CN111886205A - 水处理装置及水处理方法 - Google Patents

水处理装置及水处理方法 Download PDF

Info

Publication number
CN111886205A
CN111886205A CN201880091239.0A CN201880091239A CN111886205A CN 111886205 A CN111886205 A CN 111886205A CN 201880091239 A CN201880091239 A CN 201880091239A CN 111886205 A CN111886205 A CN 111886205A
Authority
CN
China
Prior art keywords
water
treated
ozone
gas
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880091239.0A
Other languages
English (en)
Inventor
神谷佑
生沼学
内藤皓贵
稻永康隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN111886205A publication Critical patent/CN111886205A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • C02F1/64Heavy metal compounds of iron or manganese
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • C02F2101/366Dioxine; Furan
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46175Electrical pulses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/48Devices for applying magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

目的在于提供对于被处理水(20)有效率地进行水处理的水处理装置。水处理装置,其包括:处理槽(1),其在内部具有接地电极(5)和与其对置的高电压电极(4),在两电极之间形成放电(6),且使被处理水(15)通过电极间以与放电(6)接触,进行水处理;将处理槽(1)内的含有臭氧的其他经由气体送气部(29)供给到从外部供给的被处理水(20)的臭氧混合部(2);气体回送部(31),其将臭氧混合部(2)内的气体向处理槽(1)送气,在臭氧混合部(2)中采用臭氧进行水处理后,在处理槽(1)中利用放电(6)进行水处理。

Description

水处理装置及水处理方法
技术领域
本申请涉及使用放电而进行被处理水的净化的水处理装置及水处理方法。
背景技术
在工厂废水等中,有时含有以二噁英类及二噁烷为代表的难分解性物质。为了将该难分解性物质分解,提出有:对被处理水照射放电、使由放电而产生的OH自由基等作用于被处理水的放电水处理。
对于放电水处理,申请人提出有以下的水处理装置:在壳体内将放电单元和贮存被处理水并供给臭氧的水贮存部交替地配置多个,使通过放电而生成的过氧化氢和臭氧溶解于被处理水,对被处理水进行处理,所述放电单元由以上下对置的方式配置的平板状的接地电极和线状的高电压电极构成、向着在接地电极上以膜状流下的水面形成放电(参照专利文献1)。
现有技术文献
专利文献
专利文献1:国际公开第2016/117259号公报
发明内容
发明要解决的课题
在使用放电的水处理装置中,随着水处理,副产生臭氧。就产生的臭氧而言,由于溶解于被处理水,因此有助于水处理的反应。通过放电所生成的臭氧的量比水处理中所消耗的臭氧的量多,通过放电,在与臭氧的生成同时地,也同时发生臭氧的分解反应。因此,没有贡献于水处理而被分解、或者被向装置外排气的臭氧多,为了水处理效率化,希望提高臭氧的利用率。
本申请公开用于解决上述的课题的技术,目的在于得到在通过使放电与被处理水进行接触而将被处理水中的有机物分解的水处理装置中以简易的装置构成而提高臭氧的利用率、可有效率地将有机物分解的水处理装置及水处理方法。
用于解决课题的手段
本申请中所公开的水处理装置具备:向被处理水供给含有臭氧的气体的臭氧混合部;处理槽,其具备具有接地电极和与上述接地电极对置的高电压电极的放电单元,在上述放电单元形成放电,通过上述放电而生成臭氧,且使上述放电接触上述被处理水;气体送气部,其将上述臭氧混合部和上述处理槽连通,将上述处理槽内的含有臭氧的气体供给到上述臭氧混合部内的上述被处理水;被处理水供给部,其将上述臭氧混合部和上述处理槽连通,从上述臭氧混合部将上述被处理水供给到上述处理槽;和气体回送部,其将上述臭氧混合部和上述处理槽连通,将上述臭氧混合部内的气体向上述处理槽送气。
另外,本申请中所公开的水处理方法包含:将通过放电而生成的臭氧供给到被处理水的第一水处理工序;和使上述第一水处理工序后的被处理水与上述含有臭氧的气体及氧与上述放电进行接触的第二水处理工序,将通过上述第二水处理工序的放电而产生的臭氧用于第一水处理工序。
发明的效果
根据上述构成,在通过放电对被处理水进行处理之前进行利用通过放电而生成的臭氧的水处理,因此能够提供用简易的装置构成而提高臭氧的利用率、可有效率地将有机物分解的水处理装置及水处理方法。
附图说明
图1为表示实施方式1涉及的水处理装置的构成的截面图。
图2为表示实施方式1涉及的另一水处理装置的构成的截面图。
图3为表示实施方式1涉及的又一水处理装置的构成的截面图。
图4A为表示实施方式1涉及的又一水处理装置的构成的截面图。
图4B为图4A的放电单元的放大图。
图5为表示实施方式2涉及的水处理装置的构成的截面图。
图6为表示实施方式2涉及的另一水处理装置的构成的截面图。
图7为表示实施方式3涉及的水处理装置的构成的截面图。
图8为表示实施方式3涉及的另一水处理装置的构成的截面图。
图9为表示实施方式4涉及的水处理装置的构成的截面图。
图10为表示实施方式4涉及的另一水处理装置的构成的截面图。
图11为表示实施方式5涉及的水处理装置的构成的截面图。
图12为表示实施方式6涉及的水处理装置的构成的截面图。
图13为表示实施方式6涉及的另一水处理装置的构成的截面图。
具体实施方式
在以下,使用附图对本申请中所公开的水处理装置及水处理方法的优选的实施方式详细地说明。应予说明,各图中,同一附图标记表示同一部分或相当部分。
实施方式1.
图1为表示实施方式1涉及的水处理装置的构成的截面图。
图中,水处理装置具备:处理槽1,其为使被处理水通流、具有在内部形成放电的机构的金属制的容器;臭氧混合部2,其为与处理槽1连接的臭氧混合部2,使供给到处理槽1的被处理水预先与含有臭氧的气体接触,进行被处理水20中所含的有机物的分解且使臭氧溶解于被处理水。
[处理槽1的构成]
首先,对于处理槽1的构成,使用图1进行说明。
处理槽1由金属制的密闭容器构成,配置在内部形成放电的放电单元3。放电单元3具有平板状的接地电极5和与其相对配置的多个(图中为4个)线状的高电压电极4。在图中,示出作为高电压电极4的电线的截面,电线在纸面的向里方向上伸长配置。将多个高电压电极4在接地电极5的上方相互等间隔地配置,且间隔一定距离地配置以使得并列地配置的高电压电极4与接地电极5变得平行。将高电压电极4彼此用配线连接。另外,将配线经由电流导入端子7连接至处理槽1外部的高电压脉冲电源8。进而,通过电流导入端子7,使高电压电极4与处理槽1的壳体电绝缘。通过高电压脉冲电源8对高电压电极4施加高电压脉冲,由此在高电压电极4与接地电极5之间的空间形成放电6。
将放电单元3以倾斜的状态配置在处理槽1内。向倾斜的放电单元3的上部,从与臭氧混合部2连接的给水口11供给被处理水15。被供给的被处理水15在倾斜的接地电极5上流下。在处理槽1的下部,设置有将被水处理的处理水16向水处理装置外排水的排水口14。
另一方面,为了使放电稳定化,将高电压电极4与所供给的被处理水15以不接触的方式来配置。通过金属制的部件将接地电极5固定于处理槽1内侧。由此,将接地电极5与处理槽1的壳体电连接,成为接地电位。
气体遍及处理槽1和臭氧混合部2、即在水处理装置内进行循环,在处理槽1,设置有将气体从处理槽1送出的气体送气口12、和使从气体送气口12送气并在水处理装置内循环的气体返回处理槽1内的返回口即回送气体导入口10。
另外,在处理槽1的上部,设置有将气体供给到处理槽1内的导入口即气体供给口9及将处理槽1内的气体向水处理装置外排气的排气口13。
将气体供给口9经由质量流量控制器18而连接至氧气源17,通过质量流量控制器18,控制向处理槽1所供给的气体的流量。
在排气口13设置阀32,调整排气的气体的流量。
处理槽1为密闭结构,气体、被处理水及处理水只经由上述的气体供给口9、回送气体导入口10、气体送气口12、排气口13、给水口11及排水口14而进行出入。
[臭氧混合部2的构成]
其次,对于臭氧混合部2的构成,使用图1进行说明。
臭氧混合部2由金属容器构成,在内部能够贮存被处理水20,具有对于贮存的被处理水20供给气体的机构。在臭氧混合部2中暂时贮存被处理水20,使气体(臭氧)溶解于被处理水20,且使被处理水20与气体接触,将被处理水20中的有机物分解。
在臭氧混合部2,设置有给水口22,通过与该给水口22连接的配管,从水处理装置的外部供给被处理水20,在臭氧混合部2内贮存。在臭氧混合部2的上部,设置有将臭氧混合部2内的气体的一部分排气的排气口24。在排气口24设置阀33,通过阀33来调整排气的气体的流量。
在臭氧混合部2的与给水口22相对的一侧设置有:用于将被处理水20供给到处理槽1的输送口即送水口25、和使臭氧混合部2内的气体返回至处理槽1的气体回送口23。送水口25设置于比贮存的被处理水20的水面低的位置,气体回送口23设置在比被处理水20的水面高的位置。
在臭氧混合部2的下方的被处理水20中,配置有:与连接至气体导入口45的配管42的前端连接的散气构件19。散气构件19为多孔质的圆筒或平板状,相当于使从处理槽1送气的气体成为气泡而向被处理水20供给的气体供给装置。被处理水20中的白圆圈表示气泡。
臭氧混合部2为与处理槽1同样的密闭结构,气体及水只经由上述的气体回送口23、排气口24、气体导入口45、给水口22及送水口25而进行出入。被处理水20通过臭氧混合部2后,被供给到处理槽1。即,在水处理的流程中,臭氧混合部2位于处理槽1的前段,进行第一段的水处理。
应予说明,就对被处理水进行标注的附图标记而言,将从外部供给且在臭氧混合部2内贮存的被处理水记为20,将进行第一段的水处理且从臭氧混合部2向处理槽1供给的被处理水记为15。
[处理槽1与臭氧混合部2的连接部的构成]
在处理槽1与臭氧混合部2之间,气体进行循环,将被处理水从臭氧混合部2向处理槽1送出。对于处理槽1与臭氧混合部2的连接部的构成进行说明。
气体送气部29为将处理槽1内的气体向臭氧混合部2供给的流路,具有配管42和抽吸处理槽1内的气体而向臭氧混合部2送气的送气手段即送气泵30。将配管42连接至臭氧混合部2的气体导入口45而贯通,将处理槽1的气体送气口12与臭氧混合部2内的散气构件19连接。另外,在送气泵30连接有送气量调整用的逆变器(未图示)。
气体回送部31为用于使臭氧混合部2内的气体向处理槽1返回的流路,具有配管43和进行流量控制的阀34,与臭氧混合部2的气体回送口23和处理槽1的回送气体导入口10连接。
被处理水供给部26是用于将臭氧混合部2内的被处理水20向处理槽1供给的流路,将配管41连接至送水口25和给水口11。在配管41设置有将被处理水15向处理槽1供给的送水泵28。
[水处理装置的运转动作]
其次,对本实施方式1中的水处理装置的运转动作进行说明。
首先,对于气体的循环进行说明。
就本实施方式1中的水处理装置而言,向处理槽1内及臭氧混合部2内供给氧气、进行水处理。就氧气而言,从氧气源17通过质量流量控制器18来调整至预先设定的流量,从气体供给口9供给到处理槽1内。由于水蒸汽从处理槽1内的被处理水15中挥发,因此处理槽1内成为湿润高浓度氧气氛。为了将氧气供给到臭氧混合部2内,通过送气泵30从气体送气口12抽吸处理槽1内的气体,经由气体送气部29来送气后,从散气构件19供给到在臭氧混合部2内所贮存的被处理水20。被送气的气体在被处理水20内形成气泡而上升后,从臭氧混合部2的上部的气体回送口23经由气体回送部31而被回送,从回送气体导入口10向处理槽1返回。
通过以上的动作,使处理槽1和臭氧混合部2内的气体循环。即,将从气体供给口9供给到处理槽1内的氧气向臭氧混合部2送气,在臭氧混合部2内供给到被处理水20后,再次向处理槽1返回。
另外,处理槽1内的气体从排气口13排气。控制从排气口13的排气流量以使得与从气体供给口9的氧供给流量相等。
其次,对利用本水处理装置的水处理的动作进行说明。在本水处理装置中,就从给水口22供给的被处理水20而言,由臭氧混合部2一端贮存。就臭氧混合部2内的被处理水20而言,与通过上述的气体的循环从散气构件19排出的气体接触后,通过被处理水供给部26的送水泵28从送水口25抽吸,从给水口11供给到处理槽1内。将供给到处理槽1的被处理水15供给到放电单元3的接地电极5上游部,在接地电极5上形成水膜而流下。
其中,通过使高电压脉冲电源8工作,在放电单元3的高电压电极4与接地电极5之间的空间形成放电6。在被处理水15通过放电空间时与放电6接触,由此进行水处理。将采用本水处理装置而被处理的处理水16从排水口14排水。
其次,对于本水处理装置的处理槽1中的水处理的原理、和在处理槽1的前段设置臭氧混合部2的作用效果进行说明。
[利用放电的水处理的原理]
在本实施方式1中,被处理水15在接地电极5的上表面流下时,与放电6接触,由此将被处理水中的有机物分解,进行水处理。以下对其原理进行说明。应予说明,在此,以有机物的分解为例进行说明,放电中产生的O3及OH自由基对于除菌、脱色、除臭也有效,这是公知的事实。
通过放电6,处理槽1内的氧分子(O2)、水分子(H2O)与高能的电子碰撞,发生下式(1)、(2)的解离反应。予以说明,式(1)、(2)中,e为电子,O为原子状氧,H为原子状氢,OH为OH自由基。
e+O2→2O (1)
e+H2O→H+OH (2)
式(1)中产生的原子状氧的许多通过下式(3)的反应而成为臭氧(O3)。应予说明,下式(3)中,M为反应的第三体,表示气体中的所有的分子及原子。
O+O2+M→O3 (3)
另外,式(2)中生成的OH自由基的一部分通过下式(4)的反应而成为过氧化氢(H2O2)。
OH+OH→H2O2 (4)
就式(1)至(4)的反应中生成的氧化性粒子(O、OH、O3、H2O2)而言,通过下式(5),与在接地电极5的上表面所流动的被处理水15的水面附近的有机物反应,氧化分解为二氧化碳(CO2)和水。予以说明,在下式(5)中,R为作为处理对象的有机物。
R+(O、OH、O3、H2O2)→CO2+H2O (5)
其中,式(5)中不与有机物反应的O和OH通过式(3)、(4)而成为寿命比较长的O3和H2O2,其一部分根据下式(6)、(7),在被处理水15中溶解。应予说明,下式(6)、(7)中,(L)意指液相。
O3→O3(L) (6)
H2O2→H2O2(L) (7)
就O3(L)与H2O2(L)而言,通过水中的反应,如下式(8)所示,生成OH自由基。
O3(L)+H2O2(L)→OH(L) (8)
就式(6)至(8)中生成的O3(L)、H2O2(L)、OH(L)而言,通过下式(9),通过水中反应而将有机物分解。
R+(O3(L)、H2O2(L)、OH(L))→CO2+H2O (9)
在本实施方式1中,在被处理水15与放电6直接相接的区域、即处理槽1中,通过式(5)的反应和式(9)的反应这两者,将被处理水15中的有机物分解。另一方面,在作为没有与放电直接相接的区域的臭氧混合部2中,通过上式(9)的反应,将被处理水中的有机物分解。
在本实施方式1中,将处理槽1内通过放电6而产生的臭氧供给到臭氧混合部2内的被处理水20。即,不需要另外地使用臭氧发生器。
一般地,就臭氧发生器而言,由于水蒸汽的混入,显著地损害臭氧发生效率,因此需要供给干燥状态的氧气。另外,就与水接触后的气体而言,由于含有水蒸汽,因此无法再利用,被排气。另一方面,在本实施方式1中,在湿润气氛中也稳定地形成放电,能够产生臭氧。此外,通过使气体循环,能够提高臭氧的利用率。由此,能够抑制作为臭氧的原料的氧气的消耗,能够降低水处理所需的成本。
进而,一般含有臭氧的气体在排气时使用排臭氧分解设备,将臭氧分解后而排气。就排臭氧分解设备而言,排气流量越大,越成为大规模。另一方面,在本实施方式1中,通过气体循环,能够削减向装置外排气的气体的流量。即,能够使排臭氧分解设备为小型,能够削减装置成本。
排臭氧分解设备没有图示,但经由阀32与排气口13连接,经由阀33与排气口24连接。
[臭氧浓度的调整]
对于水处理的高效率化,臭氧浓度的调整是重要的。以下,对于本实施方式1的水处理装置中的臭氧浓度的调整方法进行说明。
首先,对于用于产生臭氧的氧浓度的调整进行说明。
在水处理装置的起动时,用空气将水处理装置内充满,有时不满足水处理所需的足够的氧浓度。因此,在氧浓度低的情况下,如下进行水处理装置内的气体的置换动作。
将从氧气源17采用质量流量控制器18而被流量调整了的氧气从气体供给口9供给到处理槽1内。同时,使处理槽1内及臭氧混合部2内的气体经由气体送气部29和气体回送部31而循环。另外,从排气口13将气体向水处理装置外排气。即,与上述的运转动作同样地只进行氧气的供给与循环及排气。
另一方面,不进行利用放电单元3的放电6的形成和被处理水15向处理槽1的供给。进行气体的置换动作直到水处理装置内的氧浓度到达水处理所需的足够的浓度。另外,就利用质量流量控制器18的氧供给流量而言,可以调整为以使得比运转动作时多。由此,能够用短时间将装置内的空气置换、到达水处理所需的足够的氧浓度。
其次,对臭氧浓度的调整进行说明。
在气体的置换动作后臭氧浓度低的情况下,如下进行臭氧的生成动作直到成为规定的臭氧浓度。
将从氧气源17采用质量流量控制器18而被流量调整了的氧气从气体供给口9供给到处理槽1内。同时,使处理槽1内及臭氧混合部2内的气体经由气体送气部29和气体回送部31而循环。另外,从排气口13将气体排气到水处理装置外。进而,利用放电单元3进行放电6的形成。即,与上述的运转动作同样地只进行氧气的供给与循环和排气以及放电的形成。另一方面,不进行向处理槽1的被处理水15的供给。由此,在处理槽1内不进行水处理,只进行放电6引起的臭氧的产生和蓄积。
进行臭氧生成动作直到到达规定的浓度,在到达规定的臭氧浓度后,将被处理水15供给到处理槽1,开始水处理。
就处理槽1内的水处理而言,在臭氧浓度高时能够以高效率进行水处理,因此优选进行上述的臭氧生成动作而将臭氧浓度调整后进行水处理。
在不进行臭氧生成动作的情况下,水处理开始后即刻的臭氧浓度低,随着时间经过,臭氧浓度增加,以变得恒定的浓度饱和。因此,臭氧浓度饱和之前的期间的水处理的效率变得比稳定状态低。为了提高效率,使处理槽1及臭氧混合部2的规模变大。
通过进行臭氧的生成动作,不使装置大型化地水处理的效率化成为可能。
如上所述,根据本实施方式1,在通过放电6对被处理水20进行处理之前利用通过放电而生成的臭氧在臭氧混合部2进行水处理,因此以简易的装置构成提高臭氧的利用率,可有效率地将有机物分解。
即,通过在臭氧混合部2中使被处理水20与臭氧接触,能够将用臭氧可处理的有机物分解。与用臭氧可分解的有机物在处理槽1中用OH自由基来进行处理相比,在臭氧混合部2中用臭氧分解时能够以高效率进行处理。因此,通过在前段的臭氧混合部2中将这些物质分解,能够在后段的处理槽1中使OH自由基与难分解性物质选择性地反应,能够提高整体的水处理效率。
另外,通过分开地设置容器以使得臭氧混合部2为前段、处理槽1为后段,以简易的构成,水处理的效率提高。
予以说明,在本实施方式1中,使处理槽1内为高浓度氧气氛,只要含氧,就生成臭氧及活性种,因此能够进行水处理。但是,氧浓度越高,臭氧及活性种的浓度越增加,能够使反应高速化,因此优选高浓度氧气氛。
就运转动作中的向水处理装置的氧供给流量而言,基于处理槽1内的气体的分析结果来调整。例如,测定处理槽1内的氧浓度,调整氧供给流量以使的其没有成为不到90%。一般地,通过氧富化器(酸素富化器)所生成的气体的氧浓度为90%以上,在氧浓度低于90%的情况下,由于氧的供给量不足,因此需要增加氧供给流量。由此,可只补充水处理所需的最低限度的氧来使装置动作,抑制氧的成本。
另外,就向水处理装置供给的氧供给流量而言,可基于被处理水的水质来确定。就水处理所需的氧量而言,成为溶解于被处理水的氧量及有机物的分解所需的氧量的合计。因此,在有机物的浓度高的情况下必要的氧量增加,因此优选增加氧供给流量。
从水处理装置向外部的排气不仅能够用排气口13进行,而且也能够用排气口24进行。或者,能够从这两者同时地排气。不过,就从排气口13的排气流量和从排气口24的排气流量而言,用分别设置的阀32及阀33来进行控制,以使得其合计与氧供给流量相等。
例如,在被处理水中氮或二氧化碳等气体大量地溶解的情况下,预期随着用于前段的处理的臭氧供给,将这些氮或二氧化碳赶出而气化到气体中。这种情况下,预期臭氧混合部2的氧浓度降低,因此可以增加从排气口24的排气流量的比例。由此,能够将处理槽1的氧浓度的降低抑制到最小限度。
另外,通过使排气流量与氧供给流量相等,能够防止含有臭氧的气体向外部的流出及空气从外部的混入,抑制氧浓度的降低。
在本实施方式1中,与送气泵30连接的逆变器(未图示)相当于送气泵30的流量控制器。因此,通过设置于气体送气部29的送气泵30和设置于气体回送部31的阀34,能够调整经由气体送气部29及气体回送部31而进行循环的气体的流量。
另外,在水处理装置的运转动作中,优选调整为使得循环气体流量变得比氧供给流量多。例如,调整为使得循环气体流量成为氧供给流量的20倍以上且1000倍以下。如果循环气体流量不到氧供给流量的20倍,则臭氧混合部2中臭氧向被处理水20的供给不足,有机物的分解变得不充分。循环气体流量越多,将气体暴露于放电6的机会越增加,能够更有效率地生成臭氧,可有效率地进行有机物的分解。另一方面,如果循环气体流量超过氧供给流量的1000倍,则送气泵30产生的消耗电力增加,来自送气泵30的发热增加。由此,如果循环的气体的温度上升,则臭氧的分解增加,因此阻碍反应,处理效率降低。
也能够基于被处理水的分析结果来控制循环气体流量。例如,测定臭氧混合部2内的被处理水20的溶存臭氧浓度,在浓度降低的情况下使循环气体流量增加,使臭氧供给量增加。通过这样的动作,适当地控制臭氧的供给量成为可能。
就处理槽1内及臭氧混合部2内的内压而言,优选设为大气压或其附近,以使得水处理装置中的给排水变得容易。
就臭氧混合部2内的压力而言,可通过设置于气体回送部31的阀34来进行控制。例如,可通过阀34将在气体回送部31流动的气体流量节流,由此使臭氧混合部2内成为更高压。一般地,气相的气体压力越升高,臭氧在水中的溶解效率越升高。因此,在臭氧混合部2内使臭氧有效率地溶解于被处理水,能够有效率地将有机物分解。这种情况下,处理槽1内的内压成为负压,因此优选在处理槽1的下部设置处理水16的水贮存部,使处理水16的水面比排水口14高。在图2中示出在处理槽1的下部设置有处理水16的水贮存部46的水处理装置的图。由此能够防止空气向处理槽1内的混入。
在本实施方式1中,就从臭氧混合部2向处理槽1的被处理水的供给而言,只经由被处理水供给部26而进行。就被处理水供给部26而言,用被处理水填充,能够防止气体向送水泵28的混入。
另外,通过气体向臭氧混合部2内的被处理水20的供给,通过被供给的气体中的氧来将在被处理水20中溶存的氮向气相中赶出,能够从排气口13或排气口24排出到水处理装置外。在臭氧混合部2内及处理槽1内的水处理中,将被处理水中的溶存氮氧化,生成硝酸,使被处理水的pH降低。在本实施方式中所示的水处理技术中,已知:即使是中性范围,反应效率也变好。因此,随着本实施方式的水处理装置的运转动作,将溶存氮除去,由此抑制pH的降低成为可能,进行高效率的处理成为可能。
在本实施方式1中,就高电压电极4与接地电极5距离而言,只要处理水流动、能够形成放电,则并无特别限定,优选为5mm以上且15mm以下。如果为5mm以上,即使被处理水的水膜通过,也不会将高电压电极4与接地电极5的空间淹没,能够稳定地形成均一的放电。另一方面,空间越变宽广,放电的形成就越需要高电压。电压越升高,非放电部的绝缘就越变得困难,用于绝缘的装置成本增加。
在图1中,放电单元3由平板状的接地电极5和多个线状的高电压电极4构成,就放电单元3的构成而言,只要是高电压电极与接地电极保持一定间隔的空间而对置、在该空间形成放电,则对放电单元3的形状并无限制。另外,就高电压电极4而言,只要为使电场集中而能够形成放电的形状,则对其形状没有限制。另外,在图中,被处理水15在倾斜面以水膜的形状通过放电空间,但只要被处理水通过放电空间,则对被处理水的通过时的形状和移动的方向并无限制。
另外,在图中,示出放电单元3为1个的例子,也可在处理槽1内相对于被处理水的通过方向并列或串联地具备多个放电单元3。在具备多个放电单元的情况下,每单位时间能够处理的被处理水的量增加,能够更高速地进行处理,也将有机物浓度高的被处理水处理成为可能。
予以说明,例示处理槽1及臭氧供给部2为金属制的密闭容器,作为构成水处理装置的构件,优选使用部耐腐蚀性优异的原料。如果为金属,能够使用例如不锈钢或钛。如果为介电体,能够使用例如氟树脂、玻璃或陶瓷等。
在图1及图2中,对于向倾斜的放电单元3的上部从与臭氧混合部2连接的给水口11供给被处理水15的例子进行了表示,在以下,对使用有另外的放电单元的水处理装置的例子进行说明。
图3为表示实施方式1涉及的另外的水处理装置的构成的截面图。另外,就图3的水处理装置而言,上述的图1及图2的水处理装置的处理槽1的构成、和被处理水供给部26的与臭氧混合部2及处理槽1的连接位置不同。
图3中,处理槽1贮存被处理水15,具备放电单元3a,所述放电单元3a具有在被处理水15的水面附近的水面下配置的具有多个开口的平板状的接地电极5a和多个(图中为4个)线状的高电压电极4。将线状的高电压电极4在被处理水15的水面的上方以与水面平行的方式等间隔地配置。接地电极5a与处理槽1的壳体电连接,成为接地电位。将给水口11a设置在处理槽1的底部,在臭氧混合部2的底部具备送水口25a,在水处理装置下部具备被处理水供给部26以使得将给水口11a和送水口25a连接。予以说明,就给水口11a而言,只要为处理槽1的下方,也可以不是底部,就送水口25a而言,只要为臭氧混合部2的下方,也可以不是底部。
另外,处理槽1的气体送气口12a设置在处理槽1的上方、被处理水15的水面的上方。其他构成与图1及图2相同。
其次,对图3的水处理装置的动作进行说明。
在图3的水处理装置中,从臭氧混合部2供给到处理槽1内被处理水15直到成为一定量。所谓一定量,是平板状的接地电极5a浸入水面下附近的水面下、线状的高电压电极4到达未与水面相接的水面的高度的水量。如果被处理水15成为一定量,则停止被处理水15的向处理槽1的供给。在停止被处理水15的向处理槽1的供给的期间,从排水口14的排水也停止。其中,通过使高电压脉冲电源8工作,在放电单元3a的高电压电极4与被处理水15的水面间的空间形成流光放电6。通过放电6直接与被处理水15接触,进行水处理。在进行水处理的期间,在处理槽1内产生臭氧。
一定时间后,如果将处理槽1内的被处理水15中所含的有机物分解,则被处理水15成为处理完的处理水16。从排水口14,将在处理槽1内贮存的处理水16全部排水。将处理水排水后,从臭氧混合部2经由被处理水供给部26将被处理水15向处理槽1供给。
另外,将被处理水20贮存于臭氧混合部2内部。其中,与图1同样地,将处理槽1内的气体经由气体送气部29而向臭氧混合部2供给,经由气体回送部31将臭氧混合部2内的气体回送,由此使其循环。由此,根据与图1同样的原理,使臭氧混合部2内的被处理水20中所含的有机物与臭氧接触而分解,且使臭氧溶解于被处理水20。就从处理槽1向臭氧混合部2的气体的送气而言,可不依赖于用处理槽1进行水处理的期间来进行。就臭氧混合部2的被处理水20而言,作为经过了第一段的水处理的被处理水15而向处理槽1供给。
图3中,接地电极5a只要能够在被处理水15的水面下配置,对其形状没有限定。可使用棒状或线状的接地电极5。另外,在本实施方式4中,贮存的被处理水15具有与接地电极5同样的职能,因此可不具备接地电极5a。也可在被处理水15与高电压电极4之间使其放电,进行水处理。
另一方面,在被处理水15的导电率为1mS/cm以下的情况下,与放电6相伴的电流在被处理水中流动,焦耳损耗增大,无助于水处理的能量消耗增加,因此水处理效率降低。因此,优选具备接地电极5a。
另外,接地电极5a优选设置在水面下5mm至10mm之间。在水面下10mm的下方设置有接地电极5a的情况下,被处理水的电阻变大,水处理效率降低。另一方面,在水面下5mm的上方具备接地电极5a的情况下,在接地电极5a上的水的分布上产生不均匀,高电压电极4与作为接地电位的被处理水的水面或高电压电极4与接地电极5a之间的距离变得不均一,变得容易发生火花放电。
另外,就接地电极5a为平板状而言,能够减小电阻,是优选。另一方面,如果接地电极5为平板,在接地电极5a的上下难以搅拌被处理水15,远离下方的放电的位置的被处理水15的水处理不再进行。因此,在接地电极5为平板状的情况下,优选设置开口部、在接地电极5a的上下能够搅拌被处理水。
另外,在图中高电压电极4用线状的电极来表示,但只要使电场集中、形成放电、使被处理水与放电接触,则对其形状没有限制。例如,可以是作为夹持水面而与接地电极5a对置的单数或复数的针电极的高电压电极、或夹持水面而与接地电极5a对置的花插座形状(剣山形状)的高电压电极。另外,也可以是夹持水面而与接地电极5平行地配置的平板状的高电压电极。
就被处理水15而言,只要供给到处理槽1内一定量即可。就一次向处理层供给的被处理水15而言,不从处理槽1内排水,直到水处理结束。
另外,在图1的水处理装置中被处理水中的难分解性物质的含量多的情况下,利用放电单元的数量的增加、投入电力的增加等处理条件来调整,但在图3的水处理装置中,可进行处理时间的调整,放电单元的数目可为必要最低限度,有助于装置成本的抑制。
以下,对进一步使用有另外的放电单元的水处理装置的例子进行说明。
图4A为表示根据实施方式1的另外的水处理装置的构成的截面图。就图4A的水处理装置而言,图1至3的水处理装置的构成和处理槽1内的放电单元3的构成不同。在处理槽1的内部,设置圆筒状的接地电极5b以使得其中心轴成为铅直。通过金属构件将接地电极5b固定于处理槽1的壳体侧面。由此,接地电极5b与壳体也电连接,成为接地电位。在接地电极5b的内部,沿着接地电极5b的中心轴配置线状的高电压电极4b。即,在高电压电极4b与接地电极5b的内面之间具有保持着均一的距离的空隙。将高电压电极4b通过配线经由电流导入端子7连接至处理槽1外部的高电压脉冲电源8。通过电流导入端子7将高电压电极4与处理槽1的壳体电绝缘。另外,给水口11具备用于将被处理水15水滴化而撒布的喷嘴40。其他的构成与图1相同。
其次,对图4A的水处理装置的动作进行说明。
在图4A的水处理装置中,就通过被处理水供给部26而向处理槽1供给的被处理水15而言,被设置在给水口11的喷嘴40水滴化且撒布。水滴化的被处理水15铅直地落下、通过高电压电极4b与接地电极5b间的空隙。另外,一部分的被处理水与接地电极5b的内面碰撞,形成水膜而流下。其中,如果使高电压脉冲电源8工作,则从高电压电极4b向接地电极5b的内面形成均一的流光放电6,通过使被处理水15的水滴及在接地电极5b的内面所流下的被处理水15分别与放电6接触,进行水处理。由于通过该放电6而产生臭氧,因此将处理槽1内的气体通过气体送气部29而向臭氧混合部2供给,使臭氧混合部2内的气体通过气体回送部31而向处理槽1返回,使气体循环。通过该气体的循环,臭氧被供给到臭氧混合部2,与图1同样地,可在臭氧混合部2内将被处理水20中的有机物分解,且使臭氧溶解于被处理水20。
另外,通过使被处理水15水滴化,能够增加被处理水15与放电的接触面积。由此,供给到被处理水15的活性种的量增加,因此可高速且有效率地进行水处理。
图4B为放电单元3b的放大图,上侧为从上方观看放电单元3b的图,下侧为表示纵截面的图。示出用4条电线构成高电压电极4b、电线全部与接地电极5b的中心轴等距离地配置的例子。通过这样设为多条电线、制成与接地电极5b对置的多个高电压电极,能够使电流分散,降低电流密度,能够形成稳定的流光放电。即,在圆筒的接地电极5b内能够形成均一的放电。
在图4A中,接地电极5b示为圆筒管,但如果为与线状的高电压电极4b同轴中心的圆筒,则也可在接地电极5b的侧面设置开口。通过具有开口,与接地电极5b的内面碰撞的水滴减少,在内面所流下的水膜变薄。由此,水膜厚度的不均匀引起的空隙的间隔的波动减少,能够稳定地形成均一的放电6。
另外,在图4A中,在处理槽1内只示出一个放电单元3b,但也可在处理槽1内并列地具备多个。进而,在图中,放电单元3b由线状的高电压电极4b和圆筒状的接地电极5b构成,但只要高电压电极与接地电极保持一定间隔的空间而对置、在该空间中形成放电,则对放电单元3b的形状并无特别限制。
在图4A中,通过喷嘴40,将被处理水15沿铅直方向向下撒布,就撒布被处理水15的方向而言,只要能够使水滴化而撒布的被处理水15通过形成有放电6的空间、与放电6接触,则对该朝向并不限定。
例如,可在接地电极5b的侧面设置多个水滴能够追加的大小的开口,从侧面水平地撒布被处理水。这种情况下,能够一边使撒布的被处理水15的水滴水平地移动,一边通过设置于接地电极5b的开口和形成放电的空间、与放电接触而进行水处理。进而,如果并列地具备多个同样的放电单元3,被处理水的水滴在通过第一放电单元3后能够在第二放电单元3与放电接触。即,通过将被处理水水平地撒布,直到被处理水落下的时间变长,与放电接触的机会增加,由此能够高效率地进行处理。
实施方式2.
图5为表示实施方式2涉及的水处理装置的构成的截面图。
就本实施方式2而言,在给水口22具备抽吸处理槽1内的气体、与被处理水20混合而向臭氧混合部2供给的喷射器37,在该方面与实施方式1不同。气体送气部29的一端与喷射器37连接,在气体送气部29具备阀35。另一方面,不具备实施方式1的散气构件19和送气泵30。气体送气部29的配管44与喷射器37的气体吸入部连接,但气体送气部29不需要将臭氧混合部2贯通,可在臭氧混合部2的周围迂回。其他的构成与前面的实施方式1相同。
对实施方式2中的水处理装置的动作,使用图5进行说明。
就本实施方式2中的水处理装置而言,在从水处理装置外部向臭氧混合部2将被处理水20给水时,通过喷射器37从处理槽1经由气体送气口12及气体送气部29来抽吸气体,一边将被处理水20和气体混合,一边向臭氧混合部2内供给。即,喷射器37相当于气体供给装置和从处理槽1的气体送气手段。气体流量利用阀35来调整。进而,使供给到臭氧混合部2的气体在臭氧混合部2的上部滞留后,经由与气体回送口23连接的气体回送部31,从回送气体导入口10向处理槽1返回,由此在处理槽1和臭氧混合部2之间使气体循环。
在臭氧混合部2内,臭氧与被处理水20中的有机物反应而分解。被处理水20被送水泵28抽吸,经由被处理水供给部26而向处理槽1供给。被供给的被处理水15与实施方式1同样地在处理槽1内被处理。
在本实施方式2中,不需要用于使喷射器37工作的新的动力。另外,由于通过喷射器37来抽吸处理槽1内的气体,因此不需要另外将气体送气的动力。因此,动力成本受到抑制。
进而,由于在喷射器37内被处理水与气体混合,因此臭氧的溶解效率提高、促进溶解的臭氧所引起的有机物的分解。因此,能够使臭氧混合部2小型化,可减少装置成本。
如上所述,根据实施方式2,取得与实施方式1同样的效果。
另外,由于使用喷射器37,因此臭氧的在被处理水中的溶解效率提高,利用臭氧的有机物的分解也得到促进。因此,臭氧混合部2的小型化成为可能。进而,由于使用喷射器37,因此也不再需要从处理槽1将气体送气的泵,在装置的小型化的同时有助于动力抑制。
在上述图5的构成中,在给水口22设置有喷射器37,但也可设置使臭氧混合部2内的被处理水20循环的旁路给水口52、在旁路给水口52设置喷射器37。
图6为表示实施方式2涉及的另外的水处理装置的构成的截面图。就臭氧混合部2而言,在旁路送水口53与旁路给水口52之间具备旁路水循环部39。就旁路水循环部39而言,具有经由与旁路送水口53连接的配管44和泵38和阀35而与配管42连接的喷射器37,使臭氧混合部2内的被处理水20循环。逆变器(未图示)连接至泵38。就作为旁路水循环部39的排出口的旁路给水口52而言,设置在给水口22的下方,与给水口22同样地设置于臭氧混合部2内的与送水口25对置的侧壁。将气体送气部29的配管44连接至喷射器37的气体吸入部,气体送气部29不需要将臭氧混合部2贯通,可在臭氧混合部2的周围迂回。
其他的构成与图5相同。
对于本实施方式2的图6中所示的水处理装置的动作进行说明。
在图6的水处理装置中,喷射器37相当于臭氧供给装置和气体送气手段。通过泵38来抽吸臭氧混合部2内的被处理水、通过旁路水循环部39而在臭氧混合部2内循环,由此用喷射器37抽吸处理槽1内的气体、将气体与被处理水混合而向臭氧混合部2供给。就驱动泵38的逆变器(未图示)而言,担负泵38的流量控制器的职责,将旁路水循环部39中的被处理水20的循环流量控制为规定的值。另外,就气体流量而言,通过被处理水的循环流量及阀35而调整到规定的值。
就供给到臭氧混合部2的气体而言,一边从设置在臭氧混合部2的下部的旁路给水口52与被处理水20反应,一边向上方滞留。经由连接至气体回送口23的气体回送部31,使气体从回送气体导入口10向处理槽1返回,由此在处理槽1与臭氧混合部2之间使气体循环。在臭氧混合部2内臭氧与被处理水20中的有机物反应而分解。就被处理水20而言,被送水泵28抽吸,经由被处理水供给部26而向处理槽1供给。被供给的被处理水15与实施方式1同样地在处理槽1内被处理。
根据图6的水处理装置的构成,可更广泛地控制气体循环流量。如果是前面所示的图5的水处理装置的构成,由于从给水口22被给水的被处理水的流量,最大的循环流量受到限制,但在本实施方式中,通过增加用泵38循环的水的流量,能够使循环流量增加到任意的量。进而,通过由旁路水循环部39产生的水循环来将臭氧混合部2内的被处理水20搅拌,因此变得容易使臭氧溶解于被处理水,此外发挥作用以使得被处理水20反复与臭氧反应,因此能够进一步提高有机物的分解效率,且有助于装置的小型化。
应予说明,在图5及图6中也能够设置图2中所示的水贮存部46。
实施方式3.
在上述的实施方式1及2中,通过进行利用臭氧的有机物的分解(第一段)、利用放电的有机物的分解(第二段)这两阶段的有机物的分解,进行了臭氧的有效利用和水处理效率的提高。为了促进第二段的放电引起的有机物的分解,放电的稳定化变得重要。
另一方面,在自然界的水中多含有锰及铁等的金属离子。进而,在工厂中在材料及涂料等中多含有金属,因此在工厂废水中,除了难分解性物质以外,还以高浓度含有锰及铁等的金属离子。
在被处理水中含有金属离子的情况下,通过由放电而生成的臭氧及自由基类,将金属离子氧化、不溶化而析出。因此,在专利文献1和本公开中所示的使用有放电的水处理装置中,特别是需要应对以使得不使金属在形成放电的电极析出而发生电场集中,要求不发生水处理效率的降低及电极的劣化。
其次,对在被处理水中含有金属离子的情况下放电不稳定化的原理进行说明。
在水中溶解的铁离子(Fe2+)及锰离子(Mn2+)被臭氧及OH迅速地氧化。例如,通过臭氧(O3),通过下式(10)至(12)这样的反应,被氧化、不溶化。
2Fe2++O3+H2O→2Fe3++O2+2OH (10)
Fe3++3H2O→Fe(OH)3↓+3H+ (11)
Mn2++O3+H2O→MnO2↓+O2+2H+ (12)
在将包含金属离子的被处理水直接供给到处理槽1的情况下,利用通过处理槽1内的放电而产生的臭氧和OH自由基,如上式(10)至(12)那样被氧化,成为固体的金属氧化物或金属氢氧化物而不溶化。如果在接地电极5的上表面发生被处理水的水溅等,则不溶化的固体有可能附着于高电压电极4。或者,在附着于高电压电极4的被处理水中发生上式(10)至(12)的反应,金属氧化物或金属氢氧化物在高电压电极4析出。如果金属氧化物或金属氢氧化物这样的固体附着于高电压电极4,则高电压电极4与接地电极5之间的空隙局部地变窄。由此,固体附着的部位的电场强度局部地增强,发生火花放电。如果一次发生火花放电,则会变为持续地发生。结果,放电定域化,在产生火花的部位以外,放电变得难以发生。
水处理通过实施方式1中所示的式(5)及式(9)来进行。因此,为了有效率地发生式(5),扩大放电6与被处理水15的接触面积是重要的。另外,为了使式(9)发生,需要通过式(6)和式(7)使臭氧和过氧化氢溶解于被处理水。但是,如果发生火花放电,则放电定域化。就火花放电而言,气体温度上升到1000℃以上,使臭氧及过氧化氢热分解。进而,火花放电引起电极的溅射或加热,因此有可能引起高电压电极及接地电极5的劣化或破损。因此,火花放电的发生不利于水处理。
如上所述,如果在被处理水中含有金属离子,则发生火花放电,作用于水处理的放电不稳定化。因此,优选在利用放电的水处理之前将金属离子除去。
图7为表示实施方式3涉及的水处理装置的构成的截面图。图7为在实施方式1中的图1的水处理装置的被处理水供给部26配设有与固液分离装置相当的过滤装置27。其他的构成与图1相同。
就被处理水供给部26而言,为用于将臭氧混合部2内的被处理水20向处理槽1供给的流路,在配管41中在过滤装置27的后段设置有将被处理水供给到处理槽1的送水泵28。
其次,对本实施方式3涉及的水处理装置的动作,使用图7进行说明。
图7中,就从给水口22供给的被处理水20而言,由臭氧混合部2一端贮存。就臭氧混合部2内的被处理水20而言,与通过气体的循环而从散气构件19排出的气体接触后,被送水泵28从送水口25抽吸。就抽吸的被处理水20而言,通过被处理水供给部26的过滤装置27,将固体21除去,从给水口11供给到处理槽1内。就供给到处理槽1的被处理水15而言,被供给到放电单元3的接地电极5上游部,在接地电极5上形成水膜而流下。
其中,通过使高电压脉冲电源8工作,在放电单元3的高电压电极4与接地电极5之间的空间中形成放电6。被处理水15通过放电空间时与放电6接触,进行水处理。用本水处理装置处理过的处理水16从排水口14被排水。
[金属离子的除去]
其次,对根据本实施方式3的将金属离子除去了的有效率的水处理方法进行说明。
将气体从处理槽1供给到在臭氧混合部2所贮存的被处理水20。在气体中含有臭氧,该臭氧溶解于被处理水20。由于臭氧溶解于被处理水20,因此通过式(10)至(12)的反应,在臭氧混合部2内金属离子与臭氧反应,成为金属氧化物或金属氢氧化物,作为固体21析出,因此不溶化。进而,由于将被处理水20通过被处理水供给部26而供给到处理槽1,因此通过设置于被处理水供给部26的过滤装置27,将固体21与被处理水分离。因此,供给到处理槽1的被处理水15不含固体21,因此不会使固体附着于处理槽1内的高电压电极4。另外,由于在臭氧混合部2中将金属离子除去,因此在处理槽1内抑制放电引起的金属氧化物或金属氢氧化物的析出。
通过以上内容,火花放电受到抑制,使其稳定地放电成为可能。
在本实施方式3中,与实施方式1及2同样地,将在处理槽1内通过放电6而产生的臭氧供给到臭氧混合部2内的被处理水20。在本实施方式中,不另外地使用臭氧发生器,在臭氧混合部2内,有机物分解的同时地使金属离子不溶化,能够通过过滤装置27来除去。
如上,根据本实施方式3,以简易的装置构成提高臭氧的利用率,可有效率地将有机物分解,取得与实施方式1同样的效果。即,通过在臭氧混合部2中使被处理水20与臭氧接触,也能够将可用臭氧处理的有机物分解。关于用臭氧可分解的有机物而言,与在处理槽1中用OH自由基进行处理相比,在臭氧混合部2中用臭氧分解能够以高效率进行处理。因此,通过在前段的臭氧混合部2中将这些物质分解,能够在后段的处理槽1中使OH自由基与难分解性物质选择性地反应,能够提高整体的水处理效率。
进而,能够通过臭氧混合部2及过滤装置27将被处理水20中所含的金属离子除去、抑制在处理槽1内的金属离子的析出。因此,能够抑制火花放电,放电稳定化,能够实现有效率的水处理,且能够抑制电极的劣化或破损。
通过分开地设置容器以使得臭氧混合部2为前段、处理槽1为后段,能够抑制向处理槽1的金属离子和金属离子的析出物的供给,以简易的构成,水处理的效率提高。
应予说明,在对于本实施方式3中的臭氧浓度的调整及氧供给量的调整在实施方式1中所示的想法中,可考虑在金属离子的除去中利用臭氧的这点来进行。另外,可使得基于被处理水20的水质来进行调整。例如,就水处理所需的氧量而言,成为溶解于被处理水的氧量、有机物的分解所需的氧量及金属离子的除去所需的氧量的合计。因此,在有机物及金属离子的浓度高的情况下,必要的氧量增加,因此优选增加氧供给流量。
另外,在本实施方式3中,也与实施方式1同样地,能够通过设置于气体送气部29的送气泵30和设置于气体回送部31的阀34来对经由气体送气部29及气体回送部31而进行循环的气体的流量进行调整。
在水处理装置的运转动作中,优选调整为使得循环气体流量变得比氧供给流量多。例如,调整为使得循环气体流量成为氧供给流量的20倍以上且1000倍以下。如果循环气体流量不到氧供给流量的20倍,则臭氧混合部2中的向被处理水20的臭氧的供给不足,金属离子的不溶化和除去变得不充分。循环气体流量越多,将气体暴露于放电6的机会越增加,能够更有效率地生成臭氧,可有效率地进行有机物的分解和金属离子的除去。另一方面,如果循环气体流量超过氧供给流量的1000倍,则送气泵30产生的消耗电力增加,来自泵的发热增加。由此,如果循环的气体的温度上升,则臭氧的分解增加,因此阻碍反应,处理效率降低。
优选根据被处理水的组成对循环气体流量来进行调整。例如,在被处理水20中的金属离子浓度高的情况下,通过使循环流量增多,使向被处理水供给的臭氧增加,能够高速地将金属离子除去。
另外,与实施方式1同样地,测定臭氧混合部2内的被处理水20的溶存臭氧浓度,在浓度降低的情况下使循环气体流量增加,也可控制为使得增加臭氧供给量。通过这样的动作,适当地控制臭氧的供给量成为可能。
优选使处理槽1内及臭氧混合部2内的内压成为大气压或其附近,以使得水处理装置中的给排水变得容易。
就臭氧混合部2内的压力而言,可通过设置于气体回送部31的阀34来进行控制。例如,可通过阀34将在气体回送部31流动的气体流量节流,由此使臭氧混合部2内成为更高压。一般地,气相的气体压力越升高,臭氧在水中的溶解效率越升高。因此,在臭氧混合部2内使臭氧有效率地溶解于被处理水,能够不仅将有机物分解,而且有效率地将金属离子除去。这种情况下,处理槽1内的内压成为负压,因此优选在处理槽1的下部设置处理水16的水贮存部、使处理水16的水面比排水口14高。在图8中,示出在处理槽1的下部设置有处理水16的水贮存部46的水处理装置的图。由此能够防止空气向处理槽1内的混入。
在本实施方式3中,就从臭氧混合部2向处理槽1的被处理水的供给而言,只经由被处理水供给部26来进行。即,向处理槽1所供给的被处理水通过被处理水供给部26的过滤装置27。因此,能够只将经过了固体21的除去工序的被处理水供给到处理槽1。另外,能够用一台泵进行向过滤装置27的通水和向处理槽1的供给,能够削减泵台数,动力成本受到抑制。
另外,将被处理水供给部26用被处理水填充。由此能够防止气体向送水泵28的混入。由于在相同配管内气体没有进入,因此不会将过滤装置27直接暴露于高浓度的气相臭氧。因此,可将臭氧引起的过滤装置27的劣化抑制在最小限度。进而,由于将送水泵28设置在过滤装置27的后段,因此能够将除去了固体的被处理水供给到送水泵28。由此,能够抑制固体向送水泵28的混入,减少泵的维修次数成为可能。
另外,通过向臭氧混合部2内的被处理水20的气体的供给,将在被处理水20中溶存的氮通过被供给的气体中的氧向气相中赶出,能够从排气口13或排气口24排出到水处理装置外。在臭氧混合部2内的金属离子的除去及处理槽1内的水处理中,将被处理水中的溶存氮被氧化,生成硝酸,使被处理水的pH降低。在本实施方式中所示的水处理技术中,已知中性范围内反应效率变得最好。因此,随着本实施方式的水处理装置的运转动作,通过将溶存氮除去,抑制pH的降低成为可能,进行高效率的处理成为可能。
对于放电单元3的个数及高电压电极4与接地电极5的距离、构成水处理装置的构件等,可与实施方式1同样地改变。
实施方式4.
图9为表示实施方式4涉及的水处理装置的构成的截面图。
就本实施方式4而言,在给水口22具备抽吸处理槽1内的气体、与被处理水20混合而向臭氧混合部2供给的喷射器37,在该方面与实施方式3不同。将气体送气部29的一端连接至喷射器37,在气体送气部29具备阀35,在臭氧混合部2具备固体沉淀部36。另一方面,不具备实施方式3的散气构件19和送气泵30和过滤装置27。将气体送气部29的配管44连接至喷射器37的气体吸入部,气体送气部29不需要将臭氧混合部2贯通,可在臭氧混合部2的周围迂回。其他的构成与前面的实施方式1和3相同。
另外,图9相当于在实施方式2的图5中在臭氧混合部2具备固体沉淀部36。
对于本实施方式4涉及的水处理装置的动作,使用图9进行说明。
图9中,在从水处理装置外部向臭氧混合部2供给被处理水20时,通过喷射器37从处理槽1经由气体送气口12及气体送气部29抽吸气体,一边将被处理水20与气体混合一边向臭氧混合部2内供给。即,喷射器37相当于气体供给装置和从处理槽1的气体送气手段。气体流量利用阀35来进行调整。进而,在使供给到臭氧混合部2的气体在臭氧混合部2的上部滞留后,经由连接至气体回送口23的气体回送部31,从回送气体导入口10向处理槽1返回,由此在处理槽1及臭氧混合部2之间使气体循环。
就在臭氧混合部2内使臭氧与金属离子反应而析出的金属氧化物或金属氢氧化物的固体21而言,在固体沉淀部36中沉淀。即,固体沉淀部36相当于固液分离装置。将在固体沉淀部36与固体分离的被处理水20通过送水泵28来抽吸,经由被处理水供给部26,向处理槽1供给,与实施方式3同样地在处理槽1内进行处理。
在本实施方式4中,不需要用于使喷射器37工作的新的动力。另外,由于通过喷射器37来抽吸处理槽1内的气体,因此不需要另外将气体送气的动力。因此,动力成本受到抑制。
进而,由于在喷射器37内被处理水与气体混合,因此臭氧的溶解效率提高,不仅可促进有机物的分解,而且可促进溶解的利用臭氧的金属离子的不溶化。因此,能够使臭氧混合部2小型化,可减少装置成本。
在本实施方式4中,就固体沉淀部36而言,在处理槽1内在与给水口22相对的位置设置隔板51,将从给水口22所供给的被处理水20的流动被阻挡而构成。由此,固体沉淀部36内,将随着给水及气泡的上升而在臭氧混合部2内产生的被处理水20的流动被遮挡,成为被处理水20的流速慢的状态,因此在臭氧混合部2内使不溶化的固体21在固体沉淀部36的下部沉淀成为可能。由于没有使用实施方式3的过滤装置27而设置有固体沉淀部36作为固液分离装置,因此能够抑制被处理水供给部26的压力损失,可抑制送水泵28的动力。在被处理水中的金属离子的浓度高、固体的粒径变大的情况下更适合。
根据本实施方式4,在固体沉淀部36中,在臭氧混合部2内,将被处理水的流动遮挡,使流速变慢,由此使固体21沉淀。因此,固体沉淀部36的结构并不限定于用隔板51分隔的空间。进而,在臭氧混合部2的底部具备固体沉淀部36,但只要从供给到处理槽1的被处理水中使固体21沉淀并除去,对其位置并无限制。例如,可使固体沉淀部36在被处理水供给部26内的配管41中从送水泵28至臭氧混合部2具备凹陷部。
如上所述,根据实施方式4,取得与实施方式3同样的效果。即,以简易的装置构成提高臭氧的利用率,有效率地将有机物分解且也可将金属离子除去,可提供有效率的水处理装置。
另外,由于使用喷射器37,因此臭氧在被处理水中的溶解效率提高,也促进利用臭氧的金属离子的不溶化。因此,臭氧混合部2的小型化成为可能。进而,由于使用喷射器37,因此也不再需要从处理槽1将气体送气的泵,在装置的小型化的同时有助于动力抑制。
进而,为了将作为金属离子析出了的金属氧化物或金属氢氧化物的固体分离,不在配管中使用过滤装置而使得其沉淀,因此压力损失降低,将被处理水20输送至处理槽1的送水泵的负荷减轻,有助于动力抑制。
予以说明,在上述图9的构成中,示出没有使用过滤装置的例子,但作为固液分离装置,可将固体沉淀部36和实施方式3中所示的在被处理水供给部26内设置的过滤装置27并用。
在图10中示出实施方式4涉及的另一水处理装置的截面图。在图10中,是将固体沉淀部36与过滤装置27并用的例子。如果用固体沉淀部36将臭氧混合部2中的固体的大部分分离,用过滤装置27将通过被处理水20的流动而在被处理水供给部26被搬运的一部分的固体分离,则水处理装置的效率提高。这种情况下,用过滤装置27所捕集的固体的量比实施方式3的水处理装置减少,因此能够减少过滤装置27的维修的次数。或者,能够使用压损比实施方式3的水处理装置的过滤装置27低的小型的装置。
予以说明,如果配置隔板51,能够减小向被处理水供给部26流动的处理水的流速,也能够抑制气泡向过滤装置27及送水泵28的卷入。
实施方式5.
图11为表示实施方式5涉及的水处理装置的构成的截面图。
就本实施方式5而言,在喷射器37没有设置在给水口22而是设置在旁路给水口52,在该方面与实施方式4不同。臭氧混合部2在旁路送水口53与旁路给水口52之间具备旁路水循环部39。就旁路水循环部39而言,经由与旁路送水口53连接的配管44和泵38和阀35,与配管42连接,具有喷射器37,使臭氧混合部2内的被处理水20循环。逆变器(未图示)连接至泵38。作为旁路水循环部39的排出口的旁路给水口52设置在给水口22的下方,与给水口22同样地设置于臭氧混合部2内的与送水口25对置的侧壁。将气体送气部29的配管44连接至喷射器37的气体吸入部,气体送气部29不需要将臭氧混合部2贯通,可在臭氧混合部2的周围迂回。另外,与实施方式3同样地,在被处理水供给部26内具备过滤装置27。就旁路送水口53而言,设置于旁路给水口52的下方,例如如图11中所示,设置于固体沉淀部36以外的底部。
其他的构成与实施方式3和4相同。
另外,图11相当于在实施方式2的图6中在臭氧混合部2具备固体沉淀部36且在被处理水供给部26内具备过滤装置27。
对于本实施方式5中的水处理装置的动作,使用图11进行说明。
图11中,喷射器37相当于臭氧供给装置和气体送气手段。通过泵38,抽吸臭氧混合部2内的被处理水,通过旁路水循环部39而在臭氧混合部2内循环,由此用喷射器37抽吸处理槽1内的气体,将气体与被处理水混合,向臭氧混合部2供给。驱动泵38的逆变器(未图示)担负泵38的流量控制器的职责,将旁路水循环部39中的被处理水20的循环流量控制为规定的值。另外,气体流量根据被处理水的循环流量及阀35调整到规定的值。
就供给到臭氧混合部2的气体而言,从设置在臭氧混合部2的下部的旁路给水口52,一边与被处理水20反应,一边向上方滞留。经由连接至气体回送口23的气体回送部31,使气体从回送气体导入口10向处理槽1返回,由此在处理槽1与臭氧混合部2之间使气体循环。在臭氧混合部2内通过与臭氧的反应,有机物分解,且通过与臭氧的反应,金属离子不溶化而作为固体21析出,在固体沉淀部36沉淀。进而,用送水泵28抽吸在固体沉淀部36与固体分离的被处理水20,通过被处理水供给部26内的过滤装置27来与残留的固体分离。即,固体沉淀部36和过滤装置27这两者相当于固液分离装置。然后将被处理水15向处理槽1供给,与实施方式3同样地在处理槽1内被处理。
根据本实施方式5,可更广泛地控制气体循环流量。如果是前面的实施方式4,由于从给水口22给水的被处理水的流量,最大的循环流量受到限制,但在本实施方式中,通过增加用泵38循环的水的流量,能够使循环流量增加到任意的量。进而,通过利用旁路水循环部39的水循环来将臭氧混合部2内的被处理水20搅拌,因此变得容易使臭氧溶解于被处理水,不仅能够进行有机物的分解,而且能够有效率地进行金属离子的除去,能够使臭氧混合部2小型化。
另外,作为固液分离装置,通过具备固体沉淀部36和过滤装置27这两者,能够在固体沉淀部36将粒径大的固体分离,用过滤装置27将粒径小的固体分离。由此,能够将只凭固体沉淀部36有可能无法彻底分离的固体分离,且与过滤装置27单独的构成相比,可减轻对过滤装置27施加的负荷,减少过滤装置27的维修次数。
如上所述,根据实施方式5,取得与实施方式3及实施方式4同样的效果。即,用简易的装置构成提高臭氧的利用率,有效率地将有机物分解,且金属离子的除去也成为可能,可提供有效率的水处理装置。
另外,由于在旁路水循环部39使臭氧混合部2内的被处理水20循环,因此以搅拌臭氧混合部2内的被处理水20,使被处理水20反复与臭氧反应的方式起作用,能够提高有机物的分解促进及金属离子的除去效率,且装置的小型化成为可能。
实施方式6.
图12为表示实施方式6涉及的水处理装置的构成的截面图。
就本实施方式6的水处理装置而言,与上述的实施方式3的水处理装置的处理槽1的构成、和被处理水供给部26的与臭氧混合部2及处理槽1的连接位置不同。处理槽1贮存被处理水15,具备放电单元3a,所述放电单元3a具有:在被处理水15的水面附近的水面下配置的具有多个开口的平板状的接地电极5a和多个(图中为4个)线状的高电压电极4。将线状的高电压电极4在被处理水15的水面的上方等间隔地配置以使得与水面平行。接地电极5a与处理槽1的壳体电连接,成为接地电位。给水口11a设置于处理槽1的底部,在臭氧混合部2的底部具备送水口25a,在水处理装置下部具备被处理水供给部26以使得将给水口11a和送水口25a连接。予以说明,给水口11a只要为处理槽1的下方,可以不是底部,送水口25a只要为臭氧混合部2的下方,可以不是底部。
另外,处理槽1的气体送气口12a设置于处理槽1的上方、被处理水15的水面的上方。其他构成与实施方式3相同。
图12相当于在实施方式1的图3中在被处理水供给部26内具备过滤装置27。
对于本实施方式6中的水处理装置的动作,使用图12进行说明。
在图12的水处理装置中,从臭氧混合部2将被处理水15供给到处理槽1内直到成为一定量。所谓一定量,是平板状的接地电极5a浸入水面下附近的水面下、线状的高电压电极4到达未与水面相接的水面的高度的水量。如果被处理水15成为一定量,则停止被处理水15向处理槽1的供给。在停止被处理水15向处理槽1的供给的期间,从排水口14的排水也停止。其中,通过使高电压脉冲电源8工作,在放电单元3a的高电压电极4与被处理水15的水面间的空间形成流光放电6。通过放电6直接与被处理水15接触,进行水处理。在进行水处理的期间,在处理槽1内产生臭氧。
一定时间后,如果将处理槽1内的被处理水15中所含的有机物分解,则被处理水15成为处理完的处理水16。从排水口14将在处理槽1内贮存的处理水16全部排水。将处理水排水后,从臭氧混合部2经由被处理水供给部26将被处理水15向处理槽1供给。
另外,在臭氧混合部2内部,贮存被处理水20。其中,与实施方式3同样地,将处理槽1内的气体经由气体送气部29向臭氧混合部2供给,经由气体回送部31将臭氧混合部2内的气体回送,由此使其循环。由此,根据与实施方式3同样的原理,将臭氧混合部2内的被处理水20中所含的有机物分解,且通过反应使金属离子和臭氧不溶化,使固体21析出。就从处理槽1向臭氧混合部2的气体的送气而言,可不依赖于用处理槽1进行水处理的期间来进行。就臭氧混合部2的被处理水20而言,通过被处理水供给部26内的过滤装置27来将固体21除去,作为将金属离子除去了的被处理水15而向处理槽1供给。
如上,根据实施方式6,取得与实施方式3同样的效果。即,以简易的装置构成提高臭氧的利用率,有效率地将有机物分解,且也可将金属离子除去,可提供有效率的水处理装置。
在本实施方式6中,放电单元3a的构成与实施方式1的图3相同,高电压电极4、接地电极5a及被处理水15的位置关系、高电压电极4及接地电极5a的形状等也能够与实施方式1同样地改变。
在本实施方式6中,只要将被处理水供给到处理槽1内一定量即可。就一次向处理层供给的被处理水15而言,不从处理槽1内排水,直到水处理结束。
另外,在实施方式3中,在被处理水中的难分解性物质的含量多的情况下,利用放电单元的数目的增加、投入电力的增加等处理条件来调整,但在本实施方式6中,可进行处理时间的调整,放电单元的数可以是必要的最低限度,有助于装置成本的抑制。
实施方式7.
图13为表示实施方式7涉及的水处理装置的构成的截面图。
就本实施方式7的水处理装置而言,与实施方式3的水处理装置的构成和处理槽1内的放电单元3的构成不同。在处理槽1的内部,设置圆筒状的接地电极5b以使得其中心轴成为铅直。通过金属构件将接地电极5b固定于处理槽1的壳体侧面。由此,也将接地电极5b与壳体电连接,成为接地电位。在接地电极5b的内部,沿着接地电极5b的中心轴配置多个线状的高电压电极4b。即,在高电压电极4b与接地电极5b的内面之间具有保持有均一的距离的空隙。将高电压电极4b通过配线经由电流导入端子7连接至处理槽1外部的高电压脉冲电源8。通过电流导入端子7,使高电压电极4与处理槽1的壳体电绝缘。另外,给水口11具备用于将被处理水15水滴化而撒布的喷嘴40。其他的构成与实施方式3相同。
图13相当于在实施方式1的图4A中在被处理水供给部26内具备过滤装置27,如图4B中所示,高电压电极4b具有多个电线,使放电稳定化。
对于本实施方式7中的水处理装置的动作,使用图13进行说明。
在图13中,就通过被处理水供给部26向处理槽1供给的被处理水15而言,通过设置于给水口11的喷嘴40而被水滴化并撒布。水滴化的被处理水15铅直地落下,通过高电压电极4b与接地电极5b间的空隙。另外,一部分的被处理水碰撞接地电极5b的内面,形成水膜而流下。其中,如果使高电压脉冲电源8工作,则从高电压电极4b向接地电极5b的内面形成均一的流光放电6,使被处理水15的水滴及在接地电极5b的内面流下的被处理水15分别与放电6接触,由此进行水处理。为了通过该放电6而产生臭氧,将处理槽1内的气体通过气体送气部29而向臭氧混合部2供给,将臭氧混合部2内的气体通过气体回送部31而向处理槽1返回,使气体循环。通过该气体的循环,将臭氧供给到臭氧混合部2,与实施方式3同样地在臭氧混合部2内将有机物分解,且使金属离子不溶化,可采用过滤装置27来将不溶化的固体21除去。
根据本实施方式7,取得与实施方式3同样的效果。即,用简易的装置构成来提高臭氧的利用率,有效率地将有机物分解,且也可将金属离子除去,可提供有效率的水处理装置。
另外,在实施方式1的图4A的说明中也已述,通过将被处理水水滴化,能够增加被处理水与放电的接触面积。由此,供给到被处理水的活性种的量增加,因此可高速且有效率地进行水处理。
通过在臭氧混合部2中将气体供给到被处理水20而将有机物分解,且将金属离子不溶化,然后通过过滤装置27来除去,与实施方式3同样地,能够抑制处理槽1内的金属氧化物或金属氢氧化物的析出,使放电稳定化。另外,由于通过过滤装置27从供给到处理槽1的被处理水中将固体21除去,因此不易发生喷嘴40处的阻塞。
在本实施方式7中,放电单元3b的构成与实施方式1的图4A、图4B相同,高电压电极4b及接地电极5b的形状、两者的位置关系、放电单元的个数等也能够与实施方式1同样地改变。
另外,在本实施方式7中,喷嘴40的构成也与实施方式1的图4A相同,对于被处理水15的撒布方向,也能够同样地改变。
在实施方式1至7中,示出放电单元均相对于1个接地电极配置有由4根电线构成的高电压电极以使得它们对置的例子,但并不限于4根。能够考虑放电的稳定性及脉冲电源的容量等来增减。
本公开记载了各种例示的实施方式和实施例,1个或多个实施方式中记载的各个特征、方式和功能并不限于特定的实施方式的应用,可单独地或以各种组合应用于实施方式。
因此,可在本申请说明书中所公开的技术的范围内设想没有例示的无数的变形例。例如,包含将至少一个构成要素变形的情形、追加的情形或省略的情形,进而包含将至少一个构成要素抽出来与其他实施方式的构成要素组合的情形。
附图标记的说明
1:处理槽、2:臭氧混合部、3、3a、3b:放电单元、4、4b:高电压电极、5、5a、5b:接地电极、6:放电、7:电流导入端子、8:高电压脉冲电源、9:气体供给口、10:回送气体导入口、11、11a:给水口、12、12a:气体送气口、13:排气口、14:排水口、15:被处理水(处理槽内)、16:处理水、17:氧气源、18:质量流量控制器、19:散气构件、20:被处理水(臭氧混合部内)、21:固体、22:给水口、23:气体回送口、24:排气口、25、25a:送水口、26:被处理水供给部、27:过滤装置、28:送水泵、29:气体送气部、30:送气泵、31:气体回送部、32、33、34、35:阀、36:固体沉淀部、37:喷射器、38:水循环泵、39:旁路水循环部、40:喷嘴、41、42、43、44:配管、45:气体导入口、46:水贮存部、51:隔板、52:旁路给水口、53:旁路送水口。

Claims (11)

1.一种水处理装置,其具备:
臭氧混合部,其向被处理水供给含有臭氧的气体;
处理槽,其具备具有接地电极和与所述接地电极对置的高电压电极的放电单元,在所述放电单元形成放电,由所述放电而生成臭氧,且使所述放电接触所述被处理水;
气体送气部,其将所述臭氧混合部和所述处理槽连通,将所述处理槽内的含有臭氧的气体供给到所述臭氧混合部内的所述被处理水;
被处理水供给部,其将所述臭氧混合部和所述处理槽连通,从所述臭氧混合部将所述被处理水供给到所述处理槽;和
气体回送部,其将所述臭氧混合部和所述处理槽连通,将所述臭氧混合部内的气体向所述处理槽送气。
2.根据权利要求1所述的水处理装置,其中,所述气体回送部具备:控制从所述臭氧混合部向所述处理槽送气的气体的流量的流量控制器。
3.根据权利要求1或2所述的水处理装置,其中,所述气体送气部具备:控制从所述处理槽向所述臭氧混合部送气的气体的流量的流量控制器。
4.根据权利要求1至3中任一项所述的水处理装置,其具备:将用所述臭氧混合部供给臭氧而在所述被处理水中析出的固体进行分离的固液分离部,所述被处理水供给部向所述处理槽供给将固体分离的所述被处理水。
5.根据权利要求4所述的水处理装置,其中,所述固液分离部设置于所述被处理水供给部。
6.根据权利要求4或5所述的水处理装置,其中,所述固液分离部设置于所述臭氧混合部。
7.根据权利要求1至6中任一项所述的水处理装置,其中,所述臭氧混合部具备:将所述臭氧混合部的内部的气体排出到所述臭氧混合部的外部的排气口。
8.根据权利要求1至7中任一项所述的水处理装置,其中,所述放电单元配置有多个所述高电压电极以使得与一个所述接地电极对置。
9.根据权利要求1至8中任一项所述的水处理装置,其中,所述处理槽与所述臭氧混合部为分开的气密容器。
10.一种水处理方法,其包含:
将通过放电而生成的臭氧供给到被处理水的第一水处理工序;和
使所述第一水处理工序后的被处理水与所述含有臭氧的气体及氧与所述放电进行接触的第二水处理工序,
将由所述第二水处理工序的放电而产生的臭氧用于第一水处理工序。
11.根据权利要求10所述的水处理方法,其中,在所述第一水处理工序中,将从所述被处理水中的金属离子析出的固体从所述被处理水分离后,进行第二水处理工序。
CN201880091239.0A 2018-03-22 2018-03-22 水处理装置及水处理方法 Pending CN111886205A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011332 WO2019180864A1 (ja) 2018-03-22 2018-03-22 水処理装置および水処理方法

Publications (1)

Publication Number Publication Date
CN111886205A true CN111886205A (zh) 2020-11-03

Family

ID=65802984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880091239.0A Pending CN111886205A (zh) 2018-03-22 2018-03-22 水处理装置及水处理方法

Country Status (5)

Country Link
US (1) US11358884B2 (zh)
JP (1) JP6486569B1 (zh)
CN (1) CN111886205A (zh)
SG (1) SG11202007268UA (zh)
WO (1) WO2019180864A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130882A1 (ja) * 2019-12-25 2021-07-01 三菱電機株式会社 水処理装置及び水処理方法
EP4183750A1 (de) * 2021-11-18 2023-05-24 ecotron GmbH Vorrichtung und verfahren zur wasseraufbereitung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275402A (ja) * 1988-04-27 1989-11-06 Nippon Sanso Kk 酸素リサイクル式オゾナイザシステム
JP2000185289A (ja) * 1998-12-22 2000-07-04 Sumitomo Heavy Ind Ltd 廃水処理方法及び装置
JP2001000986A (ja) * 1999-06-24 2001-01-09 Hitachi Ltd オゾン注入システム
JP2001010808A (ja) * 1999-06-24 2001-01-16 Kobe Steel Ltd 高酸化性水の生成方法及び装置
US20040084382A1 (en) * 2002-11-05 2004-05-06 Aquapure Technologies, Ltd. Method and system for purification and disinfection of water
CN101041501A (zh) * 2006-03-24 2007-09-26 赵延诗 一种污水处理罐
WO2016117259A1 (ja) * 2015-01-20 2016-07-28 三菱電機株式会社 水処理装置および水処理方法
CN106232528A (zh) * 2014-04-24 2016-12-14 Nch公司 用于利用高压放电和臭氧来处理水系统的系统和方法
CN107010603A (zh) * 2017-04-11 2017-08-04 赣南师范大学 一种用于水处理的臭氧发生装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576996B2 (zh) * 1974-04-10 1982-02-08
SG11201704892VA (en) * 2015-01-21 2017-07-28 Mitsubishi Electric Corp Water treatment apparatus and water treatment method
US10357753B2 (en) * 2015-02-06 2019-07-23 Clarkson University Enhanced contact electrical discharge plasma reactor for liquid and gas processing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275402A (ja) * 1988-04-27 1989-11-06 Nippon Sanso Kk 酸素リサイクル式オゾナイザシステム
JP2000185289A (ja) * 1998-12-22 2000-07-04 Sumitomo Heavy Ind Ltd 廃水処理方法及び装置
JP2001000986A (ja) * 1999-06-24 2001-01-09 Hitachi Ltd オゾン注入システム
JP2001010808A (ja) * 1999-06-24 2001-01-16 Kobe Steel Ltd 高酸化性水の生成方法及び装置
US20040084382A1 (en) * 2002-11-05 2004-05-06 Aquapure Technologies, Ltd. Method and system for purification and disinfection of water
CN101041501A (zh) * 2006-03-24 2007-09-26 赵延诗 一种污水处理罐
CN106232528A (zh) * 2014-04-24 2016-12-14 Nch公司 用于利用高压放电和臭氧来处理水系统的系统和方法
WO2016117259A1 (ja) * 2015-01-20 2016-07-28 三菱電機株式会社 水処理装置および水処理方法
CN107010603A (zh) * 2017-04-11 2017-08-04 赣南师范大学 一种用于水处理的臭氧发生装置及方法

Also Published As

Publication number Publication date
JP6486569B1 (ja) 2019-03-20
SG11202007268UA (en) 2020-08-28
US20200392024A1 (en) 2020-12-17
WO2019180864A1 (ja) 2019-09-26
US11358884B2 (en) 2022-06-14
JPWO2019180864A1 (ja) 2020-04-30

Similar Documents

Publication Publication Date Title
US8349192B2 (en) Method for collapsing microbubbles
US10035718B2 (en) Water treatment apparatus and water treatment method
US10093566B2 (en) Water treatment apparatus and water treatment method
JP2005058887A (ja) 高電圧パルスを利用した廃水処理装置
US20200087172A1 (en) Liquid treatment apparatus
CN111886205A (zh) 水处理装置及水处理方法
EP0431190B1 (en) Fluid treater and method of stopping the same
CN108602699B (zh) 在升高的压力下的电氧化
JP6157763B2 (ja) 水処理装置および水処理方法
US10723638B2 (en) Liquid treatment device
KR20210124700A (ko) 플라즈마 방전을 이용한 수소생산장치
JP2001293478A (ja) 排水処理装置
JP3973508B2 (ja) 水処理装置
JP2001300560A (ja) 廃水処理方法、廃水処理装置及び廃水処理用触媒
RU2096337C1 (ru) Установка для электрохимической очистки воды и/или водных растворов
JP2006255602A (ja) 電解液体処理装置
JP6029605B2 (ja) 水処理装置及び水処理方法
JP6529705B1 (ja) 水処理システム及び水処理方法
GB2492563A (en) Liquid treatment using plasma
JP2001212440A (ja) オゾン水製造装置
KR20120033063A (ko) 폐수 처리용 전기 분해 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201103

RJ01 Rejection of invention patent application after publication