4、5,25℃下恒温震荡12h,过滤后测定滤液中Au(III),Cu(II),Pb(II),Zn(II)和Ni(II)的浓度。
结果如图5所示,MAPBC对Au(III),Pb(II),Cu(II),Zn(II)和Ni(II)的吸附一般略有波动,pH范围为1.0至5.0,表明pH值对MAPBC的吸附影响较小。然而,对于pH=1.0的处理溶液,Au(III),Pb(II),Cu(II),Zn(II)和Ni(II)的去除率分别达到99.15%,5.50%,2.19%,3.27%和4.26%,MAPBC对Au(III)的选择性明显高于共存金属离子,同时提供了从多组分体系中富集和分离Au(III)的可能性。
3.2、吸附剂投加量的影响
依次称取0.003、0.005、0.01、0.015、0.02、0.03g的MAPBC,置于100mL三角烧瓶中,加入上述溶液30mL,调节pH至1.0附近,25℃下恒温震荡12h,过滤后利用原子吸收分光光度计测定滤液中Au(III),Cu(II),Pb(II),Zn(II)和Ni(II)的浓度。
结果如图6所示。随着MAPBC剂量的增加,吸附的活性位点也增加,从而导致所有金属离子的去除率增加。对于五组分混合物,在MAPBC剂量一定时,其对Au(III)的吸附优先于共存金属离子,这意味着MAPBC具有选择性富集和分离Au(III)的潜力。当剂量为0.50g/L时,MAPBC对Au(III)的去除率达到99.14%,相对应的吸附容量为170.91mg/g。
4、动态吸附实验
取0.25g的MAPBC于玻璃柱中,柱吸附实验在内径为0.8cm,高度为26.0cm的玻璃柱中进行,MAPBC的体积为0.25cm3,吸附时的液时空速(LHSV)为24.0h-1。先用去离子水以6.0cm3/h流速自上而下流过2h,然后用具有相同pH值的稀硝酸以6.0cm3/h流速自下而上流过吸附柱,2h后再将含C0(Au(III))=86.2mg/L,C0(Pb(II))=1040.8mg/L,C0(Cu(II))=386.6mg/L,C0(Zn(II))=55.3mg/L,C0(Ni(II))=536.5mg/L的溶液以相同流速通过吸附柱,每小时定期取样流出溶液,利用原子分光光度计测定各种金属离子的浓度,绘制Ct/C0-B.V.穿透曲线。
结果如图7所示,Pb(II),Cu(II),Zn(II)和Ni(II)的迅速达到平衡,表明这种共存的金属离子快速渗透填充床而不被吸附。然而,Au(III)的穿透点(Ct/C0=0.1)达到453.8BV(~19h),饱和点(Ct/C0=1.0)达到1003.19BV(~42h),表明MAPBC有利于从Au(III)-Pb(II)-Cu(II)-Zn(II)-Ni(II)五组分体系中选择性富集和分离Au(III)。
4、结论
通过苹果渣在Fe2+/Fe3+水溶液中浸渍陈化,然后在氮气保护下在600℃下热解来制备磁性生物炭MAPBC。VSM及BET表明,MAPBC具有磁性并具有发达的孔结构,饱和磁化强度值为1.61emu/g,比表面积为37.04m2/g。
静态吸附研究表明,MAPBC在Au(III)-Pb(II)-Cu(II)-Zn(II)-Ni(II)五组分含水体系中对Au(III)具有更好的选择性。当pH=1.0,剂量为0.50g/L时,MAPBC在含Au(III))86.2mg/L五组分体系中,对Au(III)的去除率达到99.14%,相对应的吸附容量达170.91mg/g。
动态实验进一步表明,MAPBC可从Au(III)-Pb(II)-Cu(II)-Zn(II)-Ni(II)混合物中选择性分离富集Au(III)。因此,MAPBC具有从各种含金工业废水中回收金的潜力。

Claims (5)

1.一种利用苹果渣热解法制备磁性生物炭的方法,其特征在于,按照以下步骤操作:
1)使用甲苯-丙酮-甲醇(4:1:1V/V)在120℃下对苹果渣索氏提取12h,进行脱蜡,搅拌浸泡在80℃的水浴中1h,离心,干燥至恒重,粉碎机粉碎至45目,得到索氏提取苹果渣粉末备用;
2)取一定量的索氏提取苹果渣粉末,与一定量的硫酸亚铁和硝酸亚铁及去离子水混合,剧烈搅拌,形成苹果渣悬浮液,然后逐滴加入浓度为10%的氢氧化钠直至悬浮液的pH为10-11,搅拌后室温陈化,去离子水洗涤至中性,干燥后粉碎至45目,得到陈化苹果渣粉末备用;
3)取一定量陈化苹果渣粉末放入瓷舟中,然后放入管式炉中加热至600℃进行炭化,加热速率为10℃/min,氮气流速为80mL/min,保温时间1h,自然冷却至室温后,粉碎至45目,得到磁性生物炭。
2.如权利要求1所述的方法,其特征在于,步骤2)所述的索氏提取苹果渣粉末用量为20.0g,硫酸亚铁用量为8.0g,硝酸亚铁用量为4.8g。
3.如权利要求1所述的方法,其特征在于,步骤2)所述的烘干温度为50℃,时间为12h。
4.如权利要求1至3其中之一所述的方法,其特征在于,所述的磁性生物炭的X-射线衍射谱图2θ值为30.2°,35.5°,43.1°,53.5°,57.1°和62.6°时的衍射峰归因于(220),(311),(400),(422),(511)和(440)尖晶石铁素体的晶面;其中,MAPBC的峰值为30.2°归因于Fe3O4,而35.5°的峰值归因于γ-Fe2O3,43.1°的峰值,表明表面上存在立方氧化铁颗粒,53.5°,57.1°和62.6°峰值主要归因于Fe3O4
5.如权利要求1至3其中之一所述的方法,其特征在于,所述的磁性生物炭的的饱和磁化强度值为1.61emu/g,比表面积为37.04m2/g。
CN202010680049.1A 2020-07-15 2020-07-15 一种利用热解苹果渣制备磁性生物炭的方法 Pending CN111921497A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010680049.1A CN111921497A (zh) 2020-07-15 2020-07-15 一种利用热解苹果渣制备磁性生物炭的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010680049.1A CN111921497A (zh) 2020-07-15 2020-07-15 一种利用热解苹果渣制备磁性生物炭的方法

Publications (1)

Publication Number Publication Date
CN111921497A true CN111921497A (zh) 2020-11-13

Family

ID=73313044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010680049.1A Pending CN111921497A (zh) 2020-07-15 2020-07-15 一种利用热解苹果渣制备磁性生物炭的方法

Country Status (1)

Country Link
CN (1) CN111921497A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113908801A (zh) * 2020-07-07 2022-01-11 中国科学院沈阳应用生态研究所 一种磁性生物炭制备方法及其装置
CN115672275A (zh) * 2022-12-12 2023-02-03 中国人民警察大学 一种磁性纳米生物碳质材料及其制备方法与应用
CN116832774A (zh) * 2023-07-03 2023-10-03 上海交通大学 一种生物质衍生炭颗粒及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472134A (zh) * 2003-06-05 2004-02-04 上海交通大学 由苹果渣制备碳分子筛的方法
CN101642699A (zh) * 2009-08-06 2010-02-10 浙江大学 一种磁性生物碳吸附材料的制备方法及其用途
CN102616901A (zh) * 2011-12-19 2012-08-01 西安建筑科技大学 磁性瓜环的制备及其去除饮用水源水中ha类污染物的应用
CN108642289A (zh) * 2018-05-28 2018-10-12 南开大学 一种从废旧手机印刷电路板中回收金的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472134A (zh) * 2003-06-05 2004-02-04 上海交通大学 由苹果渣制备碳分子筛的方法
CN101642699A (zh) * 2009-08-06 2010-02-10 浙江大学 一种磁性生物碳吸附材料的制备方法及其用途
CN102616901A (zh) * 2011-12-19 2012-08-01 西安建筑科技大学 磁性瓜环的制备及其去除饮用水源水中ha类污染物的应用
CN108642289A (zh) * 2018-05-28 2018-10-12 南开大学 一种从废旧手机印刷电路板中回收金的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIJING ZHANG ET AL.,: "Magnetic apple pomace biochar: Simple preparation, characterization,and application for enriching Ag(I) in effluents" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113908801A (zh) * 2020-07-07 2022-01-11 中国科学院沈阳应用生态研究所 一种磁性生物炭制备方法及其装置
CN115672275A (zh) * 2022-12-12 2023-02-03 中国人民警察大学 一种磁性纳米生物碳质材料及其制备方法与应用
CN115672275B (zh) * 2022-12-12 2024-04-23 中国人民警察大学 一种磁性纳米生物碳质材料及其制备方法与应用
CN116832774A (zh) * 2023-07-03 2023-10-03 上海交通大学 一种生物质衍生炭颗粒及其制备方法和应用
CN116832774B (zh) * 2023-07-03 2024-02-20 上海交通大学 一种生物质衍生炭颗粒及其制备方法和应用

Similar Documents

Publication Publication Date Title
Zhang et al. Magnetic apple pomace biochar: Simple preparation, characterization, and application for enriching Ag (I) in effluents
CN111921497A (zh) 一种利用热解苹果渣制备磁性生物炭的方法
CN103623782A (zh) 复合磁性吸附材料的制备和去除废水中重金属离子的方法
CN110898802B (zh) 一种污泥基生物炭及其制备方法和应用、乙酸改性污泥基生物炭及其制备方法和应用
Zheng et al. Banana peel carbon that containing functional groups applied to the selective adsorption of Au (III) from waste printed circuit boards
CN110508243B (zh) 一种生物质基多孔炭负载铁絮体吸附材料的制备方法及应用
CN111408376B (zh) 一种具备重金属吸附以及有机物降解的多功能生物炭的制备方法及其应用
CN111871374A (zh) 一种磁性生物炭的制备方法及其应用
CN108435135A (zh) 一种西瓜皮生物炭的制备方法及其在去除废水中铊的应用
CN106582509A (zh) 一种重金属离子多孔吸附材料及其制备方法
CN114247426B (zh) 生物炭负载天然含铁矿物磁性吸附剂及其制备方法和应用
CN111570494A (zh) 一种重金属污染土壤修复方法
CN113663644A (zh) 一种球磨改性复合生物炭及其制备方法和应用
CN113578267A (zh) 用于富集核废水中铀的多晶型纳米氧化镁生物炭吸附剂
CN113070029A (zh) 一种磁性多孔炭材料及其制备方法和应用
CN112898987A (zh) 一种去除土壤中重金属的磁性复合材料及其制备和应用
LI et al. Lead desorption from modified spent grain
CN110586037A (zh) 以废弃蟹壳生物质炭为填料的重金属吸附固相萃取小柱
CN113856628B (zh) 一种高效回收及脱附磷的金属修饰生物炭及其制备方法与应用
CN113304734B (zh) 一种改性褐煤的制备方法、产品及应用
CN106000341A (zh) 一种吸附水中铅离子的磁性桉叶生物质吸附剂及其应用和快速分离方法
CN110743495B (zh) 纳米锰氧化物改性生物质炭及制备方法和去除柠檬酸铜的方法
CN113426412A (zh) 一种吸附Cr(VI)的可回收再生磁性荷梗生物炭的制备方法及其应用
CN114146684A (zh) 一种改性赤泥生物炭材料及其制备和应用方法
CN110639469B (zh) 硫化物还原改性生物炭及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201113

WD01 Invention patent application deemed withdrawn after publication