CN111850613A - 一种PtIr纳米溶胶的制备方法 - Google Patents

一种PtIr纳米溶胶的制备方法 Download PDF

Info

Publication number
CN111850613A
CN111850613A CN202010747041.2A CN202010747041A CN111850613A CN 111850613 A CN111850613 A CN 111850613A CN 202010747041 A CN202010747041 A CN 202010747041A CN 111850613 A CN111850613 A CN 111850613A
Authority
CN
China
Prior art keywords
ptir
nanosol
glassy carbon
electrode
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010747041.2A
Other languages
English (en)
Inventor
刘军
吴新华
兰立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Vocational College of Chemical Technology
Original Assignee
Hunan Vocational College of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Vocational College of Chemical Technology filed Critical Hunan Vocational College of Chemical Technology
Priority to CN202010747041.2A priority Critical patent/CN111850613A/zh
Publication of CN111850613A publication Critical patent/CN111850613A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种PtIr纳米溶胶的制备方法,本发明采用方波电势法制备PtIr合金纳米粒子,该方法以大块PtIr合金丝为原材料,制备过程绿色、方便、经济,既不需要在溶液中引入金属盐和添加剂,也无需去模板的后处理。该方法为利用方波电势脉冲在NaOH溶液中电化学分散纯PtIr丝新方法,短时间内即可制备出PtIr合金纳米粒子。

Description

一种PtIr纳米溶胶的制备方法
技术领域
本发明涉及材料技术领域,尤其涉及一种PtIr纳米溶胶的制备方法。
背景技术
氨氧化反应因其在直接氧化燃料电池或储氢化合物的潜在应用而受到科研工作者的极大关注。其中,PtIr合金纳米粒子是氨氧化反应的高效催化剂。通常情况下,制备PtIr合金纳米催化剂的方法有很多种,其中,大部分的方法是在保护剂以及其他有机溶剂存在的条件下,化学还原Pt和Ir的金属离子前驱体制备PtIr合金纳米粒子。本发明中,采用电化学方法一步制备PtIr合金纳米粒子。本制备方法在室温的条件下,将纯PtIr丝在NaOH溶液中进行温和的方波电势扰动即可制备PtIr纳米溶胶,制备方法简单、快速,无需任何金属离子前驱体、还原剂、保护剂以及有机溶剂的参与。对PtIr纳米溶胶进行了XRD、XPS和TEM等表征。和采用相同方法制备的单种Pt纳米粒子相比,PtIr纳米粒子在室温下对氨氧化反应具有较高的催化活性。
发明内容
本发明的目的在于为了解决上述问题而提供一种PtIr纳米溶胶的制备方法。
本发明通过以下技术方案来实现上述目的:
本发明包括以下步骤:
S1:将PtIr电极丝置于2M NaOH溶液中,采用三电极体系,在电化学工作站上采用方波电势法,设置高电势为0.2V,低电势为-5V,频率为100Hz,方波时间为300s;
S2:当电化学反应结束后,收集PtIr纳米溶胶并离心分离后,超纯水和乙醇交替清洗各5次;
S3:然后将PtIr纳米粒子通过超声波分散在乙醇中,负载在玻碳电极上,自然晾干,得到PtIr纳米粒子修饰的玻碳电极。
所述步骤S2中离心分离转速为12000r/min。
采用步骤S1和S2的方法能够制备Pt纳米溶胶。采用相同方法制备的Pt 纳米粒子用于和PtIr纳米粒子做比较,能更清晰的说明双金属PtIr纳米粒子在电催化活性方面的优越性。
采用步骤S1-S3的方法能够制备得到Pt纳米粒子修饰的玻碳电极。
PtIr纳米粒子修饰的玻碳电极和Pt纳米粒子修饰的玻碳电极的电催化活性测试是在0.5M NaOH+2M NH4OH溶液中进行的。
本发明的有益效果在于:
本发明是一种PtIr纳米溶胶的制备方法,与现有技术相比,本发明采用方波电势法制备PtIr合金纳米材料,该方法以大块PtIr合金为原材料,制备过程绿色、方便、经济,既不需要在溶液中引入金属盐和添加剂,也无需去模板的后处理。该方法为利用方波电势脉冲技术在NaOH溶液中电化学分散纯PtIr丝制备PtIr合金纳米粒子的新方法,短时间内即可制备出PtIr合金纳米粒子。与其它制备方法相比,具有如下优点:
(1)反应条件温和:一般在常温常压下进行。
(2)可控性好:可选择性的调节和控制外加电势、电流及波形,实现纳米材料的形状、大小可控。
(3)适用范围广:可制备多种纳米态单金属、合金、氧化物等材料。
(4)可与其它化学制备方法联用,来制备各种不同要求的纳米材料。
(5)耗能低、环境友好、设备简单、操作方便。
附图说明
图1是PtIr纳米粒子的扫描电镜(SEM)图;
图1中:(A,B)PtIr纳米粒子的SEM图,(C)PtIr纳米粒子的X-射线色散能量谱(EDS)图。图1A的插图是PtIr纳米溶胶的光学照片;
图2是PtIr纳米溶胶的透射电镜(TEM)图;
图2中:(A,B)PtIr溶胶的TEM表征图,(C)PtIr溶胶的高分辨透射电镜 (HR-TEM)表征图;
图3是方波法制备的PtIr纳米粒子和Pt纳米粒子的X射线衍射(XRD)图;
图4是Pt 4f和Ir4f高分辨X-射线光电子能谱(XPS)图;
图4中:(A)Pt4f、(B)Ir-4f;
图5是PtIr和Pt纳米粒子对氨(0.5M NaOH+2M NH4OH)的电催化氧化。
具体实施方式
下面结合附图对本发明作进一步说明:
循环伏安实验和方波电势实验在H型电解池和CHI660C电化学工作站(辰华仪器,中国上海)上进行。工作电极为多晶PtIr丝(直径1mm,纯度≥99.99%, Pt:Ir=80:20%),对电极为铂片(面积1cm2),参比电极为饱和硫酸亚汞电极 (SMSE)。工作电极在使用之前用2000#砂纸打磨抛光,超纯水超声清洗3次。
PtIr溶胶的制备是将PtIr电极丝置于2MNaOH溶液中,采用三电极体系,在电化学工作站上采用SWP法,0.2V,低电势为-5V,频率为100Hz,方波时间为300s。当电化学反应结束后,收集纳米溶胶并离心(12000r/min)分离,采用超纯水和乙醇交替清洗纳米粒子各5次。同时,采用同样的方法可制备Pt 纳米溶胶。然后将PtIr和Pt纳米粒子分散在乙醇中,负载在GC电极上,自然晾干,得到PtIr纳米粒子修饰的GC电极(PtIrNPs/GC)。采用同样的方法可制备Pt纳米粒子修饰的GC电极(PtNPs/GC)。
PtIrNPs/GC和PtNPs/GC的电催化活性测试是在0.5M NaOH+2M NH4OH 溶液中进行的。
PtIr纳米溶胶的表征:
图1A的插图显示了用方波电势法制备的PtIr纳米溶胶,从图片中可以看出, PtIr纳米溶胶呈黑色,能长时间稳定存在。图1A和B为PtIr纳米溶胶的扫描电镜图,从图中可以看出,PtIr纳米粒子团聚在一起呈多孔海绵结构。从图1B可以看出,PtIr纳米粒子的粒径不规则,粒子聚集在一起形成了不规则小孔,这可能与制备过程中H2的析出有关。通过EDS分析(如图1C所示),制备的PtIr 纳米粒子中Pt和Ir的元素组成分别为67.53和32.47at%。此外,Pt和Ir在光滑 PtIr丝中的元素组成分别为80.00和20.00at%。与本体金属相比,PtIr纳米粒子中的Ir含量有所增加,这可能是由于Ir比Pt更容易从大块金属中剥离。
图2A为PtIr纳米粒子的TEM图,由于制备过程中未加保护剂,纳米粒子呈团聚态,难以准确估计粒径分布。从图2B可以看出,PtIr纳米粒子交联在一起,粒径约10-20nm,为了获得单分散的PtIr合金纳米粒子,课题组将在下一步工作中进行探索。如图2C所示,PtIr纳米粒子的晶面间距为0.230nm,对应 PtIr合金的(111)面,因此,采用方波电势法制备的PtIr纳米粒子为合金态。
采用XRD来检测所制备的PtIr合金纳米粒子的物相,其结果如图3所示。为了更好的分析其合金峰的位置,图3以Pt(JCPDS编号04-0802)和Ir(JCPDS 编号06-0598)为参考。对单种Pt纳米粒子也进行了XRD表征。如图3所示, 39.8°、46.2°和67.8°处出现特征衍射峰为Pt的(111)、(200)和(220)晶面。 39.8°,46.2°和67.8°处出现特征衍射峰分别为PtIr的(111)、(200)和(220)晶面。PtIr 的衍射峰并未发生分离,证实了Pt与Ir形成了PtIr合金。
利用XPS分析了PtIr纳米粒子的表面化学组成和价态。图4A和B给出了 Pt 4f和Ir4f的高分辨XPS图谱。图4A所示结合能的表明,~71.41和~74.48 eV处分别为Pt4f7/2和4f5/2峰,另一方面,在73.8和74.6eV处,没有出现Pt2+和Pt4+的能谱峰,说明Pt为0价金属状态。图4B所示,61.04eV和64.07eV对应于Ir 4f7/2和Ir 4f5/2峰,说明PtIr纳米粒子中的Ir为0价。此外,通过XPS表征,PtIr合金纳米粒子的Pt/Ir的表面原子比为68.16/31.84。根据XPS和EDS(图 1C)分析结果,Pt在PtIr合金粒子的表面富集。
PtIr纳米粒子的电催化活性:
PtIr-NPs/GC电极和Pt-NPs/GC电极对氨的电催化氧化活性研究是在0.5M NaOH+2M NH4OH溶液中进行的,扫描速率为50mV s-1
如图5所示,在0.5M NaOH+2M NH4OH溶液中,以50mV s-1的扫速,研究了PtIr-NPs/GC电极和Pt-NPs/GC电极对氨的电催化氧化。在-0.66V时,与 Pt NP(0.18mA cm-2)比较,PtIrNP(0.38mA cm-2)的电流密度更高。基于上述结果,PtIr纳米粒子具有较高的电化学活性可能是源于Pt与Ir之间的双功能机理和电子效应。此外,与纯Pt纳米粒子相比,PtIr纳米粒子对氨的电催化氧化具有更低的氧化起始电势,双金属PtIr改善了氨的氧化动力学,因此具有更高的催化性能。
以上显示和描述了本发明的基本原理和主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种PtIr纳米溶胶的制备方法,其特征在于,包括以下步骤:
S1:将PtIr电极丝置于2M NaOH溶液中,采用三电极体系,在电化学工作站上采用方波电势法,设置高电势为0.2V,低电势为-5V,频率为100Hz,方波时间为300s;
S2:当电化学反应结束后,收集PtIr纳米溶胶并离心分离后,超纯水和乙醇交替清洗各5次;
S3:然后将PtIr纳米粒子通过超声波分散在乙醇中,负载在玻碳电极上,自然晾干,得到PtIr纳米粒子修饰的玻碳电极。
2.根据权利要求1所述的PtIr纳米溶胶的制备方法,其特征在于:所述步骤S2中离心分离转速为12000r/min。
3.根据权利要求1所述的PtIr纳米溶胶的制备方法,其特征在于:采用步骤S1和S2的方法能够制备Pt纳米溶胶。
4.根据权利要求1所述的PtIr纳米溶胶的制备方法,其特征在于:采用步骤S1-S3的方法能够制备得到Pt纳米粒子修饰的玻碳电极。
5.根据权利要求1或4所述的PtIr纳米溶胶的制备方法,其特征在于:PtIr纳米粒子修饰的玻碳电极和Pt纳米粒子修饰的玻碳电极的电催化活性测试是在0.5M NaOH+2M NH4OH溶液中进行的。
CN202010747041.2A 2020-07-29 2020-07-29 一种PtIr纳米溶胶的制备方法 Pending CN111850613A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010747041.2A CN111850613A (zh) 2020-07-29 2020-07-29 一种PtIr纳米溶胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010747041.2A CN111850613A (zh) 2020-07-29 2020-07-29 一种PtIr纳米溶胶的制备方法

Publications (1)

Publication Number Publication Date
CN111850613A true CN111850613A (zh) 2020-10-30

Family

ID=72945041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010747041.2A Pending CN111850613A (zh) 2020-07-29 2020-07-29 一种PtIr纳米溶胶的制备方法

Country Status (1)

Country Link
CN (1) CN111850613A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367582A (zh) * 2010-09-15 2012-03-07 北京奈艾斯新材料科技有限公司 双金属电极脉冲直流偏置电沉积制备纳米金属颗粒的方法
CN102712464A (zh) * 2009-09-18 2012-10-03 阿莫绿色技术有限公司 使用交流电电解制备金属纳米颗粒的方法和设备
CN102770368A (zh) * 2010-02-26 2012-11-07 阿莫绿色技术有限公司 利用颗粒型电极的金属纳米粒子制备装置及其方法
CN103097588A (zh) * 2010-07-19 2013-05-08 莱顿大学 一种制备金属纳米颗粒或金属氧化物纳米颗粒的方法
CN108736021A (zh) * 2017-04-19 2018-11-02 昆明仁旺科技有限公司 一种碳载多孔空心铂铱合金纳米粒子催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712464A (zh) * 2009-09-18 2012-10-03 阿莫绿色技术有限公司 使用交流电电解制备金属纳米颗粒的方法和设备
CN102770368A (zh) * 2010-02-26 2012-11-07 阿莫绿色技术有限公司 利用颗粒型电极的金属纳米粒子制备装置及其方法
CN103097588A (zh) * 2010-07-19 2013-05-08 莱顿大学 一种制备金属纳米颗粒或金属氧化物纳米颗粒的方法
CN102367582A (zh) * 2010-09-15 2012-03-07 北京奈艾斯新材料科技有限公司 双金属电极脉冲直流偏置电沉积制备纳米金属颗粒的方法
CN108736021A (zh) * 2017-04-19 2018-11-02 昆明仁旺科技有限公司 一种碳载多孔空心铂铱合金纳米粒子催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
THOMAS J. P. HERSBACH等: "Local structure and composition of PtRh nanoparticles produced through cathodic corrosion", 《PHYS. CHEM. CHEM. PHYS.》 *
WEI HUANG等: "Facile preparation of Pt hydrosols by dispersing bulk Pt with potential perturbations", 《ELECTROCHEMISTRY COMMUNICATIONS》 *

Similar Documents

Publication Publication Date Title
Tang et al. Screw-like PdPt nanowires as highly efficient electrocatalysts for methanol and ethylene glycol oxidation
JP5920643B2 (ja) コア−シェル粒子の製造方法
JP5957789B2 (ja) 担体に担持されたコア−シェル粒子の製造方法
Haas et al. Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry
CN105854918B (zh) 纳米级钴基粒子与氮掺杂碳的复合材料、合成方法及用途
Yang et al. Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid
JP6196579B2 (ja) 白金中空ナノ粒子および該粒子担持触媒体ならびに該触媒体の製造方法
CN1209789A (zh) 纳米结构的氧化物和氢氧化物及其合成方法
Chen et al. One-step electrochemical synthesis of preferentially oriented (111) Pd nanocrystals supported on graphene nanoplatelets for formic acid electrooxidation
Hu et al. Enhanced electrocatalytic ethanol oxidation reaction in alkaline media over Pt on a 2D BiVO 4-modified electrode under visible light irradiation
CN107342427B (zh) 一种直接乙醇燃料电池用Pd/Ag纳米合金催化剂的制备方法
CN108232213A (zh) 一种氮掺杂石墨烯-碳纳米管-四氧化三钴杂化材料及其制备方法
CN111792669B (zh) 一种TiO2纳米棒/多层石墨烯复合材料及制备方法
CN109822107B (zh) 一种金纳米粒子复合生物质碳材料的制备方法
Zhao et al. A comparative investigation of electrocatalysis at Pt monolayers on shape-controlled Au nanocrystals: facet effect versus strain effect
Zhang et al. Pd-TiO2 nanoparticles supported on reduced graphene oxide: green synthesis and improved electrocatalytic performance for methanol oxidation
Fu et al. N-doped hollow carbon tubes derived N-HCTs@ NiCo2O4 as bifunctional oxygen electrocatalysts for rechargeable Zinc-air batteries
TWI618290B (zh) 金屬奈米粒子的製造方法、載置金屬奈米粒子的載體的製造方法、及載置金屬奈米粒子的載體
CN107248579A (zh) 一种具有分级结构的二氧化铱/二氧化锰复合电极及其制备方法
DE112018001663T5 (de) Elektrodenmaterial und anwendung hiervon
CN111850613A (zh) 一种PtIr纳米溶胶的制备方法
Divya et al. Shape-controlled synthesis of palladium nanostructures from flowers to thorns: electrocatalytic oxidation of ethanol
Tao et al. Tuning electronic structure of hedgehog-like nickel cobaltite via molybdenum-doping for enhanced electrocatalytic oxygen evolution catalysis
CN113548665B (zh) 纳米复合材料及其制备方法和应用
CN113463119B (zh) 一种铋基-银基复合材料及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201030