CN111841044B - 超细气泡生成装置以及超细气泡生成方法 - Google Patents

超细气泡生成装置以及超细气泡生成方法 Download PDF

Info

Publication number
CN111841044B
CN111841044B CN202010122855.7A CN202010122855A CN111841044B CN 111841044 B CN111841044 B CN 111841044B CN 202010122855 A CN202010122855 A CN 202010122855A CN 111841044 B CN111841044 B CN 111841044B
Authority
CN
China
Prior art keywords
heater
ufb
liquid
film boiling
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010122855.7A
Other languages
English (en)
Other versions
CN111841044A (zh
Inventor
今仲良行
久保田雅彦
山田显季
柳内由美
有水博
石永博之
尾崎照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN111841044A publication Critical patent/CN111841044A/zh
Application granted granted Critical
Publication of CN111841044B publication Critical patent/CN111841044B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23124Diffusers consisting of flexible porous or perforated material, e.g. fabric
    • B01F23/231244Dissolving, hollow fiber membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • B01F23/2375Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm for obtaining bubbles with a size below 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/238Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using vibrations, electrical or magnetic energy, radiations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • B01F23/291Mixing systems, i.e. flow charts or diagrams for obtaining foams or aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/70Pre-treatment of the materials to be mixed
    • B01F23/703Degassing or de-aerating materials; Replacing one gas within the materials by another gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3033Micromixers using heat to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • B01F33/71Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming working at super-atmospheric pressure, e.g. in pressurised vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/93Heating or cooling systems arranged inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/99Heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

本发明提供一种超细气泡生成装置以及超细气泡生成方法。本发明提供一种超细气泡生成装置,其通过使设置在液体中的加热器生成热以生成膜沸腾,从而生成超细气泡,该超细气泡生成装置包括:元件基板,其包括:第一加热器,其在液体中生成膜沸腾;以及与第一加热器邻接配置的第二加热器,其中以不同的时机驱动第一加热器和第二加热器。

Description

超细气泡生成装置以及超细气泡生成方法
技术领域
本发明涉及生成直径小于1.0μm的超细气泡的超细气泡生成装 置和超细气泡生成方法。
背景技术
近来,已经开发出用于应用微细气泡(例如直径为微米尺寸的微 气泡和直径为纳米尺寸的纳米气泡)的特征的技术。尤其是,在各个 领域中,已经确认了直径小于1.0μm的超细气泡(以下也称为“UFB”) 的实用性。
日本专利第6118544号公开了一种微细气泡生成装置,该细微气 泡生成装置通过从减压喷嘴喷射将气体加压并溶解的加压液体来生成 微细气泡。日本专利第4456176号公开了一种通过利用混合单元重复 进行气体混合液流的分离和会聚而生成细微气泡的装置。
发明内容
根据本发明的一个方面的超细气泡生成装置是一种超细气泡生成 装置,其通过使设置在液体中的加热器生成热以生成膜沸腾,从而生 成超细气泡,该超细气泡生成装置包括元件基板,该元件基板包括:第 一加热器,其在液体中生成膜沸腾,和第二加热器,其与第一加热器 邻接配置,其中,第一加热器和第二加热器在不同的时机被驱动。
通过以下参考附图对示例性实施方案的描述,本发明的进一步的 特征将变得明显。
附图说明
图1是表示UFB生成装置的示例的图。
图2是预处理单元的示意性构成图。
图3A和图3B是溶解单元的示意性构成图和用于说明液体中溶解 状态的图。
图4是T-UFB生成单元的示意性构成图。
图5A和图5B是用于说明加热元件的细节的图。
图6A和图6B是用于说明加热元件上的膜沸腾的状态的图。
图7A至图7D是表示由膜沸腾气泡的膨胀引起的UFB的生成状态 的图。
图8A至图8C是表示由膜沸腾气泡的收缩引起的UFB的生成状态 的图。
图9A至图9C是表示由液体的再加热引起的UFB的生成状态的图。
图10A和图10B是表示由膜沸腾生成的气泡消失而生成的冲击波 引起的UFB的生成状态的图。
图11A至图11C是表示后处理单元的构成例的图。
图12A至图12D是用于说明元件基板的布局的图。
图13A至图13D是用于说明元件基板的布局的图。
图14A至图14D是截面图和用于说明驱动时机的图。
图15是表示改变移位加热器的驱动时机的示例的图。
图16A至图16C是用于说明元件基板的布局和驱动时机的图。和
图17A至图17D是用于说明元件基板的布局的图。
具体实施方式
日本专利第6118544号和第4456176号中说明的装置两者不仅生 成直径为纳米尺寸的UFB,而且生成相对大量的直径为毫米尺寸的毫 气泡(milli-bubble)和直径为微米尺寸的微气泡。但是,由于毫气 泡和微气泡受到浮力的影响,因此在长时间储存期间,气泡易于逐渐 上升到液面并消失。
另一方面,直径为纳米尺寸的UFB适合长时间储存,因为它们不 易受到浮力的影响,并且以布朗运动漂浮在液体中。然而,当UFB与 毫气泡和微气泡一起生成,或者UFB的气-液界面能小时,UFB受到毫 气泡和微气泡的消失的影响并且随着时间减少。即,为了获得即使在 长时间储存期间也能够抑制UFB的浓度降低的UFB含有液,在生成UFB 含有液时需要生成具有大的气-液界面能的高纯度且高浓度的UFB。另 外,需要具有改善的耐久性的UFB生成装置。
<<UFB生成装置的构成>>
图1是表示可应用于本发明的超细气泡生成装置(UFB生成装置) 的示例的图。本实施方案的UFB生成装置1包括预处理单元100、溶 解单元200、T-UFB生成单元300、后处理单元400和收集单元500。 每个单元以上述顺序对供给到预处理单元100的诸如自来水的液体W 进行独特的处理,并且这样处理的液体W被收集单元500收集为T-UFB 含有液。下面说明这些单元的功能和构成。尽管稍后说明细节,但是 在本说明书中,通过利用由快速加热引起的膜沸腾而生成的UFB被称 为热超细气泡(T-UFB)。
图2是预处理单元100的示意性构成图。本实施方案的预处理单 元100对所供给的液体W进行脱气处理。预处理单元100主要包括脱 气容器101、喷淋头102、减压泵103、液体导入路104、液体循环路 105和液体排出路106。例如,诸如自来水的液体W从液体导入路104通过阀109被供给到脱气容器101。在该过程中,设置在脱气容器101 中的喷淋头102在脱气容器101中喷出液体W的雾。喷淋头102用于 促进液体W的气化;但是,可以代替地使用离心机等作为产生气化促 进效果的机构。
当一定量的液体W贮留在脱气容器101中,然后在所有阀关闭的 情况下启动减压泵103时,已经气化的气体成分被排出,溶解在液体 W中的气体成分的气化和排出也被促进。在该过程中,可以在检查压 力计108的同时将脱气容器101的内部压力减压至大约几百至几千Pa (1.0托至10.0托)。要被预处理单元100去除的气体包括例如氮、 氧、氩、二氧化碳等。
通过利用液体循环路105,可以对同一液体W重复进行上述脱气 处理。具体而言,在液体导入路104的阀109和液体排出路106的阀 110关闭、且液体循环路105的阀107打开的情况下来操作喷淋头102。 这允许贮留在脱气容器101中并且脱气一次的液体W从喷淋头102再 次喷入脱气容器101中。另外,在操作减压泵103的情况下,喷淋头 102进行的气化处理和减压泵103进行的脱气处理对同一液体W重复 进行。每次重复进行利用液体循环路105的上述处理,就可以阶段性 地减少液体W中所含的气体成分。一旦获得脱气至期望纯度的液体W, 就在阀110打开的情况下通过液体排出路106将液体W转移至溶解单 元200。
图2表示将气体部减压以使溶质气化的预处理100;然而,使溶 液脱气的方法不限于此。例如,可以采用使液体W沸腾以使溶质气化 的加热沸腾法,或者使用中空纤维来增加液体和气体之间的界面的膜 脱气法。作为使用中空纤维的脱气组件,商业地提供了SEPAREL系列 (由DIC corporation生产)。SEPAREL系列使用聚(4-甲基戊烯-1) (PMP)作为中空纤维的原料,并且用于从主要供给于压电头(piezo head)的油墨等去除气泡。另外,可以并用抽真空法、加热沸腾法和 膜脱气法中的两种以上。
图3A和3B是溶解单元200的示意性构成图和用于说明液体中的 溶解状态的图。溶解单元200是用于将期望的气体溶解到从预处理单 元100供给的液体W中的单元。本实施方案的溶解单元200主要包括 溶解容器201、设置有旋转板202的旋转轴203、液体导入路204、气 体导入路205、液体排出路206和加压泵207。
从预处理单元100供给的液体W通过液体导入路204被供给并贮 留在溶解容器201中。同时,气体G通过气体导入路205被供给到溶 解容器201中。
一旦将预定量的液体W和气体G贮留在溶解容器201中,则启动 加压泵207以将溶解容器201的内部压力增加到大约0.5MPa。在加压 泵207与溶解容器201之间配置有安全阀208。随着液体内的旋转板 202通过旋转轴203旋转,供给至溶解容器201的气体G转化为气泡, 气体G和液体W之间的接触面积增加,以促进到液体W中的溶解。继 续进行此操作,直到气体G的溶解度几乎达到最大饱和溶解度。在这 种情况下,可以设置用于降低液体温度的单元以尽可能地溶解气体。 当气体的溶解度低时,也可以将溶解容器201的内部压力增加到 0.5MPa以上。在这种情况下,为了安全起见,容器的材料等需要是最 佳的。
一旦获得了溶解有所需浓度的气体G成分的液体W,就将液体W 通过液体排出路206排出并供给到T-UFB生成单元300。在该过程中, 背压阀209调节液体W的流动压力,以防止在供给期间压力的过度增 加。
图3B是示意性地表示放入溶解容器201中的气体G的溶解状态的 图。从与液体W接触的部分溶解放入液体W中的包含气体G的成分的 气泡2。气泡2因此逐渐收缩,然后在气泡2周围出现气体溶解液3。 由于气泡2受到浮力的影响,所以气泡2可以移动到远离气体溶解液 3的中心的位置,或从气体溶解液3分离出来而成为残留气泡4。具体 而言,在通过液体排出路206供给到T-UFB生成单元300的液体W中, 存在被气体溶解液3包围的气泡2和彼此分离的气泡2与气体溶解液 3的混合物。
图中的气体溶解液3是指“液体W的其中混合的气体G的溶解浓 度较高的区域”。在实际溶解在液体W中的气体成分中,气体溶解液 3中的气体成分的浓度在气泡2周围的部分最高。在气体溶解液3与 气泡2分离的情况下,气体溶解液3的气体成分的浓度在该区域的中 心最高,并且该浓度随着远离该中心而连续降低。即,尽管为了说明, 在图3中用虚线包围了气体溶解液3的区域,但实际上并不存在这样 的明确的边界。另外,在本公开中,可以接受不能完全溶解的气体以 气泡的形式存在于液体中。
图4是T-UFB生成单元300的示意性构成图。T-UFB生成单元300 主要包括腔室301、液体导入路302和液体排出路303。来自液体导入 路302经由腔室301到液体排出路303的流动由未示出的流动泵形成。 可以将包括隔膜泵、齿轮泵和螺杆泵的各种泵用作流动泵。在从液体 导入路302导入的液体W中,混合有由溶解单元200放入的气体G的 气体溶解液3。
设置有加热元件10的元件基板12配置在腔室301的底部。随着 对加热元件10施加预定电压脉冲,在与加热元件10接触的区域中生 成由膜沸腾生成的气泡13(在下文中也称为膜沸腾气泡13)。然后, 通过膜沸腾气泡13的膨胀和收缩而生成了包含气体G的超细气泡(UFB)11。结果,从液体排出路303排出包含许多UFB 11的UFB含 有液W。
图5A和图5B是用于表示加热元件10的详细构成的图。图5A表 示加热元件10的近视图,图5B表示包括加热元件10的元件基板12 的较宽区域的截面图。
如图5A所示,在本实施方案的元件基板12中,在硅基板304的 表面上层叠有作为蓄热层的热氧化膜305和也作为蓄热层的层间膜 306。可以将SiO2膜或SiN膜用作层间膜306。在层间膜306的表面上 形成电阻层307,并且在电阻层307的表面上部分地形成布线308。可 以使用Al、Al-Si、Al-Cu等Al合金布线作为布线308。由SiO2膜或 Si3N4膜制成的保护层309形成在布线308、电阻层307和层间膜306 的表面上。
在保护层309的表面上的一部分和该部分周围,形成用于保护保 护层309免受电阻层307的发热引起的化学和物理冲击的抗气蚀膜 (cavitation-resistant film)310,所述部分对应于最终成为加热 元件10的热作用部311。电阻层307的表面上未形成布线308的区域 是电阻层307发热的热作用部311。电阻层307的其上未形成布线308 的加热部用作加热元件(加热器)10。如上所述,通过半导体生产技 术在硅基板304的表面上依次形成元件基板12中的各层,并因此在硅 基板304上设置热作用部311。
图中表示的构成是示例,并且各种其他构成是适用的。例如,可 适用以下构成:电阻层307和布线308的层叠顺序相反的构成,以及 电极连接到电阻层307的下表面的构成(所谓的塞电极构成)。换句 话说,如后所述,可以采用任何构成,只要该构成允许热作用部311 加热液体以在液体中生成膜沸腾。
图5B是元件基板12中包括与布线308连接的电路的区域的截面 图的示例。N型阱区322和P型阱区323部分地设置在硅基板304(其 为P型导体)的顶层中。在通常的MOS工艺中,通过离子注入等导入 和扩散杂质,从而在N型阱区322中形成P-MOS 320,在P型阱区323中形成N-MOS 321。
P-MOS 320包括通过在N型阱区322的顶层中部分导入N型或P 型杂质而形成的源极区325和漏极区326,栅极布线335等。栅极布 线335沉积在N型阱区322的除了源极区325和漏极区326之外的一 部分的顶表面上,并且厚度为数百
Figure BDA0002393513760000071
的栅极绝缘膜328介于栅极布线 335和N型阱区322的顶表面之间。
N-MOS 321包括通过在P型阱区323的顶层部分导入N型或P型 杂质而形成的源极区325和漏极区326,栅布线335等。栅极布线335 沉积在P型阱区323的除了源极区325和漏极区326之外的一部分的 顶表面上,并且厚度为数百
Figure BDA0002393513760000072
的栅极绝缘膜328介于栅极布线335和 P型阱区323的顶表面之间。栅极布线335由通过CVD法沉积的厚度 为
Figure BDA0002393513760000075
Figure BDA0002393513760000074
的多晶硅制成。C-MOS逻辑由P-MOS 320和N-MOS 321 构成。
在P型阱区323中,用于驱动电热转换元件(热阻元件)的N-MOS 晶体管330形成在与包括N-MOS 321的部分不同的部分上。N-MOS晶 体管330包括:通过杂质的导入和扩散工序部分地设置在P型阱区323 的顶层中的源极区332和漏极区331,栅极布线333等。栅极布线333 沉积在P型阱区323的除了源极区332和漏极区331之外的一部分顶 表面上,并且栅极绝缘膜328介于在栅极布线333和P型阱区323的 顶表面之间。
在该示例中,N-MOS晶体管330用作用于驱动电热转换元件的晶 体管。然而,用于驱动的晶体管不限于N-MOS晶体管330,并且可以 使用任何晶体管,只要该晶体管具有单独驱动多个电热转换元件的能 力并且能够实现上述精细构成。尽管在该示例中,电热转换元件和用 于驱动电热转换元件的晶体管形成在同一基板上,但是它们可以分别 形成在不同的基板上。
在元件之间(例如在P-MOS 320与N-MOS 321之间以及在N-MOS 321 与N-MOS晶体管330之间)通过进行厚度为
Figure BDA00023935137600000816
Figure BDA00023935137600000815
的场氧化 来形成氧化膜分离区324。氧化膜分离区324分离元件。氧化膜分离 区324的对应于热作用部311的部分用作蓄热层334,其是硅基板304 上的第一层。
通过CVD法在诸如P-MOS 320、N-MOS 321和N-MOS晶体管330 的元件的每个表面上形成厚度约为
Figure BDA0002393513760000089
的包括PSG膜、BPSG膜等的 层间绝缘膜336。在通过热处理将层间绝缘膜336平坦化之后,在穿 过层间绝缘膜336和栅极绝缘膜328的接触孔中形成作为第一布线层 的Al电极337。在层间绝缘膜336和Al电极337的表面上,通过等 离子CVD法形成厚度为
Figure BDA00023935137600000810
Figure BDA00023935137600000811
的包括SiO2膜的层间绝缘膜 338。在层间绝缘膜338的表面上,通过共溅射法在对应于热作用部 311和N-MOS晶体管330的部分上形成厚度为约
Figure BDA00023935137600000812
的包括TaSiN膜 的电阻层307。电阻层307经由形成在层间绝缘膜338中的通孔与漏 极区331附近的Al电极337电连接。在电阻层307的表面上,形成作 为第二布线层的Al的布线308,作为每个电热转换元件的布线。布线 308、电阻层307和层间绝缘膜338的表面上的保护层309包括通过等 离子体CVD法形成的厚度为
Figure BDA00023935137600000813
的SiN膜。沉积在保护层309的表 面上的抗气蚀膜310包括厚度约为
Figure BDA00023935137600000814
的薄膜,其是选自Ta、Fe、 Ni、Cr、Ge、Ru、Zr、Ir等的至少一种金属。可以适用除上述TaSiN 以外的各种材料,例如TaN、CrSiN、TaAl、WSiN等,只要该材料可以 在液体中生成膜沸腾。
图6A和6B是表示当将预定电压脉冲施加到加热元件10时膜沸腾 的状态的图。在这种情况下,说明在大气压下生成膜沸腾的情况。在 图6A中,横轴表示时间。下部曲线图中的纵轴表示施加到加热元件10的电压,上部曲线图中的纵轴表示由膜沸腾生成的膜沸腾气泡13 的体积和内部压力。另一方面,图6B表示与图6A所示的时机1至3 相关的膜沸腾气泡13的状态。下面按时间顺序说明每种状态。如后所 述通过膜沸腾生成的UFB 11主要在膜沸腾气泡13的表面附近生成。 图6B所示的状态是如图1所示,将由生成单元300生成的UFB 11通 过循环路径再供给到溶解单元200,将包含UFB 11的液体再供给到生 成单元300的液体通路的状态。
在将电压施加到加热元件10之前,在腔室301中基本上保持大气 压。一旦将电压施加到加热元件10,在与加热元件10接触的液体中 生成膜沸腾,并且这样生成的气泡(以下称为膜沸腾气泡13)通过从 内部作用的高压而膨胀(时机1)。在该过程中的起泡压力预计为约8 至10MPa,其为接近水的饱和蒸气压的值。
施加电压的时间(脉冲宽度)在约0.5μsec至10.0μsec,并且 即使在施加电压之后,膜沸腾气泡13也由于在时机1获得的压力的惯 性而膨胀。然而,随着膨胀生成的负压在膜沸腾气泡13的内部逐渐增 加,并且负压在使膜沸腾气泡13收缩的方向上起作用。不久,在惯性 力和负压平衡的时机2,膜沸腾气泡13的体积变为最大,此后膜沸腾 气泡13在负压的作用下迅速收缩。
在膜沸腾气泡13的消失中,膜沸腾气泡13不是在加热元件10 的整个表面消失,而是在一个或多个极小的区域内消失。因此,在加 热元件10上,在膜沸腾气泡13消失(时机3)的极小区域中,生成 比时机1起泡中更大的力。
每次向加热元件10施加电压脉冲时,如上所述的膜沸腾气泡13 的生成、膨胀、收缩和消失都被重复,并且每次生成新的UFB 11。
参照图7A至10B进一步详细地说明在膜沸腾气泡13的生成、膨 胀、收缩和消失的每个过程中UFB 11的生成状态。
图7A至图7D是示意性地表示由于膜沸腾气泡13的生成和膨胀而 引起的UFB 11的生成状态的图。图7A表示在将电压脉冲施加至加热 元件10之前的状态。混合有气体溶解液3的溶液W在腔室301内流动。
图7B表示向加热元件10施加电压并且在与液体W接触的加热元 件10的几乎整个区域上均匀地生成膜沸腾气泡13的状态。当施加电 压时,加热元件10的表面温度以10℃/μsec的速度急剧上升。在温 度达到几乎300℃的时间点发生膜沸腾,从而生成膜沸腾气泡13。
此后,在施加脉冲期间,加热元件10的表面温度保持升高到大约 600至800℃,并且膜沸腾气泡13周围的液体也被迅速加热。在图7B 中,将在膜沸腾气泡13周围并且将被迅速加热的液体的区域表示为尚 未起泡的高温区域14。尚未起泡的高温区域14中的气体溶解液3超 过热溶解极限,并且被汽化而成为UFB。这样汽化的气泡具有约10nm 至100nm的直径和大的气-液界面能。因此,气泡独立地漂浮在液体W 中而不会在短时间内消失。在本实施方案中,将从膜沸腾气泡13的生 成到膨胀的由热作用而生成的气泡称为第一UFB 11A。
图7C表示膜沸腾气泡13膨胀的状态。即使在对加热元件10施加 电压脉冲之后,膜沸腾气泡13也由于从其生成获得的力的惯性而继续 膨胀,并且尚未起泡的高温区域14也由于惯性而移动和扩展。具体地, 在膜沸腾气泡13的膨胀过程中,尚未起泡的高温区域14内的气体溶 解液3作为新的气泡汽化并成为第一UFB 11A。
图7D表示膜沸腾气泡13具有最大体积的状态。随着膜沸腾气泡 13由于惯性而膨胀,膜沸腾气泡13内部的负压随着该膨胀而逐渐增 加,并且负压起到使膜沸腾气泡13收缩的作用。当负压和惯性力平衡 的时间点,膜沸腾气泡13的体积最大,然后开始收缩。
在膜沸腾气泡13的收缩阶段,存在通过图8A至图8C所示的过程 生成的UFB(第二UFB 11B)和通过图9A至9C所示的过程生成的UFB (第三UFB 11C)。认为这两个过程是同时的。
图8A至图8C是表示由膜沸腾气泡13的收缩引起的UFB 11的生 成状态的图。图8A表示膜沸腾气泡13开始收缩的状态。尽管膜沸腾 气泡13开始收缩,但是周围的液体W在膨胀方向上仍然具有惯性力。 因此,在远离加热元件10的方向上作用的惯性力和由膜沸腾气泡13 的收缩引起的朝向加热元件10的力作用在极其靠近膜沸腾气泡13的 周围区域中,该区域被减压。该区域在图中表示为尚未起泡的负压区 域15。
尚未起泡的负压区域15内的气体溶解液3超过压力溶解极限并且 被汽化而成为气泡。如此汽化的气泡具有约100nm的直径,并且此后 独立地漂浮在液体W中而不会在短时间内消失。在本实施方案中,在 膜沸腾气泡13的收缩期间通过压力作用而汽化的气泡被称为第二UFB 11B。
图8B表示膜沸腾气泡13的收缩过程。膜沸腾气泡13的收缩速度 通过负压而加速,并且尚未起泡的负压区域15也随着膜沸腾气泡13 的收缩而移动。具体而言,在膜沸腾气泡13的收缩过程中,尚未起泡 的负压区域15上的一部分内的气体溶解液3依次析出而成为第二UFB 11B。
图8C表示膜沸腾气泡13消失前即刻的状态。尽管通过膜沸腾气 泡13的加速收缩,周围液体W的移动速度也增加了,但是由于腔室 301中的流路阻力而产生压力损失。结果,尚未起泡的负压区域15所 占据的区域进一步增大,并且生成许多第二UFB 11B。
图9A至图9C是表示在膜沸腾气泡13的收缩期间通过液体W的再 加热而生成UFB的状态的图。图9A表示加热元件10的表面被收缩的 膜沸腾气泡13覆盖的状态。
图9B表示膜沸腾气泡13的收缩已经进行,并且加热元件10的一 部分表面与液体W接触的状态。在这种状态下,在加热元件10的表面 上残留有热量,但是即使液体W与表面接触,该热量也不足够高以引 起膜沸腾。通过与加热元件10的表面接触而被加热的液体的区域在图 中表示为尚未起泡的再加热区域16。尽管未进行膜沸腾,但是尚未起 泡的再加热区域16内的气体溶解液3超过热溶解极限并汽化。在本实 施方案中,将在膜沸腾泡13的收缩期间通过液体W的再加热而生成的 气泡称为第三UFB 11C。
图9C表示膜沸腾气泡13的收缩进一步进行的状态。膜沸腾气泡 13越小,加热元件10与液体W接触的区域越大,并且生成第三UFB 11C 直至膜沸腾气泡13消失。
图10A和图10B是表示由膜沸腾生成的膜沸腾气泡13的消失的冲 击(即,气蚀的一种)引起的生成UFB的状态的图。图10A表示膜沸 腾气泡13消失之前即刻的状态。在该状态下,膜沸腾气泡13由于内 部负压而迅速收缩,尚未起泡的负压区域15包围膜沸腾气泡13。
图10B表示膜沸腾气泡13在点P处消失之后即刻的状态。当膜沸 腾气泡13消失时,由于消失的冲击,声波从点P作为起点同心地波动。 声波是弹性波的总称,其通过任何物体传播,无论是气体、液体和固 体。在本实施方案中,作为液体W的高压面17A和低压面17B的液体 W的压缩波交替地传播。
在这种情况下,尚未起泡的负压区域15内的气体溶解液3通过因 膜沸腾气泡13消失而产生的冲击波而发生共振,气体溶解液3超过压 力溶解极限,并且在低压面17B通过其的时机进行相变。具体地,在 膜沸腾气泡13消失的同时,许多气泡在尚未起泡的负压区域15中汽 化。在本实施方案中,由膜沸腾气泡13的消失产生的冲击波而生成的 气泡被称为第四UFB 11D。
由膜沸腾气泡13的消失所产生的冲击波所生成的第四UFB 11D 在极窄的薄膜状区域中以极短的时间(1μS以下)突然出现。直径足 够小于第一至第三UFB的直径,并且气-液界面能高于第一至第三UFB 的气-液界面能。因此,认为第四UFB 11D具有与第一至第三UFB 11A 至11C不同的特性并且生成不同的效果。
另外,第四UFB 11D在其中传播冲击波的同心球的区域的许多部 分均匀地生成,并且第四UFB 11D从其生成开始均匀地存在于腔室301 中。尽管在生成第四UFB 11D的时机已经存在许多第一至第三UFB, 但是第一至第三UFB的存在不会极大地影响第四UFB 11D的生成。还 认为第一至第三UFB不会由于第四UFB 11D的生成而消失。
如上所述,期望通过加热元件10生成热从膜沸腾气泡13的生成 到消失在多个阶段中生成UFB 11。第一UFB 11A、第二UFB 11B和第 三UFB 11C在膜沸腾生成的膜沸腾气泡的表面附近生成。在这种情况 下,“附近”是指距膜沸腾气泡的表面约20μm以内的区域。当气泡 消失时,在冲击波传播的区域中生成第四UFB 11D。尽管以上示例表 示了至膜沸腾气泡13消失的阶段,但是生成UFB的方式不限于此。例 如,在气泡消失之前,通过所生成的膜沸腾气泡13与大气连通,如果 膜沸腾气泡13尚未达到消失,也能够生成UFB。
接下来,说明UFB的保存特性。液体的温度越高,气体成分的溶 解特性越低,温度越低,气体成分的溶解特性越高。换句话说,随着 液体温度升高,促进溶解的气体成分的相变并且UFB的生成变得更容 易。液体的温度与气体的溶解度成相反关系,随着液体温度升高,超 过饱和溶解度的气体转变为气泡并出现在液体中。
因此,当液体的温度从常温迅速升高时,溶解特性不停地降低, 并且开始生成UFB。随着温度升高,热溶解特性降低,并且生成许多 UFB。
相反,当液体的温度从常温下降时,气体的溶解特性增加,并且 生成的UFB更容易液化。然而,这样的温度远低于常温。另外,由于 即使当液体的温度降低时,一旦生成的UFB也具有高的内部压力和大 的气-液界面能,所以施加足够高的压力以破坏这种气-液界面的可能 性很小。换句话说,只要将液体储存在常温常压下,一旦生成的UFB 就不会轻易消失。
在本实施方案中,用图7A至图7C说明的第一UFB 11A和用图9A 至9C说明的第三UFB 11C可以描述为通过利用气体的这种热溶解特性 而生成的UFB。
另一方面,在压力与液体的溶解特性之间的关系中,液体的压力 越高,气体的溶解特性越高,并且压力越低,溶解特性越低。换句话 说,随着液体的压力降低,促进液体中溶解的气体溶解液向气体的相 变,并且UFB的生成变得更容易。一旦液体的压力变得低于常压,溶 解特性就会立即降低,开始UFB的生成。随着压力降低,压力溶解特 性降低,并且生成许多UFB。
相反,当液体的压力增加到高于常压时,气体的溶解特性增加, 并且生成的UFB更容易被液化。但是,这样的压力远高于大气压。另 外,由于即使当液体的压力增加时,一旦生成的UFB也具有高的内部 压力和大的气-液界面能,所以施加足够高的压力以破坏这种气-液界 面的可能性很小。换句话说,只要将液体储存在常温常压下,一旦生 成的UFB就不会轻易消失。
在本实施方案中,用图8A至8C说明的第二UFB 11B和用图10A 至10B说明的第四UFB 11D可以描述为通过利用气体的这种压力溶解 特性而生成的UFB。
上面分别说明了由不同原因生成的那些第一至第四UFB;但是, 上述生成原因与膜沸腾事件同时发生。因此,可以同时生成至少两种 类型的第一至第四UFB,并且这些生成原因可以协作以生成UFB。应当 注意,由膜沸腾现象引发所有生成原因是常见的。在本说明书中,通 过利用如上所述由快速加热引起的膜沸腾来生成UFB的方法被称为热 超细气泡(T-UFB)生成方法。另外,将通过T-UFB生成方法生成的 UFB称为T-UFB,将通过T-UFB生成方法生成的包含T-UFB的液体称为 T-UFB含有液。
通过T-UFB生成方法生成的气泡几乎全部为1.0μm以下,并且难 以生成毫气泡和微气泡。即,T-UFB生成方法允许显着且有效地生成 UFB。另外,通过T-UFB生成方法生成的T-UFB具有比通过常规方法生 成的UFB大的气-液界面能,并且只要在常温和常压下储存T-UFB就不 会轻易消失。此外,即使通过新的膜沸腾生成了新的T-UFB,也可以 防止由于新生成的冲击而使已经生成的T-UFB消失。即,可以说, T-UFB含有液中所含的T-UFB的数量和浓度具有滞后特性(hysteresis properties),这取决于在T-UFB含有液中进行膜沸腾的次数。换句 话说,可以通过控制设置在T-UFB生成单元300中的加热元件的数量 和施加电压脉冲至加热元件的数量来调节包含在T-UFB含有液中的 T-UFB的浓度。
再次参考图1。一旦在T-UFB生成单元300中生成具有期望的UFB 浓度的T-UFB含有液W,则将UFB含有液W供给至后处理单元400。
图11A至11C是表示本实施方案的后处理单元400的构成示例的 图。本实施方案的后处理单元400以从无机离子、有机物和不溶性固 体物质的顺序阶段地去除UFB含有液W中的杂质。
图11A表示去除无机离子的第一后处理机构410。第一后处理机 构410包括交换容器411、阳离子交换树脂412、液体导入路413、收 集管414和液体排出路415。交换容器411储存阳离子交换树脂412。 将由T-UFB生成单元300生成的UFB含有液W通过液体导入路413注入交换容器411中,并吸收到阳离子交换树脂412中,使得去除作为 杂质的阳离子。这些杂质包括从T-UFB生成单元300的元件基板12 剥离的金属材料,例如SiO2、SiN、SiC、Ta、Al2O3、Ta2O5和Ir。
阳离子交换树脂412是将官能团(离子交换基团)导入具有三维 网络的高聚物基体中的合成树脂,并且合成树脂的外观是约0.4至 0.7mm的球形颗粒。一般的高聚物基体是苯乙烯-二乙烯基苯共聚物, 官能团可以是例如甲基丙烯酸系列和丙烯酸系列的官能团。然而,以 上材料是示例。只要该材料可以有效地去除期望的无机离子,上述材 料就可以改变为各种材料。吸收在阳离子交换树脂412中以去除无机 离子的UFB含有液W由收集管414收集,并通过液体排出路415转移 至下一工序。在本实施方案中的该过程中,并非所有的从液体导入路 413供给的UFB含有液W中包含的无机离子需要被去除,只要至少一 部分无机离子被去除即可。
图11B表示去除有机物的第二后处理机构420。第二后处理机构 420包括储存容器421、过滤器(filtration filter)422、真空泵 423、阀424、液体导入路425、液体排出路426和空气吸引路427。 储存容器421的内部被过滤器422分成上下方两个区域。液体导入路425连接到上下方两个区域的上方区域,空气吸引路427和液体排出 路426连接到上下方两个区域的下方区域。一旦在阀424关闭的状态 下驱动真空泵423,则储存容器421中的空气通过空气吸引路427排 出以使储存容器421内部的压力为负压,然后从液体导入路425导入UFB含有液W。然后,将由过滤器422去除了杂质的UFB含有液W贮留 在储存容器421中。
由过滤器422去除的杂质包括可以在管或各单元处混合的有机材 料,例如包括例如硅、硅氧烷和环氧树脂的有机化合物。可用于过滤 器422的滤膜包括可去除细菌的亚μm网眼的过滤器(网眼直径为1 μm以下的过滤器)和可去除病毒的nm网眼的过滤器。具有如此小的 开口直径的过滤器可以去除大于过滤器的开口直径的气泡。特别地, 可能存在以下情况:过滤器被吸附到过滤器的开口(网眼)上的微细 气泡堵塞,这会减慢过滤速度。然而,如上所述,通过本发明的本实 施方案中说明的T-UFB生成方法生成的大多数气泡的直径为1μm以下 的尺寸,并且难以生成毫气泡和微气泡。即,由于生成毫气泡和微气 泡的可能性极低,因此能够抑制由于气泡向过滤器的吸附而导致的过 滤速度的降低。因此,将设置有网眼直径为1μm以下的过滤器的过滤 器422应用于具有T-UFB生成方法的系统是有利的。
适用于本实施方案的过滤的示例可以是所谓的死端过滤 (dead-endfiltration)和错流过滤。在死端过滤中,所供给的液体 的流动方向与通过过滤器开口的过滤液体的流动方向相同,具体而言, 使流动的方向彼此一致。相反,在错流过滤中,所供给的液体沿过滤 器表面的方向流动,具体而言,所供给的液体的流动方向和通过过滤 器开口的过滤液体的流动方向彼此交叉。为了抑制气泡向过滤器开口 的吸附,优选适用错流过滤。
在储存容器421中贮留了一定量的UFB含有液W之后,停止真空 泵423并且打开阀424以将储存容器421中的T-UFB含有液通过液体 排出路426转移到下一工序。此处虽然采用了真空过滤法作为去除有 机杂质的方法,但是例如,也可以采用重力过滤法和加压过滤作为使 用过滤器的过滤方法。
图11C表示去除不溶性固体物质的第三后处理机构430。第三后 处理机构430包括沉淀容器431、液体导入路432、阀433和液体排出 路434。
首先,在阀433关闭的状态下,通过液体导入路432将预定量的UFB含有液W贮留在沉淀容器431中,并且将其放置一会儿。同时, UFB含有液W中的固体物质由于重力而沉淀到沉淀容器431的底部上。 在UFB含有液中的气泡中,较大的气泡如微气泡通过浮力上升到液体 表面,并且也从UFB含有液中去除。经过足够的时间后,打开阀433, 去除了固体物质和大气泡的UFB含有液W通过液体排出路434转移到 收集单元500。在本实施方案中示出了依次适用三个后处理机构的示 例;然而,并不限于此,并且可以改变三个后处理机构的顺序,或者 可以采用至少一种所需的后处理机构。
再次参考图1。通过后处理单元400去除了杂质的T-UFB含有液W 可以直接转移到收集单元500,或者可以再次放回溶解单元200。在后 一种情况下,由于T-UFB的生成而降低的T-UFB含有液W的气体溶解 浓度可以由溶解单元200再次补偿到饱和状态。如果在补偿之后由 T-UFB生成单元300生成新的T-UFB,则可以进一步增加具有上述特性 的T-UFB含有液中包含的UFB的浓度。即,可以通过在溶解单元200、 T-UFB生成单元300和后处理单元400的循环次数来增加所包含的UFB 的浓度,并且可以在获得所含的UFB的预定浓度之后,将UFB含有液 W转移到收集单元500。本实施方案示出将由后处理单元400处理的 UFB含有液送回至溶解单元200并循环的形式;然而,并不限于此, 通过T-UFB生成单元之后的UFB含有液可以在供给至后处理单元400 之前再次放回到溶解单元200,使得在例如通过多次循环来增加T-UFB 浓度之后,由后处理单元400进行后处理。
收集单元500收集并保存从后处理单元400转移的UFB含有液W。 由收集单元500收集的T-UFB含有液是具有高纯度的UFB含有液,各 种杂质从其中去除。
在收集单元500中,通过进行某些阶段的过滤处理,可以通过 T-UFB的尺寸对UFB含有液W进行分类。由于预想通过T-UFB方法获 得的T-UFB含有液W的温度高于常温,因此收集单元500可以设置有 冷却单元。冷却单元可以被设置到后处理单元400的一部分。
上面给出了UFB生成装置1的示意说明;然而,不用说可以改变 表示的多个单元,并且不需要全部准备。取决于所使用的液体W和气 体G的类型以及所生成的T-UFB含有液的预期用途,可以省略上述单 元的一部分,或者可以添加除上述单元之外的其他单元。
例如,当要被UFB包含的气体是大气时,可以省略作为预处理单 元100的脱气单元和溶解单元200。另一方面,当期望UFB包含多种 气体时,可以添加其他溶解单元200。
可以将图11A至11C中说明的用于去除杂质的单元设置到T-UFB 生成单元300的上游,或者可以设置在其上游和下游两者。当要供给 给UFB生成装置的液体是自来水、雨水、污水等时,液体中可能包含 有机和无机杂质。如果将这样的包含杂质的液体W供给至T-UFB生成 单元300,则存在使加热元件10劣化并引起盐析现象的危险。通过将 如图11A至11C所示的机构设置在T-UFB生成单元300的上游,可以 提前去除上述杂质。
<<可用于T-UFB含有液的液体和气体>>
现在说明可用于生成T-UFB含有液的液体W。可用于本实施方案 中的液体W是例如纯水、离子交换水、蒸馏水、生物活性水、磁性活 性水、化妆水、自来水、海水、河水、清洁水和污水、湖水、地下水、 雨水等。也可以使用包含上述液体等的混合液体。也可以使用包含水 和可溶性有机溶剂的混合溶剂。通过与水混合而使用的可溶性有机溶 剂没有特别限制;但是,以下可以是其具体示例。碳数为1至4的烷 基醇类,包括甲醇,乙醇,正丙醇,异丙醇,正丁醇,仲丁醇和叔丁 醇。酰胺类,包括N-甲基-2-吡咯烷酮,2-吡咯烷酮,1,3-二甲基-2- 咪唑啉酮,N,N-二甲基甲酰胺和N,N-二甲基乙酰胺。酮类或酮醇类, 包括丙酮和双丙酮醇。环状醚类,包括四氢呋喃和二噁烷。二醇类, 包括乙二醇,1,2-丙二醇,1,3-丙二醇,1,2-丁二醇,1,3-丁二醇, 1,4-丁二醇,1,5-戊二醇,1,2-己二醇,1,6-己二醇,3-甲基-1,5-戊二醇,二甘醇,三甘醇和硫代二甘醇。多元醇的低级烷基醚类,包 括乙二醇单甲醚,乙二醇单乙醚,乙二醇单丁醚,二甘醇单甲醚,二 甘醇单乙醚,二甘醇单丁醚,三甘醇单甲醚,三甘醇单乙醚,和三乙 二醇单丁醚。聚亚烷基二醇类,包括聚乙二醇和聚丙二醇。三醇类, 包括甘油,1,2,6-己三醇和三羟甲基丙烷。这些可溶性有机溶剂可以 单独使用,也可以并用它们中的2种以上。
可以导入到溶解单元200中的气体成分是例如氢、氦、氧、氮、 甲烷、氟、氖、二氧化碳、臭氧、氩、氯、乙烷、丙烷、空气等。气 体成分可以是包含上述成分中的一些的混合气体。另外,溶解单元200 无需以气态溶解物质,并且溶解单元200可以将包含期望成分的液体或固体融合到液体W中。在这种情况下,溶解可以是自发溶解,施加 压力引起的溶解,或由于电解离解而引起的水合、离子化和化学反应 导致的溶解。
《T-UFB生成方法的效果》
接下来,通过与常规UFB生成方法进行比较来说明上述T-UFB生 成方法的特征和效果。例如,在以文丘里法为代表的常规的气泡生成 装置中,在流路的一部分中设置有诸如减压喷嘴的机械减压结构。液 体以预定压力流动以通过减压结构,并且在减压结构的下游区域中生 成各种尺寸的气泡。
在这种情况下,在生成的气泡中,由于诸如毫气泡和微气泡的相 对较大的气泡受到浮力的影响,因此这些气泡上升至液面并消失。即 使不受浮力影响的UFB也可能随毫气泡和微气泡消失,因为UFB的气- 液界面能不是很大。另外,即使上述减压结构串联配置,并且同一液 体重复地流过减压结构,也不能长时间储存与重复次数相对应的数量 的UFB。换句话说,通过常规的UFB生成方法生成的UFB含有液一直 难以长时间地将所含有的UFB的浓度维持在预定值。
相反,在利用膜沸腾的本实施方案的T-UFB生成方法中,在极其 靠近加热元件的部分中局部地发生从常温到约300℃的快速温度变化 和从常压到约几兆帕的快速压力变化。加热元件是矩形,其一侧大约 数十至数百μm。它大约是常规UFB生成单元尺寸的1/10至1/1000。 另外,随着在膜沸腾气泡表面的极薄膜区域内的气体溶解液瞬时(以 微秒计的极短时间内)超过热溶解极限或压力溶解极限,发生相变并 且气体溶解液析出为UFB。在这种情况下,几乎不生成较大的气泡, 例如毫气泡和微气泡,并且液体以极高的纯度包含直径为约100nm的 UFB。此外,由于以这种方式生成的T-UFB具有足够大的气-液界面能, 因此在正常环境下T-UFB不容易破裂并且可以长时间储存。
特别地,使用能够在液体中局部形成气体界面的膜沸腾现象的本 公开可以在靠近加热元件的液体的一部分中形成界面,而不会影响整 个液体区域,并且热和压力作用进行于其上的区域可以非常局部。结 果,可以稳定地生成期望的UFB。随着用于生成UFB的进一步更多的 条件应用于通过液体循环的生成液,可以另外生成新的UFB而对已经 制成的UFB的影响很小。结果,可以相对容易地生产期望尺寸和浓度 的UFB液。
此外,由于T-UFB生成方法具有上述滞后特性,可以在保持高纯 度的同时将浓度增加到所需浓度。换句话说,根据T-UFB生成方法, 可以有效地生成高纯度和高浓度的可长时间储存的UFB含有液。
<<T-UFB含有液的具体用途>>
通常,包含超细气泡的液体的应用通过包含气体的类型来区分。 只要可以将大约PPM至BPM的气体量溶解在液体中,任何类型的气体 都可以构成UFB。例如,含超细气泡的液体可用于以下应用。
-含空气的UFB含有液可以优选用于工业、农业和渔业以及医疗现 场等中的清洁,以及植物和农业和渔业产品的养殖。
-含臭氧的UFB含有液不仅可以优选用于工业、农业和渔业以及医 疗现场等中的清洁应用,而且还可以应用于旨在消毒、灭菌和除菌的 应用以及例如排水和受污染的土壤的环境净化。
-含氮的UFB含有液不仅可以优选用于工业、农业和渔业以及医疗 现场等中的清洁应用,还可以用于旨在进行消毒、灭菌和除菌的应用 以及例如排水和受污染的土壤的环境净化。
-含氧的UFB含有液可以优选用于工业、农业和渔业、以及医疗现 场等中的清洁应用,以及植物和农业和渔业产品的养殖。
-含二氧化碳的UFB含有液不仅可以优选用于工业、农业和渔业以 及医疗现场等中的清洁应用,还可以用于例如旨在进行消毒、灭菌和 除菌的应用。
-含有全氟化碳作为医用气体的UFB含有液可优选用于超声诊断 和治疗。如上所述,UFB含有液可以在医疗、化学、牙科、食品、工 业、农业和渔业等的各个领域中发挥作用。
在每种应用中,包含在UFB含有液中的UFB的纯度和浓度对于快 速可靠地发挥UFB含有液的作用很重要。换句话说,通过利用本实施 方案的T-UFB生成方法,可以在各个领域中期待空前的效果,其中该 方法能够生成具有高纯度和期望浓度的UFB含有液。以下是期望可优 选应用T-UFB生成方法和T-UFB含有液的应用列表。
(A)液体纯化应用
-在将T-UFB生成单元设置于水净化单元的情况下,期望提高水净 化效果和PH调节液的纯化效果。T-UFB生成单元还可以设置于碳酸水 站。
-在将T-UFB生成单元设置于加湿器、香气扩散器、咖啡机等的情 况下,期望增强室内的加湿效果、除臭效果和气味扩散效果。
-如果生成了由溶解单元将臭氧气体溶解在其中的UFB含有液,并 且将其用于牙科治疗、烧伤治疗和使用内窥镜的伤口治疗,则期望增 强医疗清洁效果和抗菌效果。
-在将T-UFB生成单元设置于公寓的储水箱的情况下,期望增强将 长时间储存的饮用水的水净化效果和除氯效果。
-如果将含有臭氧或二氧化碳的T-UFB含有液用于不能进行高温 灭菌处理的日本清酒、烧酒、葡萄酒等的酿造过程,期望比使用常规 液体更有效地进行巴氏灭菌处理(pasteurization processing)。
-如果在用于特定保健用途的食品和具有功能要求的食品的生产 过程中将UFB含有液混入成分中,则可以进行巴氏灭菌处理,因此可 以提供安全且功能性的食品,而没有味道的损失。
-在将T-UFB生成单元设置于用于在渔业产品(例如鱼和珍珠)的 养殖场中的养殖的海水和淡水的供给路径的情况下,期望促进渔业产 品的产卵和生长。
-在将T-UFB生成单元设置于用于食品保藏的水的纯化工序的情 况下,期望增强食品的保藏状态。
-在将T-UFB生成单元设置于用于将池水或地下水漂白的漂白单 元中的情况下,期望更高的漂白效果。
-在将T-UFB含有液用于修复混凝土构件的裂缝的情况下,期望增 强裂缝修复的效果。
-在将T-UFB包含于用于使用液体燃料的机器(例如汽车、船舶和 飞机)的液体燃料的情况下,期望增强燃料的能效。
(B)清洁应用
近来,UFB含有液作为用于去除附着在衣物上的污垢等的清洁水 已受到关注。如果将上述实施方案中说明的T-UFB生成单元设置于洗 衣机,并且将比常规液体具有更高纯度和更好渗透性的UFB含有液供 给于洗涤桶,则期望进一步增强去污力。
-在将T-UFB生成单元设置于淋浴器和便器洗涤器的情况下,不仅 期望对包括人体在内的各种动物的清洁效果,而且还期望促进浴室和 便器上的水渍和霉菌的污染去除的效果。
-在将T-UFB生成单元设置于汽车的窗户清洗器、用于清洁墙壁构 件等的高压清洗器、汽车清洗器、洗碗机、食物清洗器等的情况下, 期望进一步增强其清洁效果。
-在将T-UFB含有液用于清洁和维护工厂中生产的零件、包括压制 后的去毛刺工序的情况下,期望增强清洁效果。
-在半导体元件的生产中,如果将T-UFB含有液用作晶片的抛光 水,则期望增强抛光效果。另外,如果在抗蚀剂去除工序中使用T-UFB 含有液,则增强促进不容易剥离的抗蚀剂的剥离。
-在将T-UFB生成单元设置于用于对医疗机器(例如医疗机器人、 牙科治疗单元、器官保藏容器等)进行清洁和除菌的机器的情况下, 期望增强机器的清洁效果和除菌效果。T-UFB生成单元也可用于动物 的治疗。
(C)药物应用
-如果在化妆品等中包含T-UFB含有液,则促进渗透到皮下细胞, 并且可以大大减少对皮肤生成不良影响的添加剂例如防腐剂和表面活 性剂。结果,可以提供更安全和更实用的化妆品。
-如果将包含T-UFB的高浓度纳米气泡制剂用于例如CT和MRI等 医学检查装置的造影剂,则可以有效地使用X射线和超声波的反射光。 这使得可以捕获可用于癌症等的初步诊断的更详细的图像。
-如果将包含T-UFB的高浓度纳米气泡水用于称为高强度聚焦超 声(HIFU)的超声波治疗机,则可以降低超声波的照射功率,从而可 以使治疗更加非侵入。特别地,可以减少对正常组织的损伤。
-通过使用含有T-UFBs的高浓度纳米气泡作为源、修饰在气泡周 围的负电荷区域中形成脂质体的磷脂、并通过磷脂适用各种医疗物质 (例如DNA和RNA),可以形成纳米气泡制剂。
-如果将含有通过生成T-UFB制成的高浓度纳米气泡水的药物转 移到牙根管中以进行牙髓和牙本质的再生处理,则该药物会由于纳米 气泡水的渗透效果而深深地进入牙本质小管,并且促进除菌效果。这 使得可以在短时间内安全地治疗牙髓的感染根管。
《延长加热器的寿命》
如上所述,可以通过驱动加热元件10(以下称为加热器)以在液 体中生成膜沸腾来生成UFB。如参考图6A和图6B所说明地,由于所 生成的膜沸腾气泡13的消失而对加热器10施加极大的冲击。除了该 冲击之外,在膜沸腾气泡13消失期间加热器等的温度也导致加热器 10和加热器10的周边部缓慢损坏,最终使加热器10断线。
在发明人进行的实验中证实了,如果生成膜沸腾的次数为大约 100,000次,则加热器10没有断线并且能够通过稳定地生成膜沸腾来 生成UFB。为了在短时间内生成UFB,可能存在需要通过使用许多、或 例如10,000个以上的加热器10连续地生成膜沸腾的情况。需要延长 加热器的寿命以低成本生产UFB生成装置1。
在本实施方案中,除了用于生成UFB的加热器10以外,还将另一 加热器(以下称为移位加热器(shifting heater))设置于元件基板 12,其用于使由加热器10生成的膜沸腾气泡13(气泡)消失的消失 位置移位。通过在由UFB生成用加热器10生成的膜沸腾气泡13消失 的时机驱动移位加热器,从而能够使UFB生成用加热器10生成的膜沸 腾气泡13的消失位置移位。这允许在UFB生成用加热器10中生成的 膜沸腾气泡13抑制在加热器10上的相同位置处的重复消失。换句话 说,可以防止来自膜沸腾气泡13的消失的冲击在加热器10上的一点 的持续集中。因此,可以延长加热器的寿命。下面给出具体说明。
图12A至12D是用于说明元件基板12的提取的部分元件区域1250 的平面布局的示例的图,并且表示其中在一个元件区域1250上配置多 个加热器10的示例。图12A是其中四个加热器10配置在一个元件区 域1250中的示例。在图12A中,电极盘(electrode pad)1201和1202 配置在元件区域1250中,以向四个加热器10中的每一个施加电能。 区域1212是各自连接到加热器10的单独的布线区域。区域1211是将 多个单独的布线区域与电极盘1201和1202中的每一个连接的公共布 线区域。通过将图6A所示的电压脉冲施加到电极盘1201和1202,电 流流过公共布线区域1211、单独的布线区域1212和加热器10。然后, 在每个加热器10上方的液体中生成膜沸腾,并且生成UFB。除非另有 说明,否则在以下说明中,在初始状态下,要使用的生成UFB的加热 器10具有基本相同的形状,并且具有基本相同的电阻值。加热器10 的形状不必一定是相同的形状,例如,对于每个元件区域1250,加热 器10的形状可以不同。可以根据需要通过在光刻工序中进行掩模设计 来部分地改变加热器10的形状。应当注意的是,为了简单说明,在此 使用具有少量加热器的元件区域1250作为示例进行说明。
图12A表示没有电流流过加热器10并且没有生成膜沸腾气泡的状 态。图12B表示向电极盘1201和1202施加电压脉冲并生成膜沸腾气 泡13的情况。图12B对应于图6A和6B中的“时机1”。图12C是表 示膜沸腾气泡13从图12B的状态随后膨胀并且膜沸腾气泡13的体积变为最大的情况的图。图12C对应于图6A和6B中的“时机2”。图12D是表示膜沸腾气泡13的收缩从图12C的状态进行,并且膜沸腾气 泡13在加热器10上的极小区域内消失的情况的图。图12D对应于图 6A和6B的“时机3”。如图6A所示,在这种情况下,在消失位置生 成大于膜沸腾开始时的能量的冲击。因此,在生成膜沸腾气泡13的时 机,使用加热器10的基本整个面积生成膜沸腾气泡13,另一方面, 消失时,膜沸腾气泡13在加热器10的极小的区域中消失。这使得在 膜沸腾气泡13消失时冲击集中在每个加热器10上的一点上。
图13A至图13D是设置有移位加热器1310的示例的图,该移位加 热器1310用于移位由各加热器10生成的膜沸腾气泡13的消失位置。 图13A是UFB生成用加热器10未生成膜沸腾气泡的状态的图。在图 13A中,移位加热器1310配置在UFB生成用加热器10附近。在下文 中,为了便于说明,将UFB生成用加热器10称为UFB生成加热器10。 在该实施方案中,移位加热器1310也是生成膜沸腾气泡的加热元件。 尽管为了便于说明,在说明书中区分了UFB生成加热器和移位加热器 彼此,但是它们可以实现为相同的加热元件。即,也可以说在图13A 中设置有连接到第一电极盘1201和1202的第一加热器组和连接到第 二电极盘1301和1302的第二加热器组。第一加热器组和第二加热器 组两者都可以设为能够生成UFB的加热器。如后所述,第一加热器组 和第二加热器组具有不同的生成膜沸腾的时机。
在图13A的示例中,为每个UFB生成加热器10配置一个移位加热 器1310。但是,可以为每个UFB生成加热器10配置多个移位加热器 1310,或者可以为多个UFB生成加热器10配置一个移位加热器1310。 尽管以UFB生成加热器10和移位加热器1310彼此对应地给出说明, 但是它们之间的对应关系也可不清楚。在下文中,说明通过驱动移位 加热器1310来移位由UFB生成加热器10生成的膜沸腾气泡13的消失 位置的情况。
与图12B相似,图13B是表示由UFB生成加热器10在UFB生成加 热器10上生成膜沸腾气泡13的情况的图。在移位加热器1310上没有 生成膜沸腾。与图12C类似,图13C是表示每个UFB生成加热器10 上的膜沸腾气泡13随后膨胀并且膜沸腾气泡13的体积变为最大的情 况的图。在该阶段,在移位加热器1310上也不生成膜沸腾。
图13D是处于与图12D相同的时机的图,是由UFB生成加热器10 生成的膜沸腾气泡13消失的时机的图。表示了如下的情况:在移位加 热器1310上生成膜沸腾气泡1360,并且由UFB生成加热器10生成的 膜沸腾气泡13的消失位置由于由膜沸腾气泡1360的生成而导致的液 体的流动而移位。如图13D所示,由于膜沸腾气泡13在从UFB发生加 热器10的位置移位的位置消失,因此可以抑制由消失而生成的冲击集 中到UFB生成加热器10。因此,可以延长每个UFB生成加热器的寿命。
图14A至14D是图13A至13D所示的情况的截面图和用于说明驱 动时机的图。图14A表示如图13C所示的UFB生成加热器10上的膜沸 腾气泡13的体积变为最大的情况。图14D是表示UFB生成加热器10 的驱动脉冲、由UFB生成加热器10生成的膜沸腾气泡的体积的尺寸、移位加热器1310的驱动脉冲以及膜沸腾气泡在每个加热器上的位置 的图。在图14D中时间顺序是从左到右。一旦将驱动脉冲施加到UFB 生成加热器10,膜沸腾气泡就在UFB生成加热器10上生成并膨胀。
图14B表示驱动脉冲被施加到移位加热器1310并且膜沸腾气泡 1360在移位加热器1310上生成而膜沸腾气泡13开始在UFB生成加热 器10上收缩的情况。图14C是与图13D相对应的图,并且表示由UFB 生成加热器10生成的膜沸腾气泡13的消失位置由于在移位加热器 1310上生成的膜沸腾气泡1360而从UFB生成加热器10的顶部移位的 情况。如上所述,移位加热器1310的驱动从UFB发生加热器10上的 膜沸腾气泡13的尺寸基本上成为最大的时机开始。然后,随着由移位 加热器1310生成的膜沸腾气泡1360的生长,在UFB生成加热器10上的膜沸腾气泡13相应地开始移动。此后,在膜沸腾气泡13消失的 时机,膜沸腾气泡13移动到从UFB生成加热器10的顶部移开的位置。 尽管如上所述,优选膜沸腾气泡13的体积成为最大的时机之后驱动移 位加热器,以有效地移动膜沸腾气泡13的消失位置,但是实施方案不 限于此。例如,可以在膜沸腾气泡13的体积成为最大之前驱动移位加 热器。
图15是表示改变移位加热器的驱动时机的示例的图。如图14C 所示,在从UFB生成加热器10的顶部移开的位置的膜沸腾气泡13的 消失可以抑制对UFB生成加热器10的冲击。但是,也有可能膜沸腾气 泡13消失在没有从UFB生成加热器10移开的位置,或者消失在加热 器的表面上。为了解决该问题,如图15所示,以预定间隔改变驱动移 位加热器1310的时机。例如,作为第一驱动模式,在驱动UFB生成加 热器10之后的第一时机驱动移位加热器1310。作为第二驱动模式,, 在驱动UFB生成加热器10之后在比第一时机早或晚的第二时机驱动移 位加热器1310。可以在加热器的每次驱动、驱动预定次数或随机地进 行在第一驱动模式和第二驱动模式之间的切换。可以有三个或更多不 同的驱动模式。移位加热器1310的驱动时机的定期或不定期的改变使 得可以分布由UFB生成加热器10生成的膜沸腾气泡13的消失位置。 换句话说,可以抑制消失位置集中在UFB生成加热器10上的一点。因 此,可以延长UFB生成加热器10的寿命。
如图1所示,UFB生成装置1构成为能够通过使液体循环而生成 高浓度的UFB含有液。即,在T-UFB生成单元300中自身生成液体的 流动。然而,膜沸腾气泡从生成到消失的时机长度相当短,因此即使 正在生成液体流动用于使液体循环,消失位置也集中于UFB生成加热 器10上的一点。通过使用移位加热器1310而生成的膜沸腾气泡1360 移位膜沸腾气泡13的消失位置,可以抑制将消失的冲击集中于UFB 生成加热器10上的一点。
由移位加热器1310生成的膜沸腾气泡1360引起的液体的流动成 为从移位加热器1310同心地扩展的流动。因此,UFB生成加热器10 不必如图13A至13D所示与移位加热器1310一一相关。可以在不考虑 UFB生成装置1中的液体的循环流动的情况下进行配置。如上所述, UFB生成加热器10和移位加热器1310可以是相同类型的加热器。具 体地,可以通过使用任何一个加热器来生成UFB,并且还可以由另一 加热器移位生成的膜沸腾气泡的消失位置。
图16A至16C是表示图12A所示的元件区域1250的变形的图。在 图16A中,用于切换施加有能量的加热器10的开关(SW)1601至1604 分别配置在连接加热器10的单独的配线区域1212上。图16A中的加 热器10是生成UFB的加热器,并且是使在另一加热器上生成的膜沸腾 气泡的消失位置移位的加热器。在图16A所示的构成中,尽管将加热 器的电源电压(24V)持续施加到电极盘1201和1202,但是在SW被 断开(L)时,没有电流流向加热器10。图16B是表示驱动加热器的 SW 1601至1604的逻辑信号的波形的图。通过将逻辑信号H施加到SW 1601至1604中的每一个,SW被导通,由电源电压生成的电流开始通 过电极盘1201和1202流向相应的加热器,并且在每个加热器上发生 膜沸腾。这样,以时分方式驱动加热器,使得可以如图16A和16B所 示移位附近加热器上的膜沸腾气泡的消失位置。可以如图14D所示定 期地以时分方式进行驱动,或者可以如图15所示不定期地进行。如上 所述,通过使用SW以时分方式进行控制,还可以移位膜沸腾气泡的消 失位置。
图16C是表示将多个图16A所示的元件区域配置在元件基板12 上的示例的图。需要配置许多加热元件以在短时间内稳定地生成UFB。 尽管为了说明,图16C表示配置八个均设置有四个加热元件的元件区 域的实施方案,但是仍然可以通过增加每个元件区域中的加热元件的 数量或增加元件区域的数量来配置许多加热元件。在T-UFB生成单元 300中,设置壁1642和盖(未示出)以覆盖加热器10,但是不覆盖元 件基板12上的电极盘1201和1202以形成液体室。尽管在该实施方案 中没有设置用于分隔液体室的内部的壁,但是可以设置用于分隔内部 的壁。在设置用于分隔内部的壁的情况下,优选在由壁分隔的内部配置至少两个加热器以移位消失位置。另外,在设置壁的情况下,优选 的壁是如下的壁:其能够将由移位加热器的驱动引起的压力有效地传 播到相邻的UFB生成加热器的位置并且能够改变由UFB生成加热器引 起的膜沸腾气泡的消失位置。
图17A至17D是表示用于改变消失位置的另一实施方案的图。图12A至12D至图16A至16C说明形成有加热器10的基板的同一表面上 形成电极盘1201和1202的实施方案。在这种情况下,在形成加热器 10的表面上设有与液体接触的区域(液体室),以生成UFB。液体室被壁和盖覆盖。同时,电极盘1201和1202配置在液体室的外部。如 果像这种情况那样使加热器10与电极盘1201和1202彼此电分离,则 布线的路径长。图17A和17B表示其中电极盘1201和1202未设置在 设置有加热器的同一表面上,并且形成了穿透至元件基板另一表面的 通孔以在元件基板的背面上提供电极盘和布线层的实施方案。图17B 是沿着图17A中的XVIIb-XVIIb线截取的截面图。
如图17A和17B所示,在元件基板的背面的大部分上形成有配线 层1741。由于在元件基板的背面上没有来自加热器10的热应力的影 响,因此元件基板的背面的大部分用作布线层1741。通孔1742将其 上形成加热器的表面上的布线层和背面上的布线层1741连接。在本实 施方案中,在背面的大部分(与图17B的示例中的布线层1741的区域 相同)上形成电极盘1751。图17C是表示其上配置有多个图17A所示 的元件的元件基板12的示例的图。在图17C的元件基板12中,由于 电极盘未形成在形成加热器的同一表面上,因此形成壁1761以到达元 件基板12的外周部。尽管图17C是用于说明的简单图示,但是仍然可 以通过增加加热器的数量和元件的数量来快速生成UFB。
图17D是表示将图17A所示的元件配置在晶片1771的整个上的示 例的图。尽管在上述实施方案中,将元件基板12切割成矩形,但并不 限制用于生成UFB的元件基板12的形状。因此,如图17D所示,可以 在不切出形成有加热器和布线的基板的情况下,将整个晶片1771应用 于T-UFB生成单元300。
如参照图17A至17D所说明地,在进行元件基板12的背面布线以 在背面上配置电极盘的情况下,可以容易地将电极盘与液体分离。在 元件基板12的背面上设置电极盘的情况下,通过外部设备构成输出电 源电压脉冲的驱动器、开关等。例如,可以通过驱动与图17D中的晶 片1771连接的那些驱动器等来实现UFB的稳定生成。在这种情况下, 例如,可以通过改变相邻加热器10彼此的驱动时机来延长加热器10 的寿命。
如上所述,该实施方案包括第二加热器,该第二加热器移动在用 于UFB生成的第一加热器上生成的的膜沸腾气泡的消失位置。在预定 的时机驱动第二加热器的情况下,可以移动在第一加热器上生成的膜 沸腾气泡的消失位置。另外,在第二加热器的驱动时机随机地或定期 地改变的情况下,可以避免固定由第一加热器生成的膜沸腾气泡的消 失的位置,从而可以延长加热器的寿命。
在图17D的示例中,可以交替地配置以彼此不同的时机驱动的加 热器组中的加热器。可以以相同的顺序或以不同的顺序配置以三个或 更多个不同的时机驱动的三个或更多个加热器组的每个中的加热器。 第一加热器组中的每个加热器可以配置在任何位置,只要该配置可以 通过在不同的时机进行驱动而使在另一个加热器组中的加热器上生成 的膜沸腾气泡的消失位置移位。因此,第一加热器组中的加热器可以 彼此邻接配置,只要第一加热器组中的加热器与另一加热器组中的加 热器之间的位置关系能够使另一加热器组中的加热器的消失位置移位 即可。在晶片1771或元件基板12上,加热器组的顺序可以根据预定 区域而不同。另外,加热器之间的间隔可以是规则间隔,也可以不是。
在上述实施方案中,说明了可以将第一加热器和第二加热器适用 为相同种类的加热器的示例。即,第一加热器和第二加热器都可以用 作生成UFB的加热器。然而,实施方案不限于该示例,并且第一加热 器和第二加热器可以形成为不同种类的加热器。例如,可以使用具有 不同耐久性的加热器。
可以根据加热器的尺寸、液体室的形状、壁的存在等适当地设置 第一加热器(UFB生成加热器)与邻接的第二加热器(移位加热器) 之间的间隔。只要将通过驱动第二加热器而生成的气泡的压力有效地 传播到由第一加热器生成的膜沸腾气泡以改变该膜沸腾气泡的消失位 置,该间隔就可以设定为任意。因此,第二加热器不一定是多个加热 器中最靠近第一加热器的加热器。例如,另一第一加热器和另一第二 加热器可以配置在第一加热器和第二加热器之间。
根据本公开,可以有效地生成UFB含有液,并提供具有改善的耐 久性的UFB生成装置和超细气泡生成方法。
尽管已经参考示例性实施方案说明了本发明,但是应当理解,本 发明不限于所公开的示例性实施方案。所附权利要求的范围应被赋予 最宽泛的解释,以涵盖所有这样的修改以及等同的结构和功能。
本申请要求2019年2月28日提交的日本专利申请 No.2019-035838的优先权,其全部内容通过引用合并于此。

Claims (9)

1.一种超细气泡生成装置,其通过使设置在液体中的加热器生成热以生成膜沸腾,从而生成直径小于1.0μm的超细气泡,该超细气泡生成装置包括:
元件基板,其包括:第一加热器,其在液体中生成膜沸腾,以及第二加热器,其与所述第一加热器邻接配置,其中,
所述第一加热器和所述第二加热器在不同的时机被驱动,
在从由所述第一加热器上的膜沸腾生成的膜沸腾气泡的尺寸成为最大的时间点直到膜沸腾气泡消失的时机驱动所述第二加热器。
2.根据权利要求1所述的超细气泡生成装置,其中,
在所述元件基板上,配置第一加热器组和第二加热器组,所述第一加热器组包括在第一时机被驱动的多个所述第一加热器,第二加热器组包括在第二时机被驱动的多个所述第二加热器。
3.根据权利要求2所述的超细气泡生成装置,其中,
从所述第一时机到所述第二时机的间隔定期地或不定期地改变。
4.根据权利要求2所述的超细气泡生成装置,其中,
在所述第一时机施加用于驱动所述第一加热器组中的所述第一加热器的电压脉冲,并且在所述第二时机施加用于驱动所述第二加热器组中的所述第二加热器的电压脉冲。
5.根据权利要求2所述的超细气泡生成装置,其中,
所述第一加热器组中的所述第一加热器连接到供给用于驱动所述第一加热器的能量的同一第一电极盘,并且
所述第二加热器组中的所述第二加热器连接到与所述第一电极盘不同的第二电极盘。
6.根据权利要求2所述的超细气泡生成装置,其中,
分别包括所述第一加热器和所述第二加热器的加热器组连接到同一电极盘,该电极盘供给用于驱动加热器组中的所述第一加热器和所述第二加热器的能量,并且
在所述电极盘与所述第一和第二加热器之间配置有开关,该开关切换对其施加能量的加热器。
7.根据权利要求5所述的超细气泡生成装置,其中,
所述第一电极盘和第二电极盘配置在所述元件基板的背面上。
8.根据权利要求2所述的超细气泡生成装置,其中,
在所述第一加热器组和所述第二加热器组与所述液体接触的液体室中,在所述第一加热器组中的所述第一加热器和所述第二加热器组中的所述第二加热器之间没有形成分隔所述液体室的壁。
9.一种超细气泡生成方法,其用于通过使设置在液体中的加热器生成热以生成膜沸腾,从而生成直径小于1.0μm的超细气泡,该方法包括:
在第一时机驱动第一加热器,该第一加热器在所述液体中生成膜沸腾;和
在与所述第一时机不同的第二时机驱动与所述第一加热器邻接配置的第二加热器,
其中,在从由所述第一加热器上的膜沸腾生成的膜沸腾气泡的尺寸成为最大的时间点直到膜沸腾气泡消失的时机驱动所述第二加热器。
CN202010122855.7A 2019-02-28 2020-02-27 超细气泡生成装置以及超细气泡生成方法 Active CN111841044B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-035838 2019-02-28
JP2019035838A JP7277177B2 (ja) 2019-02-28 2019-02-28 ウルトラファインバブル生成装置及びウルトラファインバブル生成方法

Publications (2)

Publication Number Publication Date
CN111841044A CN111841044A (zh) 2020-10-30
CN111841044B true CN111841044B (zh) 2022-12-06

Family

ID=72236011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010122855.7A Active CN111841044B (zh) 2019-02-28 2020-02-27 超细气泡生成装置以及超细气泡生成方法

Country Status (3)

Country Link
US (1) US11571671B2 (zh)
JP (1) JP7277177B2 (zh)
CN (1) CN111841044B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021069993A (ja) * 2019-10-31 2021-05-06 キヤノン株式会社 ウルトラファインバブル生成装置およびその制御方法
JP2021069997A (ja) 2019-10-31 2021-05-06 キヤノン株式会社 Ufb含有液作製装置、及びufb含有液作製方法
CN112742224A (zh) 2019-10-31 2021-05-04 佳能株式会社 超细气泡含有液制造装置以及超细气泡含有液制造方法
JP7433840B2 (ja) 2019-10-31 2024-02-20 キヤノン株式会社 ウルトラファインバブル含有液の作製装置、及びウルトラファインバブル含有液の作製方法
CN114504985B (zh) * 2022-02-14 2023-05-26 中交上海航道局有限公司 一种用于制造超氧纳米气泡的制备装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2980444B2 (ja) * 1991-01-19 1999-11-22 キヤノン株式会社 液室内気泡導入機構を備えた液体噴射器およびこれを用いた記録装置および記録方法
JP3033921B2 (ja) * 1992-01-10 2000-04-17 キヤノン株式会社 記録装置
DE69218858T2 (de) 1991-09-03 1997-09-04 Canon Kk Blattfördervorrichtung
JPH1052914A (ja) * 1995-12-05 1998-02-24 Canon Inc 液体吐出方法、液体吐出ヘッドおよび液体吐出装置
US6154237A (en) 1995-12-05 2000-11-28 Canon Kabushiki Kaisha Liquid ejecting method, liquid ejecting head and liquid ejecting apparatus in which motion of a movable member is controlled
EP0811490B1 (en) * 1996-06-07 2005-08-17 Canon Kabushiki Kaisha Liquid ejection method and apparatus
JP3372826B2 (ja) * 1996-07-05 2003-02-04 キヤノン株式会社 液体吐出ヘッド及び液体吐出装置
JP3762172B2 (ja) * 1998-12-03 2006-04-05 キヤノン株式会社 液体吐出ヘッド、該液体吐出ヘッドが搭載されたヘッドカートリッジと液体吐出装置、及び該液体吐出ヘッドの製造方法
JP2001138522A (ja) 1999-09-03 2001-05-22 Canon Inc 記録ヘッドおよび記録装置
JP2003005104A (ja) * 2001-06-26 2003-01-08 Takashi Nakajima 気体ポンプを利用した液体と気泡の移動による光スイッチ及び光マトリクス・スイッチ
JP2005538287A (ja) 2002-08-15 2005-12-15 エムイーエムエスフロー・アンパルトセルスカブ マイクロ液体処理装置とその使用方法
JP4378543B2 (ja) * 2003-09-30 2009-12-09 株式会社Reo研究所 微小気泡の圧壊方法
TWI244982B (en) 2003-11-11 2005-12-11 Canon Kk Printhead, printhead substrate, ink cartridge, and printing apparatus having printhead
JP4459024B2 (ja) 2003-11-11 2010-04-28 キヤノン株式会社 記録ヘッドと記録ヘッド用基板及びインクカートリッジ、及び前記記録ヘッドを有する記録装置
JP4976890B2 (ja) 2006-03-17 2012-07-18 キヤノン株式会社 液体吐出装置および液体吐出ヘッドの駆動方法
CN101909730B (zh) 2008-01-10 2013-07-10 株式会社盛长 静止型流体混合装置
JP6118544B2 (ja) 2012-11-29 2017-04-19 Idec株式会社 微細気泡生成ノズルおよび微細気泡生成装置
WO2014112462A1 (ja) * 2013-01-17 2014-07-24 Idec株式会社 高密度微細気泡液生成方法および高密度微細気泡液生成装置
JP6353242B2 (ja) 2014-03-04 2018-07-04 公立大学法人首都大学東京 微小気泡発生板
JP6569037B2 (ja) * 2014-03-25 2019-09-04 株式会社エコプラナ 微細粒子が分散された処理水を得るための水処理方法及び装置
WO2017000253A1 (en) * 2015-06-30 2017-01-05 Kechuang Lin Bubble-generation apparatus and system
US9669364B2 (en) 2015-10-02 2017-06-06 Acoustic Arc International Limited Bubble atomizer and method for atomizing liquid
JP7086547B2 (ja) 2017-08-31 2022-06-20 キヤノン株式会社 ウルトラファインバブル含有液の製造装置および製造方法
WO2019044913A1 (en) 2017-08-31 2019-03-07 Canon Kabushiki Kaisha METHOD FOR GENERATING ULTRAFINE BUBBLES, MANUFACTURING APPARATUS AND METHOD FOR MANUFACTURING LIQUID CONTAINING ULTRAFINE BUBBLES, AND LIQUID CONTAINING ULTRA FINE BUBBLES

Also Published As

Publication number Publication date
JP7277177B2 (ja) 2023-05-18
JP2020138145A (ja) 2020-09-03
US11571671B2 (en) 2023-02-07
US20200276550A1 (en) 2020-09-03
CN111841044A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN111617501B (zh) 超细气泡生成方法、超细气泡生成装置以及超细气泡含有液
CN111617652B (zh) 超细气泡生成方法、超细气泡生成装置以及超细气泡含有液
CN111841044B (zh) 超细气泡生成装置以及超细气泡生成方法
CN111617647B (zh) 超细气泡生成装置
CN111617502B (zh) 超微气泡产生设备
CN111617654B (zh) 微小气泡产生设备、微小气泡产生方法和含微小气泡液体
CN111617655B (zh) 超细气泡生成装置、超细气泡生成方法以及超细气泡含有液
CN111617651B (zh) 超精细气泡生成方法、超精细气泡生成装置和含有超精细气泡的液体
CN111617650B (zh) 超细气泡生成装置以及超细气泡生成方法
CN111617653A (zh) 超细气泡生成装置以及超细气泡生成方法
CN112742224A (zh) 超细气泡含有液制造装置以及超细气泡含有液制造方法
CN113244798A (zh) 超微泡生成设备
CN112742225A (zh) 超细气泡生成装置和元件基板制造方法
CN113244829A (zh) 含ufb液体产生设备和含ufb液体产生方法
KR20200105427A (ko) 초미세 기포 생성 방법, 초미세 기포 생성 장치, 및 초미세 기포-함유액
CN112742226A (zh) 超细气泡生成装置及其控制方法
CN113244797A (zh) 超微泡生成设备和超微泡生成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant