CN111804307A - 一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法 - Google Patents

一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法 Download PDF

Info

Publication number
CN111804307A
CN111804307A CN202010715018.5A CN202010715018A CN111804307A CN 111804307 A CN111804307 A CN 111804307A CN 202010715018 A CN202010715018 A CN 202010715018A CN 111804307 A CN111804307 A CN 111804307A
Authority
CN
China
Prior art keywords
microwave
zno
powder
compounding
femno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010715018.5A
Other languages
English (en)
Inventor
王玉
杨标
杨蕾
张霞
孙芹英
李少波
胡健嫔
韦超
曹龙
余向阳
李东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN202010715018.5A priority Critical patent/CN111804307A/zh
Publication of CN111804307A publication Critical patent/CN111804307A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种微波辅助溶胶法研制ZnO‑TiO2改性FeMnO3复合材料的方法,其特征在于:包括以下步骤:(1)取硝酸铁固体和硝酸锰液体,加入烧杯中用蒸馏水溶解,在磁力搅拌的同时加入金属离子摩尔量的两倍的柠檬酸,充分搅拌后,用氨水溶液调节pH值,磁力搅拌后放入100℃烘箱中干燥至干凝胶,然后加入程序升温炉预烧形成粉末;(2)将得到的粉末以摩尔比为1:1,1:2,2:1分别与钛酸四丁酯和乙酸锌溶液进行复合,得到混合溶液充分搅拌,放入微波反应器中反应后获得溶胶,再将溶胶在干燥器中120℃烘干成干凝胶,研磨成粉,装入坩埚中做好标记,将所有混合组分包括纯组分放入程序升温炉中煅烧获得最终的复合催化剂粉体。

Description

一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的 方法
技术领域
本发明涉及复合材料制备技术领域,特别是一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法。
背景技术
在催化剂的材料中,TiO2具有良好的稳定性和还原性而且催化效率高等优点,从而成为人们重点研究的催化剂。尤其在催化降解染料废水中的有机物方面得到了广泛的应用同时也避免了二次污染和节约了成本。ZnO和TiO2有着相近的性质,都属于半导体,也是一种催化剂,它比TiO2的太阳光吸收光谱要宽,有可见光的光催化活性。又因为它稳定性差同时在水中容易失去活性。CuO也是半导体,也是一种催化剂。能够充分利用光能,提高催化剂的稳定性。将三种材料进行复合,可以提高材料的稳定性,也让TiO2的吸收光的范围扩大到了可见光,也扩大了对太阳光的利用率了。TiO2和ZnO-CuO的复合体不仅在太阳光,自然光下的光催化效果要比单一的ZnO-CuO和TiO2的效果要好。用溶胶-凝胶法制备TiO2和ZnO的粉体,用水热合成的方法合成CuO,再制备三者的复合粉体。对所制备的复合粉体进行XRD、SEM、Uv-vis等方面的表征测试。
另外,关于更多的催化剂的研究和应用也被大量的发现,当然要实现光催化剂的技术在太阳能电池、有机染料上的应用还需要大量的努力。目前,国内外学者都开始高度重视对废水的处理和治理,探索更好的治理方法,保护水资源。就TiO2光催化剂在应用中存在的实际问题,可以通过复合其他的物质来进入TiO2晶体的内部,这样复合的金属离子会成为光生电子的捕获陷阱,提高了光催化剂的催化活性。
发明内容
本发明的目的是提供一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,以解决现有技术中的不足。
本发明提供了一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,包括以下步骤:
(1)取硝酸铁固体和硝酸锰液体,加入烧杯中用蒸馏水溶解,在磁力搅拌的同时加入金属离子摩尔量的两倍的柠檬酸,充分搅拌后,用氨水溶液调节pH值,磁力搅拌后放入100℃烘箱中干燥至干凝胶,然后加入程序升温炉预烧形成粉末;
(2)将得到的粉末以摩尔比为1:1,1:2,2:1分别与钛酸四丁酯和乙酸锌溶液进行复合,得到混合溶液充分搅拌,放入微波反应器中反应后获得溶胶,再将溶胶在干燥器中120℃烘干成干凝胶,研磨成粉,装入坩埚中做好标记,将所有混合组分包括纯组分放入程序升温炉中煅烧获得最终的复合催化剂粉体。
优选的是,步骤(1)中所述硝酸铁固体和硝酸锰液体的摩尔比为1:1。
优选的是,步骤(1)中所述氨水调节pH值为9。
优选的是,步骤(1)中氨水调节ph值之后的磁力搅拌温度为80℃,搅拌时间为4小时。
优选的是,步骤(1)中所述在程序升温炉中预烧温度为500℃,预烧时间为3小时。
优选的是,步骤(2)中所述微波反应时间为10分钟。
优选的是,步骤(2)中所述在程序升温炉中煅烧温度为800℃,煅烧时间为2小时。
与现有技术相比,本发明的有益效果为:节约能源,绿色环保,合成耗时短,吸附催化性能优异,经济效益好!
附图说明
图1是本发明的方法制备的TiO2-FeMnO3和ZnO-FeMnO3样品XRD分析图;
图2是本发明的方法制备的TiO2-FeMnO3复合材料1:1的SEM图;
图3是本发明的方法制备的ZnO-FeMnO3复合材料1:1的SEM;
图4是本方法的方法制备的ZnO-FeMnO3纳米复合材料1:1、1:2、2:1对靛蓝的光学吸附直观效果图;
图5是本方法的方法制备的ZnO-FeMnO3纳米复合材料1:1、1:2、2:1对靛蓝的光学吸附效果图。
具体实施方式
下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,包括以下步骤:
(1)取硝酸铁固体和硝酸锰液体,加入烧杯中用蒸馏水溶解,在磁力搅拌的同时加入金属离子摩尔量的两倍的柠檬酸,充分搅拌后,用氨水溶液调节pH值,磁力搅拌后放入100℃烘箱中干燥至干凝胶,然后加入程序升温炉预烧形成粉末;
(2)将得到的粉末以摩尔比为1:1,1:2,2:1分别与钛酸四丁酯和乙酸锌溶液进行复合,得到混合溶液充分搅拌,放入微波反应器中反应后获得溶胶,再将溶胶在干燥器中120℃烘干成干凝胶,研磨成粉,装入坩埚中做好标记,将所有混合组分包括纯组分放入程序升温炉中煅烧获得最终的复合催化剂粉体。
步骤(1)中所述硝酸铁固体和硝酸锰液体的摩尔比为1:1。
步骤(1)中所述氨水调节pH值为9。
步骤(1)中氨水调节ph值之后的磁力搅拌温度为80℃,搅拌时间为4小时。
步骤(1)中所述在程序升温炉中预烧温度为500℃,预烧时间为3小时。
步骤(2)中所述微波反应时间为10分钟。
步骤(2)中所述在程序升温炉中煅烧温度为800℃,煅烧时间为2小时。
本发明的实施例:
(1)按照摩尔比为1:1取硝酸铁固体和硝酸锰液体,加入烧杯中蒸馏水溶解,磁力搅拌下加入金属离子摩尔量的两倍的柠檬酸,充分搅拌后,用氨水溶液调其pH=9,充分磁力搅拌,80℃搅拌4小时,放入100℃烘箱中干燥至干凝胶,加入程序升温炉在500℃下预烧3小时形成FeMnO3粉末;
(2)将得到的FeMnO3粉末以摩尔比为1:1,1:2,2:1分别与钛酸四丁酯和乙酸锌溶液进行复合。得到混合溶液充分搅拌,放入微波反应器中,微波反应10分钟,获得溶胶,再将溶胶在干燥器中120度烘干成干凝胶,研磨成粉,装入坩埚中做好标记,将所有混合组分包括纯组分FeMnO3放入程序升温炉中800℃煅烧2小时获得最终的复合催化剂粉体。
如图1所示,通过对锰酸铁基复合材料样品的XRD分析,样品的衍射强峰与锰酸铁基本相对应,图内上方第一条为锰酸铁衍射谱图与其他锰酸铁复合氧化钛及氧化锌衍射峰出峰位置相比较有明显的差异。途中右上方的标识和图中的波线呈反向对应关系,也就是中,附图1的右上方的最顶层标识和最下方的波线对应,最下层的标识和最上方的波线对应,衍射图有明显得锰酸铁,氧化锌,二氧化钛的衍射峰,而且都比较尖锐,说明合成的复合催化剂在物相上与实验设计目标物TiO2-FeMnO3和ZnO-FeMnO3相吻合。
从图2和图3可知,在120℃,24h的微波辅助溶胶法水热条件下得到了具有花片形结构的TiO2-FeMnO3和ZnO-FeMnO3复合材料,其中FeMnO3离子与TiO2、ZnO的摩尔比为1:1。其SEM表征如图2和图3所示,复合材料的微结构尺寸范围在100nm-200nm之间。
钨灯照射的光学吸附实验(以ZnO-FeMnO3复合材料为例进行说明)
a.取一个容量为50毫升的烧杯,洗干净后在烧杯中加入10mg/L靛蓝溶液50mL,然后用量筒取出来5ml,放到在离心管中标记1#。
b.用电子天平秤取10mg的锰酸铁复合材料粉末,并将该粉末加入到靛蓝溶液中,先在避光条件下用磁力搅拌器恒温搅拌1个小时,然后用量筒量取出来5mL倒入离心管,标记该离心管为2#。
c.靛蓝溶液被搅拌1个小时后,把装有靛蓝溶液的烧杯放在钨灯下照射,并且继续搅拌,然后每10分钟取一次5毫升的样品,导离心管中,并讲离心管标记为3#、4#、5#、6#。
d.离心后用紫外可见分光光谱仪测定各组样品的上清液吸光度。
图5是ZnO-FeMnO3纳米复合材料1:1、1:2、2:1三个比例对靛蓝溶液在黑暗处理1h后,图中波线由上往下依次为2:1、1:2、1:1的比例关系,得到的2#、3#、4#、5#、6#样品的光学吸附效果直观图。从图中可以看出,靛蓝溶液在经过钨灯照射之后,颜色有明显的变化,相比原来的颜色变淡了很多。说明此锰酸铁纳米复合材料在光催化吸附性能上达到了实验要求和预期的目标。根据图中的6小时锰酸铁纳米复合材料1:1、1:2、2:1三个比例对靛蓝溶液的光学吸附效果图可以很看出来,前40min靛蓝溶液的吸光度随着时间的延长而减小,40min后样品6#的吸光度基本趋向于稳定,说明40分钟之后降解差不多基本上完成了。由此可见,ZnO-FeMnO3纳米复合材料在靛蓝溶液中的吸附降解在光照条件下仍在进行,但在一定时间之后停止了降解,并且趋向于平衡。从上图的物理直观图和光吸附效果图中可以看出来,摩尔比为1:1的效果更好。
从实验结果看来,所制备的ZnO-FeMnO3纳米复合材料对靛蓝溶液的吸附效果还是比较强的,从上面的直观图都能够看的出来,靛蓝溶液的颜色变化还是很明显的。实验结果表明,加入TiO2-FeMnO3纳米材料的靛蓝溶液在钨灯的照射下光催化效果也还可以,但没有ZnO-FeMnO3纳米复合材料对靛蓝溶液的吸附效果好(在文中省略),说明我们制备的产物到达了我们的预期目标,并且这些纳米材料可以用于生产生活中。
以上依据图式所示的实施例详细说明了本发明的构造、特征及作用效果,以上所述仅为本发明的较佳实施例,但本发明不以图面所示限定实施范围,凡是依照本发明的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本发明的保护范围内。

Claims (7)

1.一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,其特征在于:包括以下步骤:
(1)取硝酸铁固体和硝酸锰液体,加入烧杯中用蒸馏水溶解,在磁力搅拌的同时加入金属离子摩尔量的两倍的柠檬酸,充分搅拌后,用氨水溶液调节pH值,磁力搅拌后放入100℃烘箱中干燥至干凝胶,然后加入程序升温炉预烧形成粉末;
(2)将得到的粉末以摩尔比为1:1,1:2,2:1分别与钛酸四丁酯和乙酸锌溶液进行复合,得到混合溶液充分搅拌,放入微波反应器中反应后获得溶胶,再将溶胶在干燥器中120℃烘干成干凝胶,研磨成粉,装入坩埚中做好标记,将所有混合组分包括纯组分放入程序升温炉中煅烧获得最终的复合催化剂粉体。
2.根据权利要求1所述的微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,其特征在于:步骤(1)中所述硝酸铁固体和硝酸锰液体的摩尔比为1:1。
3.根据权利要求1所述的微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,其特征在于:步骤(1)中所述氨水调节pH值为9。
4.根据权利要求1所述的微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,其特征在于:步骤(1)中氨水调节ph值之后的磁力搅拌温度为80℃,搅拌时间为4小时。
5.根据权利要求1所述的微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,其特征在于:步骤(1)中所述在程序升温炉中预烧温度为500℃,预烧时间为3小时。
6.根据权利要求1所述的微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,其特征在于:步骤(2)中所述微波反应时间为10分钟。
7.根据权利要求1所述的微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法,其特征在于:步骤(2)中所述在程序升温炉中煅烧温度为800℃,煅烧时间为2小时。
CN202010715018.5A 2020-07-23 2020-07-23 一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法 Pending CN111804307A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010715018.5A CN111804307A (zh) 2020-07-23 2020-07-23 一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010715018.5A CN111804307A (zh) 2020-07-23 2020-07-23 一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法

Publications (1)

Publication Number Publication Date
CN111804307A true CN111804307A (zh) 2020-10-23

Family

ID=73597716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010715018.5A Pending CN111804307A (zh) 2020-07-23 2020-07-23 一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法

Country Status (1)

Country Link
CN (1) CN111804307A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106620A (zh) * 2021-12-13 2022-03-01 商河县天域工程技术中心 一种空气净化环保涂料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445382A (zh) * 2014-12-03 2015-03-25 北方民族大学 微波辅助溶胶凝胶法制备Bi12TiO20纳米粉体的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445382A (zh) * 2014-12-03 2015-03-25 北方民族大学 微波辅助溶胶凝胶法制备Bi12TiO20纳米粉体的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
娄向东等: "锰酸铁及其掺杂镁、银化合物的制备与表征", 《无机盐工业》 *
杜娴等: "微波辅助溶胶-凝胶自蔓燃法制备纳米Na_(0.5)Bi_(0.5)TiO_3粉体的工艺研究", 《人工晶体学报》 *
王芬等: "微波辅助溶胶-凝胶法制备CeO_2粉体及其生长机制研究", 《陕西科技大学学报(自然科学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106620A (zh) * 2021-12-13 2022-03-01 商河县天域工程技术中心 一种空气净化环保涂料

Similar Documents

Publication Publication Date Title
CN106582765B (zh) 一种一步合成制备的钠掺杂石墨相氮化碳及其应用
CN103736476B (zh) 一种钛酸钙/氧化钙复合光催化剂及其制法和用途
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN108686665B (zh) 一种纳米棒铁酸锌原位复合片层二氧化钛光催化材料的制备方法
WO2017219381A1 (zh) 一种含氧缺陷的ZnWO4光催化材料及其制备方法
Sun et al. The effect of pH on the photocatalytic performance of BiVO4 for phenol mine sewage degradation under visible light
CN106807411B (zh) 一种铁酸镧掺杂溴化银复合光催化剂的制备方法
CN106390974A (zh) 一种高效光催化剂SrTiO3的制备方法
Gao et al. Construction of 2D up-conversion calcium copper silicate nanosheet for efficient photocatalytic nitrogen fixation under full spectrum
CN107890880A (zh) 一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法
CN107519897A (zh) 一种新型三元z型结构光催化剂及其制备方法和应用
Sun et al. Crystallinity and photocatalytic properties of BiVO4/halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution
CN108435226A (zh) 一种以碳化荷叶为基底制备N掺杂纳米花状TiO2光催化材料的方法
CN104549222A (zh) 一种可见光催化剂钛酸铬的制备方法及应用
CN111804307A (zh) 一种微波辅助溶胶法研制ZnO-TiO2改性FeMnO3复合材料的方法
CN107335432B (zh) 一种BiVO4/TiO2核壳复合光催化剂的制备方法
CN111939958B (zh) 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法
CN100453165C (zh) 纳米二氧化钛/二氧化硒复合物及其制备方法
CN102836719A (zh) 一种钙钛矿型光催化剂的制备方法及其制品
CN113578313A (zh) 一种锰掺杂软铋矿光催化剂及其制备方法和在同步降解六价铬和有机污染物中的应用
CN110227458B (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用
CN106390996B (zh) La0.7Sr0.3MnO3-δ/TiO2复合氧化物制备及其协同光催化作用
CN108273522B (zh) 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用
CN109926085A (zh) 一种非晶/结晶型催化剂的制备方法
Li et al. Ag/TiO2/WO3 nanoparticles with efficient visible light photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201023

RJ01 Rejection of invention patent application after publication