CN111848177A - 一种超高温高熵硼化物陶瓷粉体及其制备方法 - Google Patents

一种超高温高熵硼化物陶瓷粉体及其制备方法 Download PDF

Info

Publication number
CN111848177A
CN111848177A CN202010650474.6A CN202010650474A CN111848177A CN 111848177 A CN111848177 A CN 111848177A CN 202010650474 A CN202010650474 A CN 202010650474A CN 111848177 A CN111848177 A CN 111848177A
Authority
CN
China
Prior art keywords
ceramic powder
ultrahigh
powder
boride ceramic
entropy boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010650474.6A
Other languages
English (en)
Other versions
CN111848177B (zh
Inventor
柳彦博
马壮
张泽
朱时珍
鲁剑啸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202010650474.6A priority Critical patent/CN111848177B/zh
Publication of CN111848177A publication Critical patent/CN111848177A/zh
Application granted granted Critical
Publication of CN111848177B publication Critical patent/CN111848177B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种超高温高熵硼化物陶瓷粉体及其制备方法,属于陶瓷材料技术领域。本发明所述陶瓷粉体为单相六方晶体结构,化学式简记为TMExB2,TME为Ha、Zr、Nb、Ti、Ta、Mo、W和Cr中的至少四种,且TME中的元素种类数与x的乘积为1,该陶瓷粉体主要通过调控其组成成分,使其能保持稳定的单相结构,消除多组元所带来的复杂界面以及应力问题,使其具有优异的力学性能。另外,本发明首次通过感应等离子球化烧结工艺合成高熵硼化物陶瓷粉体,工艺简单,周期短,而且通过调控工艺参数,可以获得一定粒径分布的表面致密、球形度高、流动性好、无元素偏聚现象、化学结构稳定性好的高熵硼化物陶瓷粉体,具有很好的应用前景。

Description

一种超高温高熵硼化物陶瓷粉体及其制备方法
技术领域
本发明涉及一种超高温高熵硼化物陶瓷粉体及其制备方法,属于陶瓷材料技术领域。
背景技术
过渡金属二硼化物的超高温陶瓷(UHTCs)因其独特的物理化学性质,例如超过3000K的熔点、抗热震、耐腐蚀、高硬度、化学惰性、良好的电导率和导热率、固有的太阳能选择性和低中子吸收等,被广泛应用于航空航天(机翼前缘、鼻尖等)、太阳能(太阳能发电厂的接收器)、核反应堆、冶金(熔融金属坩埚)、切割工具、微电子等领域,但该UHTCs的断裂韧性相对较低并且超高温下的抗氧化性还不够优异。
将四种以上(包含四种)过渡族金属二硼化物以等原子比合成高熵硼化物陶瓷,将固溶相的构型熵最大化以稳定四种或四种以上二硼化物之间的形成,即Smax=RlnN≥1.6R。高的构型熵可以促进元素间的相容性,将多相稳定至单相,使高熵相各原子随机分布在晶体点阵中,原子间半径和化学键相差较大,使晶格内部具有比传统硼化物陶瓷材料更大的晶格畸变,并且高熵会使陶瓷内部的扩散与相变速度非常缓慢,并且其在高温下不易产生晶粒粗化、再结晶等结构变化,产生动力学迟滞扩散效应,使其具有良好的高温相稳定性,因此有望突破一元过渡族金属二硼化物的固有性能,而成为一种新型的超高温陶瓷。
目前高熵硼化物陶瓷的制备主要是通过机械化学球磨或物理球磨过程将各种陶瓷组元混合均匀后通过固相烧结达到高温扩散形成单相固溶体,例如放电等离子烧结(SPS)、电弧熔炼、硼/碳热还原金属氧化物。高熵硼化物陶瓷的固相烧结温度达到了1600℃至2000℃之间,但高温下致密度依然相对较低(93%~97%),而致密度过低会影响高熵硼化物陶瓷的力学性能,如果过度提高烧结温度反而会增加氧化物杂质,影响高熵硼化物陶瓷在工程领域的应用。目前,文献报道中提高高熵硼化物陶瓷致密度的方法只有硼/碳热还原金属氧化物结合固相烧结,其优势在于先生产更细的高熵硼化物陶瓷粉末,有助于最后的固相烧结致密化,但会进一步提高氧化物的含量,且制备工艺涉及过多的物理化学步骤,较为繁琐。
发明内容
针对现有技术中存在的不足,本发明的目的之一在于提供一种超高温高熵硼化物陶瓷粉体,通过调控其组成成分,使该陶瓷粉体能保持稳定的单相结构,消除多组元所带来的复杂界面以及应力问题,使其力学性能(弹性模量,硬度)优于多组元混合规则;
本发明的目的之二在于提供一种超高温高熵硼化物陶瓷粉体的制备方法,首次通过感应等离子球化烧结工艺合成高熵硼化物陶瓷粉体,工艺简单,周期短,而且通过调控工艺参数,可以获得一定粒径分布的表面致密、球形度高、流动性好、无元素偏聚现象、化学结构稳定性好的高熵硼化物陶瓷粉体,具有很好的应用前景。
本发明的目的是通过以下技术方案实现的。
一种超高温高熵硼化物陶瓷粉体,所述陶瓷粉体为单相六方晶体结构,化学式简记为TMExB2,TME为Ha、Zr、Nb、Ti、Ta、Mo、W和Cr中的至少四种,且TME中的元素种类数与x的乘积为1。
进一步地,TME中的元素种类数为4~6。
进一步地,所述陶瓷粉体的化学式为(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2或(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2
本发明所述超高温高熵硼化物陶瓷粉体的制备方法,具体步骤如下:
(1)四种以上二硼化物粉体按照金属原子等摩尔比进行配料,并加入水和聚乙烯醇(PVA),混合均匀,得到浆料;
优选地,浆料中,PVA的质量分数为0.05%~1%,固含量为20%~60%;
优选地,采用球磨方式进行混合制备浆料,球料比为3~6:1,球磨转速为250rpm~350rpm,球磨时间2h~4h;
优选地,二硼化物粉体的纯度不小于99%;
(2)利用喷雾干燥造粒塔对浆料进行团聚造粒,并过检验筛,得到粒径不大于70μm的团聚粉体;
优选地,喷雾干燥造粒参数为:进口温度为250℃~310℃,出口温度为100℃~120℃,喷头转速为30rpm~35rpm,蠕动泵转速为25rpm~30rpm;
(3)利用感应等离子体球化烧结设备对团聚粉体进行高温烧结处理一次以上,得到所述超高温高熵硼化物陶瓷粉体;
感应等离子体球化烧结的参数如下:等离子体功率20kW~30kW;载气流量为5slpm~7slpm;工作气体为氢气和氩气的混合气体,氢气流量为6slpm~7slpm,氩气流量为50slpm~65slpm;反应室压力为8psia~12psia;送粉器转速为6rpm~8rpm。
有益效果:
(1)本发明通过调控过渡金属二硼化物ZrB2、HfB2、TiB2、TaB2、CrB2、VB2和NbB2的成分组合,获得低晶格常数差异、低生成焓和低结合能的高熵硼化物陶瓷,而高熵效应使多组元固溶体形成稳定的单相结构,促使许多不同尺寸和质量的原子引起一定的晶格质量和应变的波动,从而可以增强力学性能,类似固溶强化机理,使高熵硼化物陶瓷具有较高的弹性模量、硬度和熔点以及化学稳定性。
(2)高熵硼化物陶瓷的力学性能取决于其微观结构,本发明通过喷雾造粒和感应等离子球化促进了高熵固溶体的均质化,使其力学性能均高于多组元混合物规则得到的,喷雾造粒后可以使混合粉体颗粒表面具有较大表面活性,然后利用感应等离子球化工艺特有的超高温度、烧结速度等优势可以使喷雾造粒后的粉末在经过等离子体时发生快速反应,形成的高熵硼化物陶瓷粉末可以快速离开高温区,有利于促进高熵固溶体的均质化,减少元素偏聚现象和二次相的生成,使高熵硼化物陶瓷保持均匀的单相晶体结构。
附图说明
图1为实施例1中制备的(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2以及(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的X射线衍射(XRD)图谱对比图。
图2为实施例1中制备的(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2的能谱(EDS)元素分析结果图。
图3为实施例1中制备的(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2以及(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的硬度对比图。
图4为实施例1中制备的(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2以及(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的弹性模量对比图。
图5为实施例1中制备的(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2以及(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的松装密度以及流动性的对比图。
图6为实施例2中制备的(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2以及(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的X射线衍射图谱对比图。
图7为实施例2中制备的(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2的能谱元素分析结果图。
图8为实施例2中制备的(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2以及(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的硬度对比图。
图9为实施例2中制备的(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2以及(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的弹性模量对比图。
图10为实施例2中制备的(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2以及(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的松装密度以及流动性的对比图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步阐述,其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。
以下实施例中,所用主要试剂的信息详见表1,所用主要仪器设备的信息详见表2。
表1
Figure BDA0002574757170000041
表2
Figure BDA0002574757170000051
采用S-4800型冷场发射扫描电子显微镜自带能谱仪(X-ray Energy DispersiveSpectrometer,EDS)进行元素分布检测;流动性检测,以30g实施例中所制备的超高温高熵硼化物陶瓷粉体流过霍尔流量计所需要的时间来表示;弹性模量采用脉冲激发共振法测得,这是一种通过声波共振测试动态杨氏模量、剪切模量和泊松比的标准测试方法,样品尺寸为3mm×15mm×40mm,由脉冲控制对样品加以周期性打击,通过麦克风收集样品的振动信号,并在共振频率与阻尼分析仪上进行信号处理。
实施例1
(1)将HfB2、TiB2、CrB2、TaB2和NbB2按照金属原子等摩尔比进行配料并加入球磨罐中,再加入去离子水、PVA以及球磨珠,固含量为40%,PVA的质量分数为0.4%,球料比为4:1,在250rpm下球磨2h,混合均匀,得到浆料;
(2)采用喷雾干燥造粒塔对步骤(1)中的浆料进行团聚造粒,将造粒后的粉体经过检验筛,得到粒径不大于70μm的团聚粉体;
其中,喷雾干燥造粒参数为:进口温度为250℃,出口温度为100℃,喷头转速为30rpm,蠕动泵转速为25rpm;
(3)利用感应等离子体球化烧结设备对步骤(2)中的团聚粉体进行高温烧结处理5次,得到超高温高熵硼化物陶瓷粉体,记为(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2
其中,感应等离子体球化烧结的参数如下:等离子体功率为20kW;载气流量为7slpm,载气优选氩气;工作气体为氢气和氩气的混合气体,氢气流量为6slpm,氩气流量为60slpm;反应室压力为11psia;送粉器转速为6rpm。
在本实施例的基础上,将步骤(1)中的原料HfB2、TiB2、CrB2、TaB2和NbB2修改成HfB2、TiB2、CrB2、VB2和NbB2,或者修改成HfB2、TiB2、CrB2、ZrB2和NbB2,其他步骤及条件不变,相应地,分别得到(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2
从图1中可以看出,本实施例所制备的三种高熵硼化物陶瓷粉体主要是单相的六方晶体,次要的氧化物(Zr,Hf)O2强度峰很低,表示其含量很低。
从图2的SEM图片中可以清楚地看到,所制备的(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2粉体包含大量的球形颗粒,表面光滑致密,且球形度较高,其相对均匀的粒径为10μm~45μm;图2中的EDS元素分析结果表明,Hf、Ta、Nb、Ti和Cr元素分布均匀,没有任何金属元素团聚现象,表明所制备的(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2粉体在微米级具有高的组成均匀性。(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2和(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的SEM以及EDS的表征结果与(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2基本相同。
结合图3和图4可知,(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2的硬度为26.36817GPa,体积模量为264.741GPa,剪切模量为190.583GPa,杨氏模量为461.103GPa;(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2的硬度为32.73608GPa,体积模量为259.599GPa,剪切模量为215.201GPa,杨氏模量为505.829GPa;(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的硬度为34.19094GPa,体积模量为268.557GPa,剪切模量为215.175GPa,杨氏模量为509.461GPa。由上述的测试结果可知,本实施例所制备的三种高熵硼化物陶瓷粉体的弹性模量和硬度高于多组元混合规律,综合考量弹性模量和硬度,含V的(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2的力学性能最优异。
如图5所示,(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2的流动性为22.6s/30g,松装密度为2.35g/cm3;(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2的流动性为21.6s/30g,松装密度为2.23g/cm3;(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的流动性为23.1s/30g,松装密度为2.28g/cm3
实施例2
(1)将HfB2、TiB2、CrB2、TaB2和NbB2按照金属原子等摩尔比进行配料并加入球磨罐中,再加入去离子水、PVA以及球磨珠,固含量为40%,PVA的质量分数为0.4%,球料比为4:1,在350rpm下球磨4h,混合均匀,得到浆料;
(2)采用喷雾干燥造粒塔对步骤(1)中的浆料进行团聚造粒,将造粒后的粉体经过检验筛,得到粒径不大于70μm的团聚粉体;
其中,喷雾干燥造粒参数为:进口温度为250℃,出口温度为100℃,喷头转速为30rpm,蠕动泵转速为25rpm;
(3)利用感应等离子体球化烧结设备对步骤(2)中的团聚粉体进行高温烧结处理5次,得到超高温高熵硼化物陶瓷粉体,记为(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2;其中,感应等离子体球化烧结的参数如下:等离子体功率30kW;载气流量为7slpm,载气优选氩气;工作气体为氢气和氩气的混合气体,氢气流量为7slpm,氩气流量为60slpm;反应室压力为11psia;送粉器转速为4rpm。
在本实施例的基础上,将步骤(1)中的原料HfB2、TiB2、CrB2、TaB2和NbB2修改成HfB2、TiB2、CrB2、VB2和NbB2,或者修改成HfB2、TiB2、CrB2、ZrB2和NbB2,其他步骤及条件不变,相应地,分别得到(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2
与实施例1相比,增加感应等离子球化功率和氢气流量并降低送粉转速后,本实施例所制备的三种高熵硼化物陶瓷粉体均具有单相的六方晶体结构,部分主峰出现分裂,结合成分中存在较多的过渡族金属原子,说明单相结构出现了一定程度的晶格畸变,但次要的氧化物(Zr,Hf)O2强度峰基本无,表示氧化现象降低,如图6所示。
从图7的SEM图片中可以清楚地看到,所制备的(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2粉体包含大量的球形颗粒,表面光滑致密,且球形度较高,其相对均匀的粒径为15μm~50μm;图7中的EDS元素分析结果表明,Hf、Ta、Nb、Ti和Cr元素分布均匀,没有任何金属元素团聚现象,表明所制备的(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2粉体在微米级具有高的组成均匀性。(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2和(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的SEM以及EDS的表征结果与(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2基本相同。
结合图8和图9可知,(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2的硬度为24.77896GPa,体积模量为276.84GPa,剪切模量为196.73GPa,杨氏模量为483.03GPa;(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2的硬度为34.8976GPa,体积模量为262.394GPa,剪切模量为216.657GPa,杨氏模量为509.765GPa;(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的硬度为35.9172GPa,体积模量为279.834GPa,剪切模量为223.196GPa,杨氏模量为521.633GPa。与实施例1相比,增加感应等离子球化功率和氢气流量并降低送粉转速后,本实施例所制备的高熵硼化物陶瓷粉体的弹性模量和硬度有小幅度的上升。
如图10所示,(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2的流动性为26.5s/30g,松装密度为2.62g/cm3;(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2的流动性为25.9s/30g,松装密度为2.44g/cm3;(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2的流动性为27.7s/30g,松装密度为2.52g/cm3。与实施例1相比,增加感应等离子球化功率和氢气流量并降低送粉转速后,等离子射流场的热焓值提升,同时高熵硼化物陶瓷粉体在等离子射流场中受热更高,颗粒的熔融更充分,从而提高了高熵硼化物陶瓷粉体的致密化率、流动性和松装密度。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种超高温高熵硼化物陶瓷粉体,其特征在于:所述陶瓷粉体为单相六方晶体结构,化学式简记为TMExB2,TME为Ha、Zr、Nb、Ti、Ta、Mo、W和Cr中的至少四种,且TME中的元素种类数与x的乘积为1。
2.根据权利要求1所述的超高温高熵硼化物陶瓷粉体,其特征在于:TME中的元素种类数为4~6。
3.根据权利要求1所述的超高温高熵硼化物陶瓷粉体,其特征在于:所述陶瓷粉体的化学式为(Hf0.2Zr0.2Nb0.2Ti0.2Cr0.2)B2、(Hf0.2Ta0.2Nb0.2Ti0.2Cr0.2)B2或(Hf0.2V0.2Nb0.2Ti0.2Cr0.2)B2
4.一种如权利要求1至3任一项所述的超高温高熵硼化物陶瓷粉体的制备方法,其特征在于:所述方法步骤如下,
(1)四种以上二硼化物粉体按照金属原子等摩尔比进行配料,并加入水和聚乙烯醇,混合均匀,得到浆料;
(2)利用喷雾干燥造粒塔对浆料进行团聚造粒,并过检验筛,得到粒径不大于70μm的团聚粉体;
(3)利用感应等离子体球化烧结设备对团聚粉体进行高温烧结处理一次以上,得到所述超高温高熵硼化物陶瓷粉体;
感应等离子体球化烧结的参数如下:等离子体功率20kW~30kW;载气流量为5slpm~7slpm;工作气体为氢气和氩气的混合气体,氢气流量为6slpm~7slpm,氩气流量为50slpm~65slpm;反应室压力为8psia~12psia;送粉器转速为6rpm~8rpm。
5.根据权利要求4所述的超高温高熵硼化物陶瓷粉体的制备方法,其特征在于:步骤(1)所述的浆料中,聚乙烯醇的质量分数为0.05%~1%,固含量为20%~60%。
6.根据权利要求4所述的超高温高熵硼化物陶瓷粉体的制备方法,其特征在于:步骤(1)采用球磨方式进行混合制备浆料,球料比为3~6:1,球磨转速为250rpm~350rpm,球磨时间2h~4h。
7.根据权利要求4所述的超高温高熵硼化物陶瓷粉体的制备方法,其特征在于:步骤(1)中,所述二硼化物粉体的纯度不小于99%。
8.根据权利要求4所述的超高温高熵硼化物陶瓷粉体的制备方法,其特征在于:步骤(2)中,喷雾干燥造粒参数为:进口温度为250℃~310℃,出口温度为100℃~120℃,喷头转速为30rpm~35rpm,蠕动泵转速为25rpm~30rpm。
CN202010650474.6A 2020-07-08 2020-07-08 一种超高温高熵硼化物陶瓷粉体及其制备方法 Active CN111848177B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010650474.6A CN111848177B (zh) 2020-07-08 2020-07-08 一种超高温高熵硼化物陶瓷粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010650474.6A CN111848177B (zh) 2020-07-08 2020-07-08 一种超高温高熵硼化物陶瓷粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN111848177A true CN111848177A (zh) 2020-10-30
CN111848177B CN111848177B (zh) 2022-04-08

Family

ID=73153317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010650474.6A Active CN111848177B (zh) 2020-07-08 2020-07-08 一种超高温高熵硼化物陶瓷粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN111848177B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112830789A (zh) * 2020-12-31 2021-05-25 南京理工大学 一种高熵硼化物粉末及其制备方法
CN113416078A (zh) * 2021-08-09 2021-09-21 燕山大学 一种非化学计量比硼化钛及利用该非化学计量比硼化钛制备的高熵硼化物陶瓷
CN114507074A (zh) * 2022-03-14 2022-05-17 北京理工大学 一种高熵过渡-稀土金属二硼化物陶瓷材料及其制备方法
CN114715907A (zh) * 2022-03-18 2022-07-08 北京理工大学 一种单相高熵金属二硼化物及其制备方法
CN115057706A (zh) * 2022-05-09 2022-09-16 中国科学院金属研究所 一种超高孔隙率的复相高熵超高温陶瓷材料及制备方法
CN115057709A (zh) * 2022-06-21 2022-09-16 山东大学 一种高熵过渡金属二硼化物及其制备方法
CN115073183A (zh) * 2022-06-27 2022-09-20 山东大学 一种高熵硼化物纳米粉体及其溶胶-凝胶制备方法
CN115594506A (zh) * 2022-10-26 2023-01-13 兰溪泛翌精细陶瓷有限公司(Cn) 一种快速生产类球形碳化硼陶瓷粉体的方法
CN115947603A (zh) * 2023-01-20 2023-04-11 武汉科技大学 一种六元高熵过渡金属硼化物陶瓷粉体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036146A (zh) * 2015-08-28 2015-11-11 北京理工大学 一种球形纳米硅酸锆粉体的制备方法
WO2017083693A1 (en) * 2015-11-12 2017-05-18 Arizona Board Of Regents On Behalf Of Arizona State University Method of preparing metal diboride dispersions and films
CN109180188A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036146A (zh) * 2015-08-28 2015-11-11 北京理工大学 一种球形纳米硅酸锆粉体的制备方法
WO2017083693A1 (en) * 2015-11-12 2017-05-18 Arizona Board Of Regents On Behalf Of Arizona State University Method of preparing metal diboride dispersions and films
CN109180188A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOSHUA GILD: "High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics", <SCIENTIFIC REPORTS> *
JOSHUA GILD: "High-Entropy Metal Diborides:A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics", <SCIENTIFIC REPORTS> *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112830789A (zh) * 2020-12-31 2021-05-25 南京理工大学 一种高熵硼化物粉末及其制备方法
CN113416078B (zh) * 2021-08-09 2022-09-27 燕山大学 一种非化学计量比硼化钛及利用该非化学计量比硼化钛制备的高熵硼化物陶瓷
CN113416078A (zh) * 2021-08-09 2021-09-21 燕山大学 一种非化学计量比硼化钛及利用该非化学计量比硼化钛制备的高熵硼化物陶瓷
CN114507074A (zh) * 2022-03-14 2022-05-17 北京理工大学 一种高熵过渡-稀土金属二硼化物陶瓷材料及其制备方法
CN114507074B (zh) * 2022-03-14 2023-01-17 北京理工大学 一种高熵过渡-稀土金属二硼化物陶瓷材料及其制备方法
CN114715907A (zh) * 2022-03-18 2022-07-08 北京理工大学 一种单相高熵金属二硼化物及其制备方法
CN115057706A (zh) * 2022-05-09 2022-09-16 中国科学院金属研究所 一种超高孔隙率的复相高熵超高温陶瓷材料及制备方法
CN115057706B (zh) * 2022-05-09 2023-10-10 中国科学院金属研究所 一种超高孔隙率的复相高熵超高温陶瓷材料及制备方法
CN115057709A (zh) * 2022-06-21 2022-09-16 山东大学 一种高熵过渡金属二硼化物及其制备方法
CN115057709B (zh) * 2022-06-21 2023-07-18 山东大学 一种高熵过渡金属二硼化物及其制备方法
CN115073183A (zh) * 2022-06-27 2022-09-20 山东大学 一种高熵硼化物纳米粉体及其溶胶-凝胶制备方法
CN115073183B (zh) * 2022-06-27 2023-06-13 山东大学 一种高熵硼化物纳米粉体及其溶胶-凝胶制备方法
CN115594506A (zh) * 2022-10-26 2023-01-13 兰溪泛翌精细陶瓷有限公司(Cn) 一种快速生产类球形碳化硼陶瓷粉体的方法
CN115947603A (zh) * 2023-01-20 2023-04-11 武汉科技大学 一种六元高熵过渡金属硼化物陶瓷粉体及其制备方法

Also Published As

Publication number Publication date
CN111848177B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN111848177B (zh) 一种超高温高熵硼化物陶瓷粉体及其制备方法
Yang et al. Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling
CN107935596A (zh) 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法
CN105884359B (zh) 一种以复合结构作为增韧相的b4c复合陶瓷及其制备方法
JP2012131674A (ja) 二ホウ化ジルコニウム粉末及びその合成方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN112846170B (zh) 一种(Ti,W)C固溶体粉末及其制备方法
CN106699184A (zh) 一种Ti3SnC2陶瓷粉末的制备方法及其制得的陶瓷粉末
CN105884358B (zh) 一种以单质粉体为起始原料的碳化硼-碳化硅复合陶瓷及其制备方法
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN102153347B (zh) 一种快速合成Ti3SiC2亚微米粉体的方法
CN106631033A (zh) 一种ZrB2粉体的制备方法
CN115093233A (zh) 一种适合于工业化宏量生产的高纯超细过渡金属碳氮化物高熵陶瓷粉体的制备方法
CN113930696A (zh) 一种轻质富钛Ti-Zr-Nb-Al系难熔高熵合金基复合材料的制备方法
Dou et al. Preparation and characterization of LaB6 ultra fine powder by combustion synthesis
Xiao et al. Synthesis of nano sized Cr2AlC powders by molten salt method
US7267808B2 (en) Aluminum nitride powder, method for producing the same and use thereof
Miao et al. A novel in situ synthesis of SiBCN-Zr composites prepared by a sol–gel process and spark plasma sintering
CN113548891A (zh) 一种两相钽酸钴陶瓷块体及其制备方法
CN110483057A (zh) 一种掺杂钽元素的四硼化钨材料及其制备方法与应用
Liu et al. Study on the anisotropic growth of rod-like Yb α-SiAlON crystals prepared by combustion synthesis
JPH082907A (ja) 窒化ケイ素粉末
CN109175387A (zh) 非晶晶化制备纳米晶WC-Co硬质合金的方法
JP3553496B2 (ja) 硬質材料の、炭化チタンを基礎にした合金、その製法及び使用法
CN117776257B (zh) 一种Ti4O7粉体材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant