CN107890880A - 一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法 - Google Patents

一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法 Download PDF

Info

Publication number
CN107890880A
CN107890880A CN201711239016.8A CN201711239016A CN107890880A CN 107890880 A CN107890880 A CN 107890880A CN 201711239016 A CN201711239016 A CN 201711239016A CN 107890880 A CN107890880 A CN 107890880A
Authority
CN
China
Prior art keywords
metatitanic acid
carbon nitride
phase carbon
graphite phase
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711239016.8A
Other languages
English (en)
Inventor
李喜宝
张华森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201711239016.8A priority Critical patent/CN107890880A/zh
Publication of CN107890880A publication Critical patent/CN107890880A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法。以尿素、硝酸锰、四氯化钛为原料,蒸馏水作为刻蚀介质,采用水热刻蚀法制得该异质结复合光催化剂,并在可见光照射下利用该光催化剂降解罗丹明B、亚甲基蓝染料污水。本发明技术制备的纳米多孔石墨相氮化碳/偏钛酸锰异质结复合光催化剂形成了紧密结合的直接Z型异质结结构,其在可见光下对有机染料罗丹明B、亚甲基蓝的降解率接近100%,明显高于单相石墨相氮化碳或偏钛酸锰对有机染料的降解率。本发明的突出优点是对设备要求低、能耗少、成本低、污染小,产品光催化降解有机染料污水性能优异。

Description

一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备 方法
技术领域
本发明属于可见光光催化降解水溶液中有机染料污染物领域,具体涉及一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其可高效降解水中有机染料如罗丹明B、亚甲基蓝等。
背景技术
随着现代社会的飞速发展,能源短缺和环境污染问题已严重影响和威胁着人类社会的生存。光催化技术是一种可用于对污染物进行光催化降解及产氢的绿色新技术。如今水污染问题愈发严重,有机染料对水体的污染占很大比例,传统的污水处理方法效率低且易再次污染。由于大部分氧化物其价带和导带位置较低,其价带空穴具有强的氧化能力,而导带电子具有弱的还原能力;相反石墨相氮化碳(g-C3N4)光催化剂其价带和导带位置较高,其导带电子具有强的还原能力,而价带空穴具有弱的氧化能力;如果将氧化物与g-C3N4复合构成直接Z型光催化材料,则可以通过氧化物光催化剂的导带电子与g-C3N4的价带空穴复合,消除这些相对无用的光生电子和空穴,而保留氧化物光催化剂中有用的价带空穴和g-C3N4中的导带电子,这些空穴和电子分别具有非常强的氧化和还原能力,同时氧化物和g-C3N4中自身的光生电子和空穴复合得到抑制,所构建的g-C3N4/氧化物直接Z型光催化材料具有很强的氧化还原能力,和最低的光生电子-空穴复合速率,于是所设计的直接Z型光催化材料具有高的光催化活性。基于此,研究者们对g-C3N4基复合光催化材料的制备及应用等方面开展了广泛的研究,这些与g-C3N4复合的半导体材料包括TiO2,ZnO,WO3,ZnWO4,Zn2GeO4,ZnNb2O6,SrTiO3,La2Ti2O7,BiVO4,Ag2O,Ag3PO4等。
还有学者研究了TiO2-MnTiO3及F掺杂MnTiO3光催化剂的光催化降解有机染料性能,研究发现经过复合和改性后其均比单一的MnTiO3具有更高的光催化活性。而到目前为止,还没有有关石墨相氮化碳/偏钛酸锰异质结复合光催化剂的研究及公开报道,因此,我们设计了一种紧密结合的具有直接Z型异质结结构的纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂,从而显著提高了其可见光光催化降解有机染料的性能。
发明内容
本发明的目的在于提供一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其具有紧密结合的直接Z型异质结结构,所制备的复合光催化剂用于光催化降解有机染料污水,不仅能大幅度增强对可见光的吸收范围和强度,而且能显著提高对有机染料的降解率。
为实现上述目的,本发明采用的技术方案为:一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其特征在于:
(1)先将尿素水溶液进行二次煅烧获得纳米多孔石墨相氮化碳;
(2)再配制偏钛酸锰前驱体悬浮液,并采用水热煅烧法制备偏钛酸锰;
(3)再将一定质量比的纳米多孔石墨相氮化碳和偏钛酸锰溶于适量的甲醇-氨水混合溶液中搅拌并水热处理,出料后研磨过筛得到所需的纳米多孔石墨相氮化碳/偏钛酸锰样品。
所述的尿素水溶液的浓度为0.5-2 g/mL。
所述的尿素水溶液的加热升温速率为10-20 ℃/min,一次煅烧温度200-500 ℃,二次煅烧温度400-700 ℃,保温时间0.5-4 h。
所述的偏钛酸锰前驱体悬浮液在水热反应釜中的加热温度为80-250 ℃,保温时间3-12 h;其在马弗炉中的煅烧温度为700-1000 ℃,保温时间2-9 h。
所述的石墨相氮化碳和偏钛酸锰在甲醇-氨水混合溶液中的搅拌时间为0.5-3 h,其在水热反应釜中的加热温度为150-300 ℃,保温时间12-30 h;所得的纳米多孔石墨相氮化碳/偏钛酸锰样品中纳米多孔石墨相氮化碳的质量分数为30-85%。
所述的纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂形成紧密结合的直接Z型异质结结构,其催化降解亚甲基蓝、罗丹明B的降解速率常数为0.03-0.06 min-1
由于采用上述技术方案,本发明与现有技术相比,具有如下突出优点:通过水溶液作为反应介质,调控升温速率和煅烧温度制备了高活性的纳米多孔石墨相氮化碳,再采用水热法制得纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂。所制备的复合光催化剂中石墨相氮化碳和偏钛酸锰紧密接触,并形成直接Z型异质结结构,其在可见光照射下对有机染料的降解率为单相石墨相氮化碳和偏钛酸锰的14.5-30.9倍。
因此,本发明所制备的纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的性能优异、成本较低,用于光催化降解有机染料污水,能在大幅度增强对可见光的吸收范围和强度的基础上,显著提高复合光催化剂的氧化还原能力和对有机染料的降解率,并对光催化降解有机染料污水行业的发展具有重要的推动作用和实际应用价值。
附图说明
图1为本发明制备所得到纳米多孔石墨相氮化碳、偏钛酸锰、石墨相氮化碳/偏钛酸锰复合光催化剂样品的XRD图。
图2为本发明实施例制备所得石墨相氮化碳/偏钛酸锰样品的TEM图。
图3为本发明制备所得到纳米多孔石墨相氮化碳、偏钛酸锰、石墨相氮化碳/偏钛酸锰复合光催化剂样品的紫外-可见漫反射光谱图。
图4为本发明制备所得到纳米多孔石墨相氮化碳、偏钛酸锰、石墨相氮化碳/偏钛酸锰复合光催化剂样品在可见光照射下对亚甲基蓝水溶液的降解率曲线。
具体实施方式
通过具体实施案例对本发明做进一步的解释说明,实施例仅限于说明本发明,发明内容并不局限于此。
实施例1
一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法。先将30 g尿素溶解于30 mL的蒸馏水中配成尿素水溶液,然后用带盖的氧化铝坩埚盛放尿素水溶液后置于快速升温电炉内以20 ℃/min升温到350 ℃并保温1 h,再以20 ℃/min升温到550 ℃并保温2h,自然冷却后研磨过筛得到纳米多孔石墨相氮化碳样品。将硝酸锰溶液加入四氯化钛的无水乙醇溶液中,一边搅拌一边加入氨水调节pH至9.8后得到偏钛酸锰前驱体悬浮液,将此悬浮液置于不锈钢水热反应釜中并保持80%的填充度后紧固密封,将密封后的反应釜放入干燥箱中于200 ℃下加热保温4 h,取样后置于马弗炉中于850 ℃煅烧6 h后制得偏钛酸锰;再将质量分数为65%的纳米多孔石墨相氮化碳和偏钛酸锰溶于50 mL的甲醇-氨水混合溶液中搅拌并在200 ℃下水热处理12 h,出料后研磨过筛得到所需的石墨相氮化碳/偏钛酸锰样品。
实施例2
一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法。先将30 g尿素溶解于30 mL的蒸馏水中配成尿素水溶液,然后用带盖的氧化铝坩埚盛放尿素水溶液后置于快速升温电炉内以15 ℃/min升温到400 ℃并保温1 h,再以15 ℃/min升温到500 ℃并保温2h,自然冷却后研磨过筛得到纳米多孔石墨相氮化碳样品。将硝酸锰溶液加入四氯化钛的无水乙醇溶液中,一边搅拌一边加入氨水调节pH至10.4后得到偏钛酸锰前驱体悬浮液,将此悬浮液置于不锈钢水热反应釜中并保持80%的填充度后紧固密封,将密封后的反应釜放入干燥箱中于200 ℃下加热保温4 h,取样后置于马弗炉中900 ℃煅烧6 h后制得偏钛酸锰;再将质量分数为50%的纳米多孔石墨相氮化碳和偏钛酸锰溶于50 mL的甲醇-氨水混合溶液中搅拌并在200 ℃下水热处理12 h,出料后研磨过筛得到所需的石墨相氮化碳/偏钛酸锰样品。
实施例3
一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法。先将15 g尿素溶解于30 mL的蒸馏水中配成尿素水溶液,然后用带盖的氧化铝坩埚盛放尿素水溶液后置于快速升温电炉内以15 ℃/min升温到400 ℃并保温1 h,再以15 ℃/min升温到550 ℃并保温2h,自然冷却后研磨过筛得到纳米多孔石墨相氮化碳样品。将硝酸锰溶液加入四氯化钛的无水乙醇溶液中,一边搅拌一边加入氨水调节pH至10.4后得到偏钛酸锰前驱体悬浮液,将此悬浮液置于不锈钢水热反应釜中并保持80%的填充度后紧固密封,将密封后的反应釜放入干燥箱中于250 ℃下加热保温4 h,取样后置于马弗炉中800 ℃煅烧6 h后制得偏钛酸锰;再将质量分数为80%的纳米多孔石墨相氮化碳和偏钛酸锰溶于50 mL的甲醇-氨水混合溶液中搅拌并在250 ℃下水热处理12 h,出料后研磨过筛得到所需的石墨相氮化碳/偏钛酸锰样品。
实施例4
进行光催化性能测试,配置浓度为5 mg/L的罗丹明B、亚甲基蓝溶液,将石墨相氮化碳/偏钛酸锰复合粉末加入到罗丹明B或亚甲基蓝溶液中,加入量为0.4 g/L,置于暗处达到吸附-脱附平衡,然后在350 W可见光光源下进行光催化实验,每隔30 min取一次样,进行紫外可见光吸光度测试。

Claims (8)

1.一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其特征在于:由纳米多孔石墨相氮化碳和偏钛酸锰组成,所述纳米多孔石墨相氮化碳的质量分数为30-85%;该复合光催化剂形成紧密结合的直接Z型异质结结构,其在可见光下降解水污染物有机染料性能优异;其具体制备工艺步骤为:
(1)将一定量的尿素溶解于一定量的去离子水中;将尿素水溶液置于带盖坩埚内以一定升温速率升温至煅烧温度并保温一定时间后进行二次煅烧;自然冷却后研磨过筛得到纳米多孔石墨相氮化碳;
(2)将一定量的硝酸锰溶于适量的去离子水中,一定量的四氯化钛加入适量无水乙醇中,各自搅拌均匀后将硝酸锰溶液加入四氯化钛的无水乙醇溶液中,一边搅拌一边加入氨水调节pH至一定值后得到偏钛酸锰前驱体悬浮液,将此悬浮液置于不锈钢水热反应釜中并保持一定的填充度后紧固密封,将密封后的反应釜放入干燥箱中于一定温度下加热保温一定时间,待自然冷却后以一定转速离心获取沉淀物,将沉淀物洗涤、干燥后置于马弗炉中于一定温度下煅烧一定时间后制得偏钛酸锰;
(3)将一定质量比的纳米多孔石墨相氮化碳和偏钛酸锰溶于适量的甲醇-氨水混合溶液中,搅拌一定时间后置于水热反应釜中于一定温度下水热处理一定时间,待自然冷却后以一定转速离心、洗涤、干燥及过筛后得到纳米多孔石墨相氮化碳/偏钛酸锰异质结复合光催化剂。
2.如权利要求1所述的一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其特征在于,尿素溶解于一定量的去离子水中形成尿素水溶液的浓度为0.5-2 g/mL。
3.如权利要求1所述的一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其特征在于,尿素水溶液的加热升温速率为10-20 ℃/min,一次煅烧温度为200-500℃,二次煅烧温度为400-700 ℃,保温时间为0.5-4 h。
4.如权利要求1所述的一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其特征在于,硝酸锰和四氯化钛的物质的量之比为0.5:2。
5.如权利要求1所述的一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其特征在于,氨水调节pH值至8.5-12.5。
6.如权利要求1所述的一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其特征在于,偏钛酸锰前驱体悬浮液在水热反应釜中的加热温度为80-250 ℃,保温时间为3-12 h;其在马弗炉中的煅烧温度为700-1000 ℃,保温时间为2-9 h。
7.如权利要求1所述的一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其特征在于,纳米多孔石墨相氮化碳和偏钛酸锰在甲醇-氨水混合溶液中的搅拌时间为0.5-3 h,其在水热反应釜中的加热温度为150-300 ℃,保温时间为12-30 h。
8.如权利要求1-7所述的一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法,其特征在于,纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂形成紧密结合的直接Z型异质结结构,其催化降解亚甲基蓝、罗丹明B的降解速率常数为0.03-0.06 min-1
CN201711239016.8A 2017-11-30 2017-11-30 一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法 Pending CN107890880A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711239016.8A CN107890880A (zh) 2017-11-30 2017-11-30 一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711239016.8A CN107890880A (zh) 2017-11-30 2017-11-30 一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN107890880A true CN107890880A (zh) 2018-04-10

Family

ID=61806426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711239016.8A Pending CN107890880A (zh) 2017-11-30 2017-11-30 一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107890880A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109160558A (zh) * 2018-10-30 2019-01-08 薛燕 一种废水处理剂的制备方法
CN111715261A (zh) * 2020-07-01 2020-09-29 南华大学 G-c3n4催化剂在降解高盐废水中有机染料中的应用
CN112295585A (zh) * 2020-10-27 2021-02-02 南昌航空大学 一种钛酸镁/石墨相氮化碳复合可见光催化剂的制备方法及应用
CN113198505A (zh) * 2021-04-22 2021-08-03 西北工业大学 一种钛酸铋钠/石墨相氮化碳异质结压电光催化剂及其制备方法
CN113680373A (zh) * 2021-09-28 2021-11-23 中化学朗正环保科技有限公司 污水处理用石墨相氮化碳光催化剂及其制备方法和应用
CN114057968A (zh) * 2021-11-18 2022-02-18 嘉兴学院 一种环保型脲醛树脂的制备和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442125A (zh) * 2008-12-15 2009-05-27 厦门大学 可充锂电池用钛酸锰锂/碳复合正极材料及其制备方法
CN105107542A (zh) * 2015-09-14 2015-12-02 中国矿业大学(北京) g-C3N4/TiO2@蒙脱石光催化剂及其制备方法
CN106629638A (zh) * 2016-10-10 2017-05-10 合肥工业大学 一种单分散结构g‑C3N4纳米片及其制备方法
CN107381520A (zh) * 2017-08-24 2017-11-24 南昌航空大学 一种带隙可调并高效降解有机染料的类石墨烯氮化碳的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442125A (zh) * 2008-12-15 2009-05-27 厦门大学 可充锂电池用钛酸锰锂/碳复合正极材料及其制备方法
CN105107542A (zh) * 2015-09-14 2015-12-02 中国矿业大学(北京) g-C3N4/TiO2@蒙脱石光催化剂及其制备方法
CN106629638A (zh) * 2016-10-10 2017-05-10 合肥工业大学 一种单分散结构g‑C3N4纳米片及其制备方法
CN107381520A (zh) * 2017-08-24 2017-11-24 南昌航空大学 一种带隙可调并高效降解有机染料的类石墨烯氮化碳的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIBAO LI ET AL.: "Hydrothermal synthesized novel nanoporous g-C3N4/MnTiO3 heterojunction with direct Z-scheme mechanism", 《ELECTROCHIMICA ACTA》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109160558A (zh) * 2018-10-30 2019-01-08 薛燕 一种废水处理剂的制备方法
CN111715261A (zh) * 2020-07-01 2020-09-29 南华大学 G-c3n4催化剂在降解高盐废水中有机染料中的应用
CN112295585A (zh) * 2020-10-27 2021-02-02 南昌航空大学 一种钛酸镁/石墨相氮化碳复合可见光催化剂的制备方法及应用
CN113198505A (zh) * 2021-04-22 2021-08-03 西北工业大学 一种钛酸铋钠/石墨相氮化碳异质结压电光催化剂及其制备方法
CN113680373A (zh) * 2021-09-28 2021-11-23 中化学朗正环保科技有限公司 污水处理用石墨相氮化碳光催化剂及其制备方法和应用
CN114057968A (zh) * 2021-11-18 2022-02-18 嘉兴学院 一种环保型脲醛树脂的制备和应用
CN114057968B (zh) * 2021-11-18 2023-07-28 嘉兴学院 一种环保型脲醛树脂的制备和应用

Similar Documents

Publication Publication Date Title
CN107890880A (zh) 一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法
CN102974373B (zh) 一种可见光光催化材料制备方法
CN105749893B (zh) 一种表面负载纳米二氧化钛的改性活性炭纤维丝的制备方法
CN106582765B (zh) 一种一步合成制备的钠掺杂石墨相氮化碳及其应用
CN105056981B (zh) 高效去除难降解有机污染物的复合光催化剂g‑C3N4‑铁酸铋的制备及其应用
CN107715906B (zh) 一种氮化碳/钛酸锌/氧化钛三明治状直接z型异质结复合光催化剂的制备方法
CN105032464B (zh) 氮化碳‑钛酸镍复合材料及其制备方法与应用
CN102060330B (zh) 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法
CN105032468A (zh) 一种Cu2O-TiO2/g-C3N4三元复合物及其制备和应用方法
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN109939643A (zh) α-Fe2O3掺杂生物炭的制备方法及其应用
CN107376968A (zh) 三氧化钨/氮化碳/氧化铋双z型光催化剂及其制备方法和应用
CN109126854A (zh) 一种CdS/g-C3N4双纳米片复合光催化剂的制备方法
CN111330615B (zh) 一种纳米氯氧化铋/氮化碳复合材料及其制备方法和应用
CN107362793A (zh) 一种CeVO4‑La2O3@HNTs复合光催化剂的制备方法与用途
CN108325555A (zh) 氮自掺杂石墨化氮化碳纳米片光催化剂及其制备方法和应用
CN105056973B (zh) 化学腐蚀法原位生长制备高效的硫化铋‑铁酸铋复合可见光催化剂及其应用
CN109718859A (zh) 一种Ag/TiO2/MIL-125(Ti)复合材料及其制备方法和形貌调控
CN108786891A (zh) 一种氮化碳基全光谱复合光催化剂的制备方法
CN107511154A (zh) 一种海胆状CeO2/Bi2S3复合可见光催化剂及其制备方法
CN106362742A (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
CN109603809A (zh) 一种钒酸铋量子点与二氧化钛纳米带复合光催化剂的制备和应用
CN108079984A (zh) 一种圆角立方体型羟基锡酸锌太阳光催化剂的制备方法
CN106044842A (zh) 一种扇形羟基氟化锌的制备方法及其应用
CN105854899A (zh) 一种Bi2S3/TiO2复合型可见光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180410

WD01 Invention patent application deemed withdrawn after publication