CN111888891B - 一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法 - Google Patents

一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法 Download PDF

Info

Publication number
CN111888891B
CN111888891B CN202010802965.8A CN202010802965A CN111888891B CN 111888891 B CN111888891 B CN 111888891B CN 202010802965 A CN202010802965 A CN 202010802965A CN 111888891 B CN111888891 B CN 111888891B
Authority
CN
China
Prior art keywords
eutectic solvent
nano
nano copper
copper type
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010802965.8A
Other languages
English (en)
Other versions
CN111888891A (zh
Inventor
刘新鹏
王宝华
孟庆梅
张子间
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202010802965.8A priority Critical patent/CN111888891B/zh
Publication of CN111888891A publication Critical patent/CN111888891A/zh
Application granted granted Critical
Publication of CN111888891B publication Critical patent/CN111888891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

本发明具体涉及一种低共熔溶剂‑纳米铜型纳米流体的制备方法,包括制备低共熔溶剂,向制备的低共熔溶剂中加入碱性物质获得功能化低共熔溶剂,向制备的功能化低共熔溶剂中加入纳米铜颗粒得到低共熔溶剂‑纳米铜型纳米流体。本发明将常用于太阳能转换、工业冷却等行业的纳米流体体系应用于硫化氢气体脱除中,筛选出对硫化氢具备特异吸收性能的低共熔溶剂‑纳米铜型纳米流体,获得性能显著加强的新型脱硫剂;低共熔溶剂‑纳米铜型纳米流体配置简单,脱硫效果明显优于同等浓度的低共熔溶剂;反应条件温和,工艺简单,方法新颖,能耗低,易于工业化推广。

Description

一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法
技术领域
本发明属于大气污染物控制技术领域,具体涉及一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法。
背景技术
硫化氢(H2S)标况下是一种无色、剧毒、易爆、带有刺激性气味的气体。硫化氢存在于火山、温泉等自然环境以及炼油厂、沼气和天然气等工业生产中。硫化氢具有毒性及腐蚀性,会对工业的管道产生腐蚀,尤其是会对某些重金属催化剂产生毒害作用。燃烧后,硫化氢会转变为主要空气污染物之一二氧化硫(SO2),进而污染大气环境。因此,硫化氢是必须脱除的环境污染物之一。溶液吸收法是目前最常用的H2S脱除方法之一,但是,水溶液存在溶剂易挥发、再生能耗高等缺陷。添加了纳米颗粒(NPs)的稳定悬浮液被称为纳米流体(NFs),是近几年兴起的一种新型材料。纳米流体主要由纳米颗粒和基液构成,通过超声、磁力搅拌等方法将纳米颗粒均匀分散在基液中,制成稳定均匀的悬浮液,即纳米流体。常见的纳米颗粒有纳米二氧化硅(SiO2)、纳米铜粉(Cu)、纳米三氧化铝(Al2O3)、碳纳米管(CNTs)和氧化石墨烯(GO)等。而当前尚无利用低共熔溶剂基纳米流体进行硫化氢脱除的研究报道。
发明内容
本发明的目的是提供一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法,以解决上述技术问题。
为实现上述目的,本发明采用以下技术方案:
一种低共熔溶剂-纳米铜型纳米流体的制备方法,包括制备低共熔溶剂,向制备的低共熔溶剂中加入碱性物质获得功能化低共熔溶剂,向制备的功能化低共熔溶剂中加入纳米铜颗粒得到低共熔溶剂-纳米铜型纳米流体。
其中,本发明还可以进一步包括以下技术方案:所述低共熔溶剂制备过程为:将乙二醇和氯化胆碱按照1:1-4:1的摩尔比混合,在50-100℃条件下加热1-5h后冷却。
其中,本发明还可以进一步包括以下技术方案:所述功能化低共熔溶剂制备过程为:向预先制备的低共熔溶剂中加入质量比为5-30%的碱性物质并混匀,其中,碱性物质为乙醇胺、N-甲基二乙醇胺、聚乙烯亚胺中的任意一种或多种。
其中,本发明还可以进一步包括以下技术方案:所述低共熔溶剂-纳米铜型纳米流体制备过程为:向预先制备的功能化低共熔溶剂中加入质量比为0.05-5%的纳米铜颗粒,搅拌10-60min,超声0.5-2h。
其中,本发明还可以进一步包括以下技术方案:所述纳米铜颗粒粒度为10-100nm。
其中,本发明还可以进一步包括以下技术方案:所述超声为间歇性超声。
一种低共熔溶剂-纳米铜型纳米流体的使用方法,包括将硫化氢气体通入带有吸收剂的恒温吸收器中,从吸收器中排出的尾气通入氢氧化钠溶液中进行吸收处理,其中,所述吸收剂为预先制备的低共熔溶剂-纳米铜型纳米流体。
其中,本发明还可以进一步包括以下技术方案:所述硫化氢气体浓度为500-2500mg/m3,通入流量为50-500mL/min,反应温度为20-80℃,所述吸收器为玻璃鼓泡吸收器。
其中,本发明还可以进一步包括以下技术方案:包括低共熔溶剂-纳米铜型纳米流体的再生过程,所述再生过程为:向吸收剂中通入200-500mL/min的空气。
其中,本发明还可以进一步包括以下技术方案:所述再生过程的再生温度为25-100℃,再生时间为2-6h。
有益效果:
本发明将常用于太阳能转换、工业冷却等行业的纳米流体体系应用于硫化氢气体脱除中,筛选出对硫化氢具备特异吸收性能的低共熔溶剂-纳米铜型纳米流体,获得性能显著加强的新型脱硫剂;低共熔溶剂-纳米铜型纳米流体配置简单,脱硫效果明显优于同等浓度的低共熔溶剂;反应条件温和,工艺简单,方法新颖,能耗低,易于工业化推广。
附图说明
图1为本发明一种低共熔溶剂-纳米铜型纳米流体的制备方法流程图;
图2为本发明质量比0.05%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢的动态检测图;
图3为本发明质量比0.5%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢的动态检测图;
图4为本发明质量比1%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢的动态检测图;
图5为本发明质量比2%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢的动态检测图;
图6为本发明质量比5%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢的动态检测图;
图7为本发明质量比1%的低共熔溶剂-纳米铜型纳米流体脱硫再生的动态检测图。
具体实施方式
下面结合具体实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种低共熔溶剂-纳米铜型纳米流体的制备方法,包括制备低共熔溶剂,向制备的低共熔溶剂中加入碱性物质获得功能化低共熔溶剂,向制备的功能化低共熔溶剂中加入纳米铜颗粒得到低共熔溶剂-纳米铜型纳米流体。
其中,本发明还可以进一步包括以下技术方案:低共熔溶剂制备过程为:将乙二醇和氯化胆碱按照1:1-4:1的摩尔比混合,在50-100℃条件下加热1-5h后冷却。加热促进两种物质快速溶解混合均匀,优选的,加热至混合液呈清澈透明液体。
其中,本发明还可以进一步包括以下技术方案:功能化低共熔溶剂制备过程为:向预先制备的低共熔溶剂中加入质量比为5-30%的碱性物质并混匀,其中,碱性物质为乙醇胺、N-甲基二乙醇胺、聚乙烯亚胺中的任意一种或多种。添加碱性物质使低共熔溶剂具备碱性条件,有利于针对性脱硫反应。添加质量比较少时碱性不明显,脱硫性能偏低,添加质量比超过20%脱硫性能增强速度变缓,且通常情况下部分碱性物质粘度较大,过多加入会导致液体粘度增加,不利于气液吸收反应。
其中,本发明还可以进一步包括以下技术方案:低共熔溶剂-纳米铜型纳米流体制备过程为:向预先制备的功能化低共熔溶剂中加入质量比为0.05-5%的纳米铜颗粒,搅拌10-60min,超声0.5-2h。质量比增加,脱硫性能增强,但质量比超过1%则会在液体中出现较多沉淀,此时易导致气液反应管路堵塞,质量比增加至5%时会迅速堵塞,不利于长时间运行。优选的,添加纳米铜颗粒质量比1%为最优投加量,添加纳米铜颗粒质量比1%时,低共熔溶剂-纳米铜型纳米流体状态稳定,脱硫性能较高。
其中,本发明还可以进一步包括以下技术方案:纳米铜颗粒粒度为10-100nm。
其中,本发明还可以进一步包括以下技术方案:超声为间歇性超声。间歇性超声为超声10min,间歇10min,以超声累积时间为超声记录时间,持续超声发热大,导致反应温度上升严重,无法控制,且长时间操作可能导致反应装置破裂,间歇超声有利于实验温度稳定,并不易破坏反应仪器。优选的,搅拌30min,间歇超声40min。
一种低共熔溶剂-纳米铜型纳米流体的使用方法,包括将硫化氢气体通入带有吸收剂的恒温吸收器中,从吸收器中排出的尾气通入氢氧化钠溶液中进行吸收处理,其中,吸收剂为预先制备的低共熔溶剂-纳米铜型纳米流体。
其中,本发明还可以进一步包括以下技术方案:硫化氢气体浓度为500-2500mg/m3,通入流量为50-500mL/min,反应温度为20-80℃,吸收器为玻璃鼓泡吸收器。
其中,本发明还可以进一步包括以下技术方案:包括低共熔溶剂-纳米铜型纳米流体的再生过程,再生过程为:向吸收剂中通入200-500mL/min的空气。
其中,本发明还可以进一步包括以下技术方案:再生过程的再生温度为25-100℃,再生时间为2-6h。升温有利于吸收剂再生,加速反应,常温时再生速率较慢,温度超过60℃后再生效果基本没有提升,说明在此温度下即可达到快速再生,温度达到100℃左右会导致吸收剂挥发,不利于再生。温度为60℃时,再生2h即可达到较高的再生效果,继续增加时长基本无变化。温度较低时,时间继续加长再生效果稍有增强,但效果不明显。优选的,温度在60℃并维持2h时,再生效果最好。
对上述吸收器中的尾气先通入H2S气体分析仪中,对尾气中的H2S气体浓度进行动态检测并记录,检测后的尾气使用NaOH溶液进行吸收处理。
实施例1
质量比0.05%的低共熔溶剂-纳米铜型纳米流体的配制方法:
将乙二醇和氯化胆碱按照摩尔比2:1的比例放入烧瓶进行加热,80℃下加热2小时,冷却后得到清澈透明液体,在其中加入质量比20%的乙醇胺,鼓泡混匀制成低共熔溶剂。称取质量比0.05%的纳米铜粉加入低共熔溶剂中,磁力搅拌30min,间歇超声1h,制得0.05Cu-DES-NFs。
质量比0.05%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢方法:
将4mL质量比0.05%的低共熔溶剂-纳米铜型纳米流体置于玻璃鼓泡吸收器中,温度为常温。通过200mL/min浓度为1000mg/m3的含硫化氢气体,采用H2S气体分析仪对尾气H2S气体浓度进行动态检测。尾气使用NaOH溶液进行吸收处理。
低共熔溶剂-纳米铜型纳米流体脱硫效率如图2所示,在添加0.05%纳米Cu粉后,120分钟内硫化氢脱除效率增强率保持在10%以上。
实施例2
质量比0.5%的低共熔溶剂-纳米铜型纳米流体的配制方法:
将乙二醇和氯化胆碱按照摩尔比2:1的比例放入烧瓶进行加热,80℃下加热2小时,冷却后得到清澈透明液体,在其中加入质量比20%的乙醇胺,鼓泡混匀制成低共熔溶剂。称取质量比0.5%的纳米铜粉加入低共熔溶剂中,磁力搅拌30min,间歇超声1h,制得0.5Cu-DES-NFs。
质量比0.5%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢方法与实施例1中质量比0.05%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢方法一致。
低共熔溶剂-纳米铜型纳米流体脱硫效率如图3所示,在添加0.5%纳米Cu粉后,120分钟内硫化氢脱除效率增强率保持在10%以上。
实施例3
质量比1%的低共熔溶剂-纳米铜型纳米流体的配制方法:
将乙二醇和氯化胆碱按照摩尔比2:1的比例放入烧瓶进行加热,80℃下加热2小时,冷却后得到清澈透明液体,在其中加入质量比20%的乙醇胺,鼓泡混匀制成低共熔溶剂。称取质量比1%的纳米铜粉加入低共熔溶剂中,磁力搅拌30min,间歇超声1h,制得1Cu-DES-NFs。
质量比1%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢方法与实施例1中质量比0.05%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢方法一致。
低共熔溶剂-纳米铜型纳米流体脱硫效率如图4所示,在添加1%纳米Cu粉后,120分钟内硫化氢脱除效率增强率保持在20%以上。
实施例4
质量比2%的低共熔溶剂型纳米流体的配制方法:
将乙二醇和氯化胆碱按照摩尔比2:1的比例放入烧瓶进行加热,80℃下加热2小时,冷却后得到清澈透明液体,在其中加入质量比20%的乙醇胺,鼓泡混匀制成低共熔溶剂。称取质量比2%的纳米铜粉加入低共熔溶剂中,磁力搅拌30min,间歇超声1h,制得2Cu-DES-NFs。
质量比2%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢方法与实施例1中质量比0.05%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢方法一致。
低共熔溶剂-纳米铜型纳米流体脱硫效率如图5所示,在添加2%纳米Cu粉后,120分钟内硫化氢脱除效率增强率保持在20%以上。
实施例5
质量比5%的低共熔溶剂型纳米流体的配制方法:
将乙二醇和氯化胆碱按照摩尔比2:1的比例放入烧瓶进行加热,80℃下加热2小时,冷却后得到清澈透明液体,在其中加入质量比20%的乙醇胺,鼓泡混匀制成低共熔溶剂。称取质量比5%的纳米铜粉加入低共熔溶剂中,磁力搅拌30min,间歇超声1h,制得5Cu-DES-NFs。
质量比5%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢方法与实施例1中质量比0.05%的低共熔溶剂-纳米铜型纳米流体吸收脱除硫化氢方法一致。
低共熔溶剂-纳米铜型纳米流体脱硫效率如图6所示,在添加5%纳米Cu粉后,120分钟内硫化氢脱除效率增强率保持在30%以上,但由于悬浮物过多,后期出现堵塞现象。
实施例6
质量比1%的低共熔溶剂-纳米铜型纳米流体的脱硫再生方法:
将质量比1%的吸收过H2S的低共熔溶剂-纳米铜型纳米流体置于玻璃鼓泡吸收器中,温度为常温。通过200-600mL/min的空气1-6h鼓泡再生,然后再次通过200mL/min浓度为1000mg/m3的含硫化氢气体,采用H2S气体分析仪对尾气H2S气体浓度进行动态检测。尾气使用NaOH溶液进行吸收处理。由图7可见,质量比1%的低共熔溶剂-纳米铜型纳米流体首次再生效果达到原来的80%以上,第二次再生在前40min仍可将硫化氢气体完全脱除。
研究认为,纳米颗粒的布朗运动可增强流体扰动、增大气液传质系数、从而提升传质通量。当前较为常见的纳米流体强化气液传质机制包括掠过效应(传输作用)、抑制气泡聚并机理、边界层混合机理等。一般认为纳米流体的强化传质作用是以上几种机制相互关联,共同作用的结果。
本发明的脱硫原理为:制成的低共熔溶剂中含有碱性物质,与纳米铜颗粒结合后,形成对硫化氢具备高吸收能力的纳米流体系统,硫化氢与其发生反应从而从气相中捕集硫化氢。纳米铜颗粒的存在构成纳米流体体系,一方面强化吸收剂与硫化氢气体间的气液传质性能,另一方面纳米铜与系统中的碱性物质如乙醇胺发生反应,所形成的复合体系对硫化氢的吸收性能更优,从而获得功能加强的低共熔溶剂-纳米铜型纳米流体脱硫剂。与加入纳米铜颗粒之前相比,低共熔溶剂脱硫率有所上升,同等时间内脱硫效率提升5-30%。再生阶段由于纳米流体的强化传质作用,纳米流体脱硫剂的空气再生亦可得到加强。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (6)

1.一种低共熔溶剂-纳米铜型纳米流体的制备方法,其特征在于,包括制备低共熔溶剂,向制备的低共熔溶剂中加入质量比为5-20%的乙醇胺并混匀,获得功能化低共熔溶剂,向制备的功能化低共熔溶剂中加入质量比为0.05-5%的纳米铜颗粒,搅拌10-60min,超声0.5-2h,得到低共熔溶剂-纳米铜型纳米流体;
所述低共熔溶剂制备过程为:将乙二醇和氯化胆碱按照1:1-4:1的摩尔比混合,在50-100℃条件下加热1-5h后冷却;
所述纳米铜颗粒粒度为10-100 nm。
2.根据权利要求1所述一种低共熔溶剂-纳米铜型纳米流体的制备方法,其特征在于,所述超声为间歇性超声。
3.一种低共熔溶剂-纳米铜型纳米流体的使用方法,其特征在于,包括将硫化氢气体通入带有吸收剂的恒温吸收器中,从吸收器中排出的尾气通入氢氧化钠溶液中进行吸收处理,其中,所述吸收剂为权利要求1或2所述制备方法制备的低共熔溶剂-纳米铜型纳米流体。
4.根据权利要求3所述一种低共熔溶剂-纳米铜型纳米流体的使用方法,其特征在于,所述硫化氢气体浓度为500-2500 mg/m3,通入流量为50-500 mL/min,反应温度为20-80℃,所述吸收器为玻璃鼓泡吸收器。
5.根据权利要求3所述一种低共熔溶剂-纳米铜型纳米流体的使用方法,其特征在于,包括低共熔溶剂-纳米铜型纳米流体的再生过程,所述再生过程为:向吸收剂中通入200-500 mL/min的空气。
6.根据权利要求5所述一种低共熔溶剂-纳米铜型纳米流体的使用方法,其特征在于,所述再生过程的再生温度为25-100℃,再生时间为2-6h。
CN202010802965.8A 2020-08-11 2020-08-11 一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法 Active CN111888891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010802965.8A CN111888891B (zh) 2020-08-11 2020-08-11 一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010802965.8A CN111888891B (zh) 2020-08-11 2020-08-11 一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法

Publications (2)

Publication Number Publication Date
CN111888891A CN111888891A (zh) 2020-11-06
CN111888891B true CN111888891B (zh) 2022-03-04

Family

ID=73228973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010802965.8A Active CN111888891B (zh) 2020-08-11 2020-08-11 一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法

Country Status (1)

Country Link
CN (1) CN111888891B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112755964B (zh) * 2020-12-18 2023-08-15 辽宁科技大学 负载季磷基低共熔溶剂的活性炭脱硫剂及制备和使用方法
CN113019091B (zh) * 2021-03-03 2023-04-14 山东理工大学 一种非水液相络合铁-纳米流体的制备方法及应用
CN114378300B (zh) * 2022-01-21 2023-10-20 重庆科技学院 一种以氧化铜为原料制备纳米铜粉的方法
PL442599A1 (pl) * 2022-10-24 2024-04-29 Politechnika Krakowska im.Tadeusza Kościuszki Sposób otrzymywania bezwodnych zawiesin nanocząstek metali

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170112559A (ko) * 2016-03-31 2017-10-12 주식회사 엘지화학 나노 입자의 합성 방법
CN108816196A (zh) * 2018-07-24 2018-11-16 淄博凯美可工贸有限公司 高选择性的复配型脱硫剂及其制备方法
CN109207127A (zh) * 2018-08-10 2019-01-15 中国矿业大学 一种基于低共融溶剂体系的纳米流体的制备方法及其制备的纳米流体
CN111074074A (zh) * 2019-12-27 2020-04-28 中国矿业大学 一种基于低共熔溶剂纳米流体回收废旧锂离子电池正极材料的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2289286B (en) * 1994-05-11 1998-10-14 Ici Plc Sulphur removal
US20070158610A1 (en) * 2006-01-12 2007-07-12 Haiping Hong Carbon naoparticle-containing hydrophilic nanofluid
WO2008098137A2 (en) * 2007-02-07 2008-08-14 Zettacore, Inc. Liquid composite compositions using non-volatile liquids and nanoparticles and uses thereof
CN101264525A (zh) * 2007-03-15 2008-09-17 青岛科技大学 一种铜纳米流体的制备方法
RU2010102865A (ru) * 2007-07-24 2011-08-27 НексБио, Инк. (US) Технология изготовления микрочастиц
CN102554217B (zh) * 2012-02-24 2014-12-17 河南大学 一种水溶性纳米铜及其制备方法
ES2534575B1 (es) * 2013-09-24 2016-01-14 Consejo Superior De Investigaciones Científicas (Csic) Exfoliación de grafito con disolventes eutécticos profundos
CN104607023B (zh) * 2014-12-22 2016-08-24 浙江大学 一种强化co2吸收剂气液传质的纳米流体的制备方法及应用
US9855525B2 (en) * 2015-05-06 2018-01-02 Aaron Esser-Kahn Methods and apparatuses for recovering CO2
CN107261774A (zh) * 2017-08-16 2017-10-20 天津大学 利用Cu(I)/低共熔溶剂支撑液膜分离烯烃/烷烃的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170112559A (ko) * 2016-03-31 2017-10-12 주식회사 엘지화학 나노 입자의 합성 방법
CN108816196A (zh) * 2018-07-24 2018-11-16 淄博凯美可工贸有限公司 高选择性的复配型脱硫剂及其制备方法
CN109207127A (zh) * 2018-08-10 2019-01-15 中国矿业大学 一种基于低共融溶剂体系的纳米流体的制备方法及其制备的纳米流体
CN111074074A (zh) * 2019-12-27 2020-04-28 中国矿业大学 一种基于低共熔溶剂纳米流体回收废旧锂离子电池正极材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Study on the Desulfurization and Regeneration Performance of Functional Deep Eutectic Solvents;Baohua Wang等;《ACS Omega》;20200617;第5卷(第25期);第15353-15361页 *

Also Published As

Publication number Publication date
CN111888891A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN111888891B (zh) 一种低共熔溶剂-纳米铜型纳米流体的制备及使用方法
Jung et al. CO 2 absorption characteristics of nanoparticle suspensions in methanol
US20200238252A1 (en) Method of preparing carbon-based sulfur-loading iron-containing adsorbent for mercury removal
Liu et al. Enhanced removal of hydrogen sulfide using novel nanofluid system composed of deep eutectic solvent and Cu nanoparticles
JP2017519634A (ja) 煙道ガスの脱硫脱硝プロセス及び設備
CN103768916B (zh) 一种氧化脱硫和硫磺回收方法
Wang et al. Removal of alkali in the red mud by SO2 and simulated flue gas under mild conditions
CN112755764B (zh) 一种用于脱除烟气中汞的稳定悬浮体系及其回收方法
CN101874969B (zh) 一种用于湿式氧化法脱硫溶液的硫颗粒沉降剂
CN109706549A (zh) 一种新型复合氮化硼吸附材料的制备方法及应用
WO2014202815A1 (es) Material compuesto adsorbente que comprende metales nobles y un polímero tensioactivo, procedimiento de síntesis y su utilización para la desulfuración de fluidos
CN109550365A (zh) 一种离子液体吸收剂及提高离子液体吸收性能的方法
US5282975A (en) Removal of oil from water
Zarei et al. Intensification of CO2 absorption and desorption by metal/non-metal oxide nanoparticles in bubble columns
CN105498696A (zh) 一种适用于乳化油污水处理的磁性纳米粒子制备的方法
Dong et al. Effect of nanoparticles on desulfurization/regeneration performance of deep eutectic solvent based nanofluid system
CN113713757A (zh) 一种用于废气液高效汞吸附剂的制备方法及产品
CN116832873A (zh) 一种工业气体中脱除硫化氢的络合铁催化剂及其制备方法
Thakur et al. Experimental investigation of CO2 absorption process using nanofluids
CN113019091B (zh) 一种非水液相络合铁-纳米流体的制备方法及应用
CN109550367B (zh) 一种离子液体脱硫系统及方法
CN106944077A (zh) 用于沼气净化的脱硫材料的制备方法
Zhao et al. An investigation into the influence of particle size of CaCO3 on Flue Gas desulfurization process
CN108031438B (zh) 一种磁性吸附剂在燃烧烟气分离痕量元素中的应用
Shakir et al. Improvement of CO2 Absorption/Desorption Rate Using New Nano-Fluid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant