CN111825465A - 一种用于氮化铝基板烧结的高纯度氮化硼的制备方法 - Google Patents

一种用于氮化铝基板烧结的高纯度氮化硼的制备方法 Download PDF

Info

Publication number
CN111825465A
CN111825465A CN202010483337.8A CN202010483337A CN111825465A CN 111825465 A CN111825465 A CN 111825465A CN 202010483337 A CN202010483337 A CN 202010483337A CN 111825465 A CN111825465 A CN 111825465A
Authority
CN
China
Prior art keywords
purity
powder
filling
boron nitride
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010483337.8A
Other languages
English (en)
Other versions
CN111825465B (zh
Inventor
姜明
岳锋
罗佳伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou Paiersheng Ceramics Co ltd
Original Assignee
Fuzhou Paiersheng Ceramics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou Paiersheng Ceramics Co ltd filed Critical Fuzhou Paiersheng Ceramics Co ltd
Priority to CN202010483337.8A priority Critical patent/CN111825465B/zh
Publication of CN111825465A publication Critical patent/CN111825465A/zh
Application granted granted Critical
Publication of CN111825465B publication Critical patent/CN111825465B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/066Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value

Abstract

一种用于氮化铝基板烧结用的高纯度氮化硼的制备方法,包括如下步骤:粉体预处理及装料工序:氮化硼粉体抽真空至10Pa以下,密封处理,排出粉体内部气体,保持压差;装料:粉体填装,分2‑5道工序填装,每道分10次装料,并缓慢施加压强1‑10MPa;烧结工序:升温速率6‑12℃/min,加压温度1000‑1200℃,缓慢加压0.5‑5MPa递增,并保压26MPa,烧结温度1650‑1800℃,保温时间大于2‑4小时;气氛控制:抽真空小于1KPa,再充入高纯氩或高纯氮,再次抽真空小于100Pa;真空热压烧结,坯料气孔率控制在24%~26%以下,成型。本发明制备的氮化硼高纯度、透气率好、耐高温、机械强度高。

Description

一种用于氮化铝基板烧结的高纯度氮化硼的制备方法
【技术领域】
本发明涉及一种用于氮化铝基板烧结用的高纯度氮化硼的制备方法。
【背景技术】
氮化铝陶瓷基板具有高的热导率、较低的介电常数等性能,广泛应用于电子信息、LED封装、大功率集成电路、新能源汽车等高技术领域。高热导率氮化铝陶瓷基板的烧结工艺,对氮化硼承烧炉具材质纯净度要求高,同时需除尽制备工艺中残留的有机成分等杂质。
现有技术的氮化硼制备工艺如下:
a.氮化硼粉体预处理及装料工序控制:
1.粉体初次装满石墨模具腔体,预压5MPa粉体体积缩小;再次装满剩余腔体,预压5MPa粉体体积缩小。
2.粉体填装完毕,装入上压头完成粉料入模工序;
b.烧结工序:
1.升温速率8-12℃/min,加压温度1000℃附近,缓慢加压0.5-5MPa/min递增,并保压30MPa,烧结温度1800-1950℃,当达到理论计算行程结束烧结。
2.气氛控制:全程抽真空小于1KPa,直至烧结结束。
c.加工工艺首道:
直接按要求加工成型,精度控制在±0.1mm。
目前国内按上述方法制备的氮化硼承烧炉具存在自身纯净度偏低,力学强度偏低,对排杂效果偏差,无法制备高热导率氮化铝陶瓷基板,氮化铝陶瓷基板的生产大部分然使用进口的氮化硼炉具。
为此本发明人根据高热导率纯氮化铝陶瓷的烧结工艺特性,研发出满足该烧结工艺的高纯氮化硼承烧炉具坯料和制备方案。
【发明内容】
本发明所要解决的技术问题在于提供一种高纯度、透气率好的用于氮化铝基板烧结用的高纯度氮化硼的制备方法。
本发明是这样实现的:
一种用于氮化铝基板烧结用的高纯度氮化硼的制备方法,包括如下步骤:
步骤1:粉体预处理及装料工序,具体包括:
步骤11:氮化硼粉体抽真空至10Pa以下,密封处理,排出粉体内部气体,并保持压差,实现初步致密度大于10-15%;
步骤12:装料:粉体填装,分2-5道工序填装,每道分10次装料,并缓慢施加压强1-10MPa,预压填装致密度小于40-55%;
步骤2:烧结工序,具体包括:
步骤21:升温速率6-12℃/min,加压温度1000-1200℃,缓慢加压0.5-5MPa递增,并保压26MPa,烧结温度1650-1800℃,保温时间大于2-4小时,保证温场均匀,促进材料晶粒长大至具有基本强度;
步骤22:气氛控制:抽真空小于1KPa,再充入高纯氩或高纯氮,再次抽真空小于100Pa,实现对炉内气氛的纯化处理;
步骤23:真空热压烧结,坯料气孔率控制在24%~26%以下,成型。
进一步地,还包括:
首道加工工序:粗加工成型,最薄厚度大于5mm,预留尺寸+1mm以上加工余量。
热处理纯化工序:升温速率在2-8℃/min,30-800℃过程中充入高纯氮气保持常压,800℃-1800℃抽真空引导挥发,达到1750-1950℃时充入高纯氩或高纯氮气,纯化处理1-4h;该过程可实现连续红外测温控制,而且促进材质整体的强度提升,并提高纯化的均匀和深度,气孔率增大到22-28%以上;测定气孔率以及关键要素含量后,进入下一道工序;
末道加工工序:精加工达到间隙配合要求,成品并经过热力学分析和高温工艺测试,确定不同尺寸的配合间隙,得出在高纯氮化硼气孔率在22-28%范围,产品尺寸大于100mm,装配间隙应大于0.2-0.8mm以上。
本发明的优点在于:1、高纯度;2、透气率好;3、耐高温;4、机械强度高。
【具体实施方式】
第一实施例:
一种用于氮化铝基板烧结用的高纯度氮化硼的制备方法,包括如下步骤:
步骤1:粉体预处理及装料工序,具体包括:
步骤11:氮化硼粉体抽真空至10Pa以下,密封处理,排出粉体内部气体,并保持压差,实现初步致密度大于10%;
步骤12:装料:粉体填装,分2道工序填装,每道分10次装料,并缓慢施加压强1MPa,预压填装致密度小于40%;
步骤2:烧结工序,具体包括:
步骤21:升温速率6℃/min,加压温度1000℃,缓慢加压0.5MPa递增,并保压26MPa,烧结温度1650℃,保温时间大于2小时,保证温场均匀,促进材料晶粒长大至具有基本强度;
步骤22:气氛控制:抽真空小于1KPa,再充入高纯氩或高纯氮,再次抽真空小于100Pa,实现对炉内气氛的纯化处理;
步骤23:真空热压烧结,坯料气孔率控制在24%%以下,成型。
首道加工工序:粗加工成型,最薄厚度大于5mm,预留尺寸+1mm以上加工余量。
热处理纯化工序:升温速率在2℃/min,30℃过程中充入高纯氮气保持常压,800℃抽真空引导挥发,达到1750℃时充入高纯氩或高纯氮气,纯化处理1h;该过程可实现连续红外测温控制,而且促进材质整体的强度提升,并提高纯化的均匀和深度,气孔率增大到22%以上。测定气孔率以及关键要素含量后,进入下一道工序。
末道加工工序:精加工达到间隙配合要求,成品并经过热力学分析和高温工艺测试,确定不同尺寸的配合间隙,得出在高纯氮化硼气孔率在22%范围,产品尺寸大于100mm,装配间隙应大于0.2mm以上。
第二实施例:
一种用于氮化铝基板烧结用的高纯度氮化硼的制备方法,包括如下步骤:
步骤1:粉体预处理及装料工序,具体包括:
步骤11:氮化硼粉体抽真空至10Pa以下,密封处理,排出粉体内部气体,并保持压差,实现初步致密度大于15%;
步骤12:装料:粉体填装,分5道工序填装,每道分10次装料,并缓慢施加压强10MPa,预压填装致密度小于55%;
步骤2:烧结工序,具体包括:
步骤21:升温速率12℃/min,加压温度1200℃,缓慢加压5MPa递增,并保压26MPa,烧结温度1800℃,保温时间大于4小时,保证温场均匀,促进材料晶粒长大至具有基本强度;
步骤22:气氛控制:抽真空小于1KPa,再充入高纯氩或高纯氮,再次抽真空小于100Pa,实现对炉内气氛的纯化处理;
步骤23:真空热压烧结,坯料气孔率控制在26%以下,成型。
首道加工工序:粗加工成型,最薄厚度大于5mm,预留尺寸+1mm以上加工余量。
热处理纯化工序:升温速率在8℃/min,800℃过程中充入高纯氮气保持常压,1800℃抽真空引导挥发,达到1950℃时充入高纯氩或高纯氮气,纯化处理4h;该过程可实现连续红外测温控制,而且促进材质整体的强度提升,并提高纯化的均匀和深度,气孔率增大到28%以上。测定气孔率以及关键要素含量后,进入下一道工序。
末道加工工序:精加工达到间隙配合要求,成品并经过热力学分析和高温工艺测试,确定不同尺寸的配合间隙,得出在高纯氮化硼气孔率在28%范围,产品尺寸大于100mm,装配间隙应大于0.8mm以上。
第三实施例:
一种用于氮化铝基板烧结用的高纯度氮化硼的制备方法,包括如下步骤:
步骤1:氮化硼粉体预处理及装料工序,具体包括:
步骤11:抽真空至10Pa以下,密封处理,排出粉体内部气体,并保持压差,实现初步致密度大于12%;
步骤12:装料:粉体填装,分3道工序填装,每道分10次装料,并缓慢施加压强5MPa,预压填装致密度小于50%;
步骤2:烧结工序,具体包括:
步骤21:升温速率10℃/min,加压温度1100℃,缓慢加压3MPa递增,并保压26MPa,烧结温度1700℃,保温时间大于3小时,保证温场均匀,促进材料晶粒长大至具有基本强度;
步骤22:气氛控制:抽真空小于1KPa,再充入高纯氩或高纯氮,再次抽真空小于100Pa,实现对炉内气氛的纯化处理;
步骤23:真空热压烧结,坯料气孔率控制在25%以下,成型。
首道加工工序:粗加工成型,最薄厚度大于5mm,预留尺寸+1mm以上加工余量。
热处理纯化工序:升温速率在6℃/min,500℃过程中充入高纯氮气保持常压,1200℃抽真空引导挥发,达到1800℃时充入高纯氩或高纯氮气,纯化处理3h;该过程可实现连续红外测温控制,而且促进材质整体的强度提升,并提高纯化的均匀和深度,气孔率增大到25%以上。测定气孔率以及关键要素含量后,进入下一道工序。
末道加工工序:精加工达到间隙配合要求,成品并经过热力学分析和高温工艺测试,确定不同尺寸的配合间隙,得出在高纯氮化硼气孔率在25%范围,产品尺寸大于100mm,装配间隙应大于0.6mm以上。
表1是新旧工艺生产氮化铝烧结用的氮化硼炉具性能对比:
表1:
Figure BDA0002518129760000061
其中,新工艺是指本发明,旧工艺是“背景技术”部分所描述的现有技术的工艺。
从表1中可以看出,本发明的方法制备的氮化硼炉具相较于现有技术使用后的变形量大大减小,抗折强度高,含氧量小,热导率高。
以上所述仅为本发明的较佳实施用例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换以及改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种用于氮化铝基板烧结用的高纯度氮化硼的制备方法,其特征在于:包括如下步骤:
步骤1:粉体预处理及装料工序,具体包括:
步骤11:氮化硼粉体抽真空至10Pa以下,密封处理,排出粉体内部气体,并保持压差,实现初步致密度大于10-15%;
步骤12:装料:粉体填装,分2-5道工序填装,每道分10次装料,并缓慢施加压强1-10MPa,预压填装致密度小于40-55%;
步骤2:烧结工序,具体包括:
步骤21:升温速率6-12℃/min,加压温度1000-1200℃,缓慢加压0.5-5MPa递增,并保压26MPa,烧结温度1650-1800℃,保温时间大于2-4小时,保证温场均匀,促进材料晶粒长大至具有基本强度;
步骤22:气氛控制:抽真空小于1KPa,再充入高纯氩或高纯氮,再次抽真空小于100Pa,实现对炉内气氛的纯化处理;
步骤23:真空热压烧结,坯料气孔率控制在24%~26%以下,成型。
2.如权利要求1所述的一种用于氮化铝基板烧结用的高纯度氮化硼的制备方法,其特征在于:还包括:
首道加工工序:粗加工成型,最薄厚度大于5mm,预留尺寸+1mm以上加工余量。
热处理纯化工序:升温速率在2-8℃/min,30-800℃过程中充入高纯氮气保持常压,800℃-1800℃抽真空引导挥发,达到1750-1950℃时充入高纯氩或高纯氮气,纯化处理1-4h;该过程可实现连续红外测温控制,而且促进材质整体的强度提升,并提高纯化的均匀和深度,气孔率增大到22-28%以上;测定气孔率以及关键要素含量后,进入下一道工序;
末道加工工序:精加工达到间隙配合要求,成品并经过热力学分析和高温工艺测试,确定不同尺寸的配合间隙,得出在高纯氮化硼气孔率在22-28%范围,产品尺寸大于100mm,装配间隙应大于0.2-0.8mm以上。
CN202010483337.8A 2020-06-01 2020-06-01 一种用于氮化铝基板烧结的高纯度氮化硼的制备方法 Active CN111825465B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010483337.8A CN111825465B (zh) 2020-06-01 2020-06-01 一种用于氮化铝基板烧结的高纯度氮化硼的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010483337.8A CN111825465B (zh) 2020-06-01 2020-06-01 一种用于氮化铝基板烧结的高纯度氮化硼的制备方法

Publications (2)

Publication Number Publication Date
CN111825465A true CN111825465A (zh) 2020-10-27
CN111825465B CN111825465B (zh) 2022-11-22

Family

ID=72913960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010483337.8A Active CN111825465B (zh) 2020-06-01 2020-06-01 一种用于氮化铝基板烧结的高纯度氮化硼的制备方法

Country Status (1)

Country Link
CN (1) CN111825465B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3361083D1 (en) * 1982-01-20 1985-12-05 Kempten Elektroschmelz Gmbh Dense articles of polycrystalline, hexagonal boron nitride and method of making the articles by hot isostatic pressing
EP0386788A1 (en) * 1989-03-10 1990-09-12 W.R. Grace & Co.-Conn. Boron nitride sheets
CN1162297A (zh) * 1994-09-07 1997-10-15 英国技术集团有限公司 氮化硼
JP2000119068A (ja) * 1998-10-14 2000-04-25 Denki Kagaku Kogyo Kk 窒化アルミニウム成形体の脱脂・焼成用器具
TW200304909A (en) * 2000-07-04 2003-10-16 Ibiden Co Ltd Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
JP2009120932A (ja) * 2007-11-19 2009-06-04 Nippon Steel Corp 精錬容器のシール方法、及び真空脱ガス炉の窒素ガス侵入抑制方法
JP2010105853A (ja) * 2008-10-30 2010-05-13 Sumitomo Electric Ind Ltd Bnルツボの製法
CN103626498A (zh) * 2013-12-13 2014-03-12 山东鹏程特种陶瓷有限公司 氮化硼基陶瓷喷嘴及其制备方法
CN103894939A (zh) * 2014-03-25 2014-07-02 广州晶体科技有限公司 一种刀头及其制造方法
WO2014196496A1 (ja) * 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
JP2015124122A (ja) * 2013-12-26 2015-07-06 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
CN106278283A (zh) * 2016-08-04 2017-01-04 长兴鑫宇耐火材料有限公司 一种分步烧结制备氮化硼陶瓷材料的方法
CN108314049A (zh) * 2017-01-16 2018-07-24 自贡市华刚硬质合金新材料有限公司 合金粉料真空生产工艺
CN110342943A (zh) * 2019-07-18 2019-10-18 燕山大学 工业压力下合成无粘结剂聚晶氮化硼块材的方法及其应用
CN110395988A (zh) * 2019-08-26 2019-11-01 燕山大学 一种高强度氮化硼陶瓷及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3361083D1 (en) * 1982-01-20 1985-12-05 Kempten Elektroschmelz Gmbh Dense articles of polycrystalline, hexagonal boron nitride and method of making the articles by hot isostatic pressing
EP0386788A1 (en) * 1989-03-10 1990-09-12 W.R. Grace & Co.-Conn. Boron nitride sheets
CN1162297A (zh) * 1994-09-07 1997-10-15 英国技术集团有限公司 氮化硼
JP2000119068A (ja) * 1998-10-14 2000-04-25 Denki Kagaku Kogyo Kk 窒化アルミニウム成形体の脱脂・焼成用器具
TW200304909A (en) * 2000-07-04 2003-10-16 Ibiden Co Ltd Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
JP2009120932A (ja) * 2007-11-19 2009-06-04 Nippon Steel Corp 精錬容器のシール方法、及び真空脱ガス炉の窒素ガス侵入抑制方法
JP2010105853A (ja) * 2008-10-30 2010-05-13 Sumitomo Electric Ind Ltd Bnルツボの製法
WO2014196496A1 (ja) * 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
CN103626498A (zh) * 2013-12-13 2014-03-12 山东鹏程特种陶瓷有限公司 氮化硼基陶瓷喷嘴及其制备方法
JP2015124122A (ja) * 2013-12-26 2015-07-06 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
CN103894939A (zh) * 2014-03-25 2014-07-02 广州晶体科技有限公司 一种刀头及其制造方法
CN106278283A (zh) * 2016-08-04 2017-01-04 长兴鑫宇耐火材料有限公司 一种分步烧结制备氮化硼陶瓷材料的方法
CN108314049A (zh) * 2017-01-16 2018-07-24 自贡市华刚硬质合金新材料有限公司 合金粉料真空生产工艺
CN110342943A (zh) * 2019-07-18 2019-10-18 燕山大学 工业压力下合成无粘结剂聚晶氮化硼块材的方法及其应用
CN110395988A (zh) * 2019-08-26 2019-11-01 燕山大学 一种高强度氮化硼陶瓷及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
朱艳等: "《钎焊》", 30 November 2012, 哈尔滨工业出版社 *
翟凤瑞等: "六方氮化硼陶瓷的烧结及其结构与性能", 《硅酸盐学报》 *
陈明通: ""氮化硼热压烧结工艺研究"", 《建材研究院院刊》 *
顾立德: "《特征耐火材料(第2版)》", 31 January 2000, 冶金工业出版社 *

Also Published As

Publication number Publication date
CN111825465B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN111020334B (zh) 一种高致密化钨铜难熔合金的制备方法
US20240116821A1 (en) Preparation method of high-thermal-conductivity and net-size silicon nitride ceramic substrate
CN113636844B (zh) 一种两步烧结制备高强高导热氮化硅陶瓷的方法
CA1192384A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
EP0219231B1 (en) Method of sintering compacts
CN111039663B (zh) 一种氧化铝陶瓷烧结方法
CN115124330A (zh) 一种氧化硅陶瓷靶坯的制备方法
CN111825465B (zh) 一种用于氮化铝基板烧结的高纯度氮化硼的制备方法
CA2466183A1 (en) Method of producing sintered silicon carbide jig used for producing semiconductor and sintered silicon carbide jig obtained by the same production method
CN113354418A (zh) 一种真空热压烧结法制备的高性能氮化铝陶瓷基板及制备方法
CN115321969B (zh) 一种熔融石英陶瓷坩埚的制作方法
CN115161529A (zh) 一种铝基碳化硅复合材料及其制备方法和应用
CN106278284A (zh) 一种利用环形石墨模具分步烧结制备氮化硼陶瓷材料的方法
EP0767761B1 (en) Sintered quartz glass products and methods for making same
KR20100126539A (ko) 질화알루미늄과 알루미늄의 괴상 혼합물의 제조방법
CN116103765A (zh) 一种烧结态钼坩埚及制备方法
CN114540692A (zh) 一种钒钨合金靶材及其制备方法与应用
CN111283203B (zh) 一种利用含钛物质吸氢膨胀促进坯体致密化的方法
CN111362704A (zh) 一种高热导率氮化硅陶瓷及其制备方法
JPH0118031B2 (zh)
CN112387974B (zh) 一种pvt法氮化铝晶体生长用坩埚材料的制备方法
CN111635248B (zh) 一种AlN-AlON复合材料及其制备方法
CN115110044B (zh) 一种铬硅合金溅射靶材的制备方法
CN117024153A (zh) 一种碳化硅靶材及其制备方法
CN117840433A (zh) 一种钨靶材二次致密化的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant