CN111635248B - 一种AlN-AlON复合材料及其制备方法 - Google Patents
一种AlN-AlON复合材料及其制备方法 Download PDFInfo
- Publication number
- CN111635248B CN111635248B CN202010515688.2A CN202010515688A CN111635248B CN 111635248 B CN111635248 B CN 111635248B CN 202010515688 A CN202010515688 A CN 202010515688A CN 111635248 B CN111635248 B CN 111635248B
- Authority
- CN
- China
- Prior art keywords
- aln
- composite material
- powder
- alon
- condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 43
- 229910017109 AlON Inorganic materials 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 238000005245 sintering Methods 0.000 claims abstract description 30
- 239000000843 powder Substances 0.000 claims abstract description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 19
- 239000010439 graphite Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 238000004321 preservation Methods 0.000 claims abstract description 13
- 238000003825 pressing Methods 0.000 claims abstract description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 238000000465 moulding Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 238000005121 nitriding Methods 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 abstract description 11
- 238000002156 mixing Methods 0.000 abstract description 9
- 230000003647 oxidation Effects 0.000 abstract description 7
- 238000007254 oxidation reaction Methods 0.000 abstract description 7
- 238000011049 filling Methods 0.000 abstract description 5
- 238000009776 industrial production Methods 0.000 abstract description 5
- 238000009826 distribution Methods 0.000 abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 abstract 1
- 239000000463 material Substances 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 4
- 239000004088 foaming agent Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 230000036632 reaction speed Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000009851 ferrous metallurgy Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
- C04B38/068—Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6586—Processes characterised by the flow of gas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9669—Resistance against chemicals, e.g. against molten glass or molten salts
- C04B2235/9684—Oxidation resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明涉及一种AlN‑AlON复合材料及其制备方法。其技术方案是:将Al4O4C粉体机压成型,成型后的坯体放入石墨坩埚内,再将所述石墨坩埚置于气压烧结炉中,在≤0.1mbar条件下以5~10℃/min的速率从室温加热至1050~1200℃;保温条件下用10~20min充氮气至1~5MPa,在保压条件下以1~5℃/min的速率再加热至1600~1900℃,保压保温1~5h,自然冷却至室温,制得到AlN‑AlON复合材料。所述Al4O4C粉体的纯度≥98.0wt%;Al4O4C粉体的粒度≤150μm。本发明制备工艺简单,适于工业化生产;本发明以Al4O4C粉体为原料,通过气压烧结法原位合成的AlN‑AlON复合材料物相分布均匀、结合力强、力学性能优异和抗氧化性能好。
Description
技术领域
本发明属于复合材料的制备方法。具体涉及一种AlN-AlON复合材料及其制备方法。
背景技术
AlN材料由于热导率高、电绝缘性好、强度大、硬度高、耐腐蚀性强和耐磨损性好的特点,被广泛用作半导体材料、微波电子衰减材料、散热器和许多高温结构部件,同时还被用于复合材料的增强体,制造高温高强度复合材料。AlON材料不仅具有优异的耐高温、抗热震和抗侵蚀,而且具有良好的透光性和介电性,是透明装甲、红外窗口罩、导弹窗口和头罩材料等军事国防领域的理想材料。随着科学技术的发展,节能减排的不断深化和效率的提高,非氧化物越来越受到各领域的广泛关注和研究,尤其是高温陶瓷和钢铁冶金行业,考虑到复合材料是提高材料性能的有效途径,结合AlN和AlON材料的特性,探究AlN-AlON复合材料结构和性能关系,对今后制备高质量高性能的功能陶瓷具有重要的意义。
目前,AlN-AlON复合材料最常见的制备方法多将Al2O3与AlN机械混合后进行高温烧结。如董磊等人(董磊,杨建,丘泰.反应烧结制备AlN-AlON复相陶瓷及其性能[J].机械工程材料,2009,33(1):62-66)将Al2O3和AlN按一定比例混合,添加一定量的Y2O3,混合均匀后,在300Mpa的压力下等静压成型,最后在氮气气氛和1650~1850℃无压烧结,制得AlN-AlON复合材料。Maghsoudipour等人(Maghsoudipour A,Bahrevar M A,Heinrich JG.Reaction sintering of AlN-AlON composites[J].Journal of the EuropeanCeramic Society,2005,25:1067-1072)以Al2O3和AlN为原料,以Y2O3为烧结助剂,在起始2bar的氮气气氛下,于1750~1950℃加压烧结制得AlN-AlON复合材料。Kim等人(Kim Y M,Park B H,Lee Y B,et al.Sintering,microstructure,and mechanical properties ofAlON-AlN particulate composites.BritishCeramic Transactions,1998,97:97-104)对不同AlN/Al2O3比的系统在1650~1900℃进行了烧结致密性的研究,发现细小颗粒的AlN和A1203、加入约0.5wt%的Y2O3所组成的混合物,在1850℃的受控气氛中制成了高致密度的AlN-AlON复合材料。尽管上述方法操作简单,但所用AlN原料在机械混合时极易水化,且制备材料物相的分散性及均匀性不易控制,导致材料性能调控困难。
另外,“一种直接发泡Al2O3-AlN多孔复合材料及其制备方法”(201811013603.X)、“一种基于原位发泡AlON-AlN多孔材料及其制备方法”(201811013894.2)和“一种基于发泡的AlN-SiC多孔复合陶瓷及其制备方法”(201811229600.X)等,同样采用单一三元化合物作为原料原位制备复合材料,但均需通过添加发泡剂将试样制备成多孔结构才能保证试样的完全氮化,此方法虽然操作简单,但工艺繁琐,制备的材料力学性能较差。
发明内容
本发明旨在克服现有技术缺陷,目的在于提供一种工艺简单、可工业化生产的AlN-AlON复合材料的制备方法,用该方法制备的AlN-AlON复合材料烧结致密、晶粒尺寸均一、物相分布均匀、结合力强、力学性能优异和抗氧化性能好。
为实现上述目的,本发明采用的技术方案是:将Al4O4C粉体机压成型,成型后的坯体放入石墨坩埚内,再将所述石墨坩埚置于气压烧结炉中;在≤0.1mbar条件下以5~10℃/min的速率从室温加热至1050~1200℃;保温条件下用10~20min充氮气至1~5MPa,在保压条件下以1~5℃/min的速率再加热至1600~1900℃,保压保温1~5h,自然冷却至室温,制得到AlN-AlON复合材料。
所述Al4O4C粉体的纯度≥98.0wt%;所述Al4O4C粉体的粒度≤150μm。
所述机压成型的压强为180~220MPa。
所述氮气的纯度≥99.99%。
采用上述方案,本发明与现有技术相比有以下积极效果:
本发明采用单一的Al4O4C粉体为原料,不添加任何烧结助剂,用气压烧结法原位合成AlON-AlN复合材料,制备工艺简单、可工业化生产。
本发明采用的Al4O4C粉体具有良好的抗氧化性,能够显著提高AlN-AlON复合材料的抗氧化性能。
本发明采用气压烧结法能有效加快反应速度,不需要添加发泡剂将试样制备成多孔状,便能促进反应进程,使Al4O4C完全氮化,对AlN-AlON复合材料的形状大小没有任何要求,同时还能提高制品的致密性。
本发明采用Al4O4C通过气压烧结法原位合成AlN-AlON复合材料,随温度的升高,Al4O4C会发生氮化反应原位生成AlN和AlON,两相交错生长结合紧密,没有明显的界面,得到的AlN-AlON复合材料烧结致密、晶粒尺寸均一、物相分散均匀、结合力强且力学性能优异。
因此,本发明制备工艺简单,适于工业化生产;本发明以Al4O4C粉体为原料,通过气压烧结法原位合成的AlN-AlON复合材料烧结致密、晶粒尺寸均一、物相分布均匀、结合力强、力学性能优异和抗氧化性能好。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述及说明,应理解下述具体实例仅用来说明本发明而非对其保护范围的限制。
本具体实施方式中:
所述Al4O4C粉体的纯度≥98.0wt%;所述Al4O4C粉体的粒度≤150μm。
所述氮气的纯度≥99.99%。
实施例中不再赘述。
实施例1
一种AlN-AlON复合材料及其制备方法。将Al4O4C粉体机压成型,成型后的坯体放入石墨坩埚内,再将所述石墨坩埚置于气压烧结炉中;在≤0.1mbar条件下以8℃/min的速率从室温加热至1050℃;保温条件下用16min充氮气至2MPa,在保压条件下以5℃/min的速率再加热至1600℃,保压保温1h,自然冷却至室温,制得到AlN-AlON复合材料。
所述机压成型压强为180MPa。
实施例2
一种AlN-AlON复合材料及其制备方法。将Al4O4C粉体机压成型,成型后的坯体放入石墨坩埚内,再将所述石墨坩埚置于气压烧结炉中,在≤0.1mbar条件下以6℃/min的速率从室温加热至1100℃;保温条件下用14min充氮气至5MPa,在保压条件下以3℃/min的速率再加热至1700℃,保压保温3h,自然冷却至室温,制得到AlN-AlON复合材料。
所述机压成型压强为190MPa。
实施例3
一种AlN-AlON复合材料及其制备方法。将Al4O4C粉体机压成型,成型后的坯体放入石墨坩埚内,再将所述石墨坩埚置于气压烧结炉中,在≤0.1mbar条件下以10℃/min的速率从室温加热至1150℃;保温条件下用10min充氮气至3MPa,在保压条件下以4℃/min的速率再加热至1800℃,保压保温4h,自然冷却至室温,制得到AlN-AlON复合材料。
所述机压成型压强为210MPa。
实施例4
一种AlN-AlON复合材料及其制备方法。将Al4O4C粉体机压成型,成型后的坯体放入石墨坩埚内,再将所述石墨坩埚置于气压烧结炉中,在≤0.1mbar条件下以5℃/min的速率从室温加热至1200℃;保温条件下用20min充氮气至1MPa,在保压条件下以1℃/min的速率加热至1900℃,保压保温5h,自然冷却至室温,制得到AlN-AlON复合材料。
所述机压成型压强为220MPa。
本具体实施方式与现有技术相比有以下积极效果:
本具体实施方式采用单一的Al4O4C粉体为原料,不添加任何烧结助剂,用气压烧结法原位合成AlON-AlN复合材料,制备工艺简单、可工业化生产。
本具体实施方式采用的Al4O4C粉体具有良好的抗氧化性,能够显著提高AlN-AlON复合材料的抗氧化性能。
本具体实施方式采用气压烧结法能有效加快反应速度,不需要添加发泡剂将试样制备成多孔状,便能促进反应进程,使Al4O4C完全氮化,对AlN-AlON复合材料的形状大小没有任何要求,同时还能提高制品的致密性。
本具体实施方式采用Al4O4C通过气压烧结法原位合成AlN-AlON复合材料,随温度的升高,Al4O4C会发生氮化反应原位生成AlN和AlON,两相交错生长结合紧密,没有明显的界面,得到的AlN-AlON复合材料烧结致密、晶粒尺寸均一、物相分散均匀、结合力强且力学性能优异。
因此,本具体实施方式制备工艺简单,适于工业化生产;本具体实施方式以Al4O4C粉体为原料,通过气压烧结法原位合成的AlN-AlON复合材料烧结致密、晶粒尺寸均一、物相分布均匀、结合力强、力学性能优异和抗氧化性能好。
Claims (2)
1.一种AlN-AlON复合材料的制备方法,其特征在于所述制备方法是:采用单一的Al4O4C粉体为原料,不添加任何烧结助剂,将Al4O4C粉体机压成型,成型后的坯体放入石墨坩埚内,再将所述石墨坩埚置于气压烧结炉中,在≤0.1mbar条件下以5~10℃/min的速率从室温加热至1050~1200℃;保温条件下用10~20min充氮气至1~5MPa,在保压条件下以1~5℃/min的速率再加热至1600~1900℃,保压保温1~5h,自然冷却至室温,采用气压烧结法使Al4O4C完全氮化,制得AlN-AlON复合材料;
所述Al4O4C粉体的纯度≥98.0wt%;所述Al4O4C粉体的粒度≤150μm;
所述氮气的纯度≥99.99%。
2.如权利要求1所述AlN-AlON复合材料的制备方法,其特征在于所述机压成型的压强为180~220MPa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010515688.2A CN111635248B (zh) | 2020-06-09 | 2020-06-09 | 一种AlN-AlON复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010515688.2A CN111635248B (zh) | 2020-06-09 | 2020-06-09 | 一种AlN-AlON复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111635248A CN111635248A (zh) | 2020-09-08 |
CN111635248B true CN111635248B (zh) | 2022-10-21 |
Family
ID=72327352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010515688.2A Expired - Fee Related CN111635248B (zh) | 2020-06-09 | 2020-06-09 | 一种AlN-AlON复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111635248B (zh) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4788167A (en) * | 1986-11-20 | 1988-11-29 | Minnesota Mining And Manufacturing Company | Aluminum nitride/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process |
TW280836B (zh) * | 1992-09-21 | 1996-07-11 | Sumitomo Electric Industries | |
JP3983362B2 (ja) * | 1997-12-10 | 2007-09-26 | 日本碍子株式会社 | 多孔質複合セラミックス、及びその製造方法 |
US9409823B2 (en) * | 2013-02-15 | 2016-08-09 | Deborah D. L. Chung | Microstructured high-temperature hybrid material, its composite material and method of making |
CN103274701A (zh) * | 2013-05-19 | 2013-09-04 | 北京工业大学 | 一种含碳耐火材料抗氧化剂Al4O4C的制备方法 |
CN106702494B (zh) * | 2016-11-28 | 2019-03-01 | 武汉科技大学 | 一种在Al4O4C基体表面制备AlN晶须的方法 |
CN108975949B (zh) * | 2018-08-31 | 2021-01-15 | 武汉科技大学 | 一种基于原位发泡AlON-AlN多孔材料及其制备方法 |
-
2020
- 2020-06-09 CN CN202010515688.2A patent/CN111635248B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN111635248A (zh) | 2020-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111020334B (zh) | 一种高致密化钨铜难熔合金的制备方法 | |
CN110698204B (zh) | 一种max相陶瓷的制备方法 | |
CN110668821B (zh) | 一种无压制备max相陶瓷的方法 | |
CN115536403A (zh) | 一种高韧氮化硅陶瓷材料及其制备方法 | |
CN108975949B (zh) | 一种基于原位发泡AlON-AlN多孔材料及其制备方法 | |
CN113355611B (zh) | 一种碳纤维增强MoCoB金属陶瓷及制备方法 | |
CN111635248B (zh) | 一种AlN-AlON复合材料及其制备方法 | |
CN113185277A (zh) | 一种高热稳定性陶瓷材料及其制备方法和应用 | |
CN111204721B (zh) | MnAlCxNn-1-x相粉末的制备方法 | |
CN115745620B (zh) | 一种高致密度氮化钛陶瓷材料及其制备方法 | |
CN104844214A (zh) | 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法 | |
CN111704465A (zh) | 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 | |
CN104911384A (zh) | 一种钨基难熔碳化物复合材料的低温制备方法 | |
CN115806277B (zh) | 一种超高熔点碳氮化铪粉体的制备方法 | |
CN114605158A (zh) | 一种钛合金熔炼用氮化物复合耐火材料及其制备方法 | |
CN112898040B (zh) | 一种以高长径比晶须制备无晶间玻璃相β-Si3N4多孔陶瓷的方法 | |
RU2239613C1 (ru) | Способ получения изделий на основе нитрида кремния | |
CN111635233A (zh) | 原位生成AlN/SiC结合C复合材料及其制备方法 | |
RU2540674C2 (ru) | Способ изготовления изделий из нитрида кремния | |
CN110642625A (zh) | 一种新型三元复合粉体及其制备方法和应用 | |
CN110550957B (zh) | 一种原位合成氮化硅/硼化锆复相陶瓷及其制备方法和应用 | |
CN110483058B (zh) | 一种超硬高强度的硼化物陶瓷及其制备方法和应用 | |
CN117604302B (zh) | 一种利用微波制备石墨烯/铜复合粉体及复合材料的方法 | |
CN116375478B (zh) | 一种耐高温中熵陶瓷材料的制备方法 | |
CN116768635B (zh) | 一种改性氮化硅复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221021 |
|
CF01 | Termination of patent right due to non-payment of annual fee |