CN1118020A - 用于盐酸电解的稳定的石墨阴极的制备方法 - Google Patents

用于盐酸电解的稳定的石墨阴极的制备方法 Download PDF

Info

Publication number
CN1118020A
CN1118020A CN95105491A CN95105491A CN1118020A CN 1118020 A CN1118020 A CN 1118020A CN 95105491 A CN95105491 A CN 95105491A CN 95105491 A CN95105491 A CN 95105491A CN 1118020 A CN1118020 A CN 1118020A
Authority
CN
China
Prior art keywords
graphite
graphite body
technological process
polyvalent alcohol
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95105491A
Other languages
English (en)
Other versions
CN1052038C (zh
Inventor
H·克洛兹
H·D·平特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of CN1118020A publication Critical patent/CN1118020A/zh
Application granted granted Critical
Publication of CN1052038C publication Critical patent/CN1052038C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • C25B11/044Impregnation of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

制备适用于电解过程中阴极的石墨体的方法,包括以下步骤:a)将石墨体在至少一种2到4个碳原子的多元醇中与铱盐和铑盐溶液中的至少一种充分接触,使溶液能渗入石墨体的表面至少1mm深。b)石墨体的加热,随后冷却。方法的改进包括用溶液渗入石墨体内来影响加热,用置于石墨表面上方的无遮盖气体火焰将石墨体加热到200到450℃约2到10分钟。

Description

用于盐酸电解的稳定的 石墨阴极的制备方法
本发明涉及稳定的石墨阴极的制备过程,以及这种阴极在盐酸电解中的应用。
工业盐酸电解过程在《乌尔曼工业化学大全》A6卷,第459页(1986)中已有描述。该过程是在电解池中,在石墨电极之间放入一个纤维膜或者一个阳离子交换膜。(Minz,Chemie,Anlagen,Verfahren)《化学设备操作方法》,1992,第77页)。向阴极电解质加入特殊的盐,例如Pt,Pd,Cu,Ni,Sb,Ag,Mo,Co等的盐,可以降低电解池电压。(DE-AS1,216,852,FR-A1,208,508,DD3,725)
在实际操作中,向电解质中加入铂族的贵重金属化合物,能降低电压300到500mV.(Winnacker-Kuchler,《化学工艺》I,第280页,(1969))。
但是,用这种方法获得的电压降低是不持久的,所以必须保持连续或分批地加入贵金属盐。
根据盐酸电解池的传统构造,阴极电解质与氢气一起,阳极电解质与氯气一起,从电解池顶部为此目的而设的管道中分出。然后,必须进行气体/盐酸分离,再用氯化氢气体饱和盐酸后,回到电解池中循环使用。
可以以为,贵金属或溶解的贵金属也与电解质/气体混合物一起被带出电解池,因为这些贵金属分散在整个体系中。在有关盐酸电解的文献中没有关于贵金属回收的描述。从经济方面来考虑,贵金属回收也是不合理的,因为贵金属作为沉积物,均匀地分布在所有与电解池相串联的仪器装置中。
在Gallone和Messner发表的一篇文章《电化学工艺》3,(1965),第321到326页中,提到贵金属的损失可通过用80%Pt/20%Ir的合金处理石墨电极的表面来防止。这种合金以12.4g/m2的数量沉积在石墨上。这种办法Gallone和Messner自己也认为只是“小小的改进”。文中没有提到镀的方式,也没有说明是在放置电极前镀上还是和传统操作一样,在电解时就地加入贵金属盐。
在DD-3725中有关于喷镀、金属以蒸气状态沉积到石墨上来降低电解池电压的描述。这种方法镀过的石墨耐久性很有限,这是由于金属晶体的粘附不够好,易从石墨表面上分离下来。
EP-A 205631描述了一个用作电解阴极的石墨体的镀的过程,方法是用铂盐和另一种金属盐在醇中的溶液浸渍石墨体的表面,然后加热到250到600℃。乙醇、丙醇、丁醇是优选的醇。加热处理中需使整个石墨体被加热到上述温度。在加热时醇部分蒸发不再用于反应。为了减少醇的氧化产物,必须把一个废气装置与加热石墨体的炉子相串联。
因此提供一个好的制备电极的方法,特别是用于盐酸电解的电极的方法是合乎需要的,这个方法生产的电极需要稳定的、耐腐蚀、耐摩擦、低的超电压,简单而且价廉。
这个目标能通过本发明的工艺过程来实现。本发明提供了一种制备电解所用石墨阴极的工艺过程,特别是用于盐酸电解,在这个过程中,有2到4个碳原子的单羟基醇或多元醇或二者混合物中,在石墨体用作阴极前,将合铱盐或铑盐或二者之一与另一些铂族金属盐(包括铂、钯、锇、钌)的混合物的溶液,引入石墨体的孔穴中。然后任选用2到4个碳原子的一元醇或多元醇或二者的混合物清洗石墨,接着加热,随后冷却。用无遮盖气体火焰加热浸渍后的石墨体,使渗入上述溶液约1mm深的石墨表面,加热至200到450℃约2到10分钟,最好4到6分钟,气体火焰仅从上垂直向下作用于浸渍后的石墨体,这时整个石墨体都位于气体火焰的下方。
一个较好的工艺过程包括在1,2-乙二醇或甘油中向石墨体的孔穴中引入上述盐或盐的混合物,并任选用1,2-乙二醇或甘油清洗石墨体。
在用无遮盖气体火焰加热并冷却后,再用纯的2到4个碳原子的一元醇或多元醇处理石墨体,然后再用气体火焰加热,然后冷却。
无遮盖气体火焰也用于除去,例如氧化在石墨上存在着的过量的多元醇。
如果在比上述时间、温度、渗透深度范围低的条件下操作,通常不能达到预期效果。如果超过这些值,则通常是无用的,甚至可能得到更坏的结果。
上面提到的贵金属或合金的数量最好为每1m2设计面积5到20g。
本发明中所制备的石墨阴极最好与隔膜或离子交换膜一起用于电解盐酸的电解池中。
本发明中所制备的石墨阴极特别优选用于盐酸电解,在电解中止期间维持电流的最小值为0.1到1.5mA/cm2,最好维持电流为0.5到0.75mA/cm2
起始原料是市场上可以买到的石墨阴极,这种石墨阴极由特别的电极石墨组成(用于工业电解过程的石墨),例如:AC规格石墨,COVA/CONRADTY,纽伦堡;或ES和EH规格石墨,SIGRI,Meitingen.这种石墨原料通常有固有的孔隙率(总孔隙体积)12到18%,比电阻7.5到12.5Ωmm2/m和表观密度(整体密度)1.7到1.77g/cm2。电极石墨是通过众所周知的石油化学的、制陶的和精制等步骤生产的,这样产生了特定原料的多孔表面结构。
与以前工艺相比,本发明所制备的石墨阴极有高的耐蚀性和很长的使用寿命,且在整个使用过程中始终保持降电压的功效。另外,本发明中的工艺过程节能,易于操作,且并不需要一个废气处理装置与之相连。
以前工艺中的原位镀法以及在中性介质中的电解预镀会导致贵金属在石墨外表面上的电结晶,其中,这些晶体结块不以任何物理的或化学的键与石墨结合,只是松松地沉积上去,因此很容易脱落。另外,在原位镀法中,贵金属沉积在石墨表面优选的位点上,因此得不到想要的贵金属的均匀分布。以前工艺中的喷镀,例如用等离子体燃烧器,导致有大量孔隙的石墨表面很多被覆盖,所以生产出来的阴极表面积小,且金属镀层易于剥落。
在本发明的工艺过程中,在生产出来的石墨阴极中,金属不是沉积于石墨体的表面,而是金属牢牢地固定在(密封在)石墨的孔隙里。
除此以外,本工艺过程整个加热时间只需2到10分钟,最好4到6分钟,而且产生的废气只有二氧化碳和水蒸汽。如果考虑一个带有石墨电极的工业电解槽的尺寸,例如1.50×0.35×0.07m,一个电解槽由一百多个这种电极构成,那么本发明所带来的能源节约是显而易见的。
参考文后附图可对本发明进一步描述:
图1:进行本方法的仪器透视图;
图2:图1结构中一部分的放大图;
图3:已知的电解盐酸的电解池的流程图;
现在要更具体提到这些图。图1所示为用于本发明的工艺过程的设备。带有纵向狭缝12的浸泡过和石墨电极板置于工作台上。气体燃烧器装于石墨板11上,并通过管道15通有可燃性气体(例如丙烷/丁烷混合物)。控制和安全设备装于罩子16中。可以调节气体压力和气体燃烧器与石墨极的距离,使气体火焰17能覆盖整个石墨表面。
燃烧器最好用那些通常在盖屋顶行业中铺设沥青板时所用的燃烧器。
石墨极在气体燃烧器点燃前置于气体燃烧器下面。
通过以下实例来进一步详细解释本发明。实例1:(对照例)如图3所示用一个带有隔膜的电解池电解盐酸,所用未镀过石墨电极表面积为110×73mm,50mm厚,并且两个电极室的内部强制循环都为0.1l/h。21为电解池的聚丙烯外箱。阴极22和阳极23被封入带有导电螺栓24的外罩中,电解池的两部分通过一个隔膜(或阳离子交换膜)25隔开。电解质通过泵27在电解池两部分里循环流动,通过流速计33来改变流速。通过泵29向环流中补充30%浓度的盐酸。气体30、31和废电解液33经过气/液分离器离开电解池。用于个电源设备把电流密度设定为3KA/m2。通过两个石墨探针(图上未显示)来测量可调的电解池电压,这两个探针位于电极前缘,与电源绝缘。
在工作5天以后,电解池电压是2.10伏。加入合0.3mg Pt和0.6mgPd的金属盐水溶液后,电压降低了0.4伏。电压保持这个水平约100天,然后又缓慢升至处理前的电压值。把电解质流量增至35l/h,导致加入溶液后电压的升高加快,在1到2天内回到处理前的电压值。这样平均电压为大约1.90伏。(开始2.10伏,降至1.70伏,回到2.10伏)实例2:(依据本发明)
将0.236g IrCl4·H2O(Ir含量约为50.9%)溶于1.0ml 1,2-乙二醇中,用刷子将此溶液均匀地涂在带有凹槽(如图1)外部大小为(110×73)mm2的石墨极上。隔5分钟后(这个时间是为了使该溶液渗透入石墨的孔穴中),用火焰覆盖了整个表面,加热溶液浸渍后的石墨表面(后来在电解中是阴极的表面)约6分钟,在几秒钟内即达到起始温度180℃,6分钟后达到450℃,在点燃火焰前已将石墨板置于燃烧器下面。冷却后,再用1ml纯1,2-乙二醇均匀地涂于石墨板上,再重复以上所述的加热程度。把石墨板装入电解池中。在电解质流速为35l/h下,达到的电解池电压为1.55伏,电压在几个月内保持不变。电解过程中腐蚀率为1μgIr/每升电解质。在无电流状态下为400μgIr/每升电解质。实例3(依据本发明)
将0.118g IrCl4·H2O和0.150g H2PtCl6·6H2O溶于1.0ml 1,2-乙二醇中,并将此溶液均匀地涂在石墨板(110×73)mm2上。接下来的操作处理过程同实例2。
石墨板作为阴极装入带有隔膜的HCl电解池中(如图3)。在电解质流速为0.1到35 l/h时,电解池电压达到1.45伏,电压在几个月保持不变。电解过程中腐蚀率为1μgPt~2μgIr/每升电解质。无电流状态下为18,000μgPt~20,000μgIr每升电解质。实例4:(依据本发明)
将0.31克RhCl3·HO(Rh含量约为0.12g)溶于1.0ml 1,2-乙二醇中,用刷子将该溶液涂于石墨板上后,Rh金属如实例2中所述密封入石墨孔穴中。这块石墨板用作阴极,能产生1.67伏电解池电压保持10天不变。实例5:(依据本发明)
将0.236gIrCl4·H2O溶于2ml 1,2,3-丙三醇中,并将该溶液均匀涂在石墨板上。如实例2所述加热,设定电解池电压为1.6伏,腐蚀率与实例2中相同。
实例6:(依据本发明)
在两个电解池中,分别用实例2和实例3中所用的阴极,电解池未工作时得到阴极表面0.63mA/cm2的剩余电流,相应于1.1到1.2伏的剩余电势。电解池中的腐蚀率为:镀Ir的阴极2μgIr/l,镀Pt的阴极6μgIr/l~3μgPt/l。
应该认识到,以上说明和实例只是说明性的,本发明并不局限于此。本领域的专业技术人员可以在本发明的精神和范围内考虑其它实施方案。

Claims (11)

1.适用于在电解过程中作为阴极的石墨体的制备方法,包括如下步骤:(a)将石墨体在至少一种含2到4个碳原子的多元醇中,与铱盐和铑盐中的至少一种溶液接触足够时间,使溶液渗入石墨体表面至少1mm深;
(b)加热该石墨体,随后冷却,
对加热的改进,包括用置于石墨表面上方的无遮盖气体火焰将渗入了上述溶液的石墨体加热至200到450℃,加热时间2到10分钟。
2.权利要求1的工艺过程,其中铱盐或铑盐溶液中另外还包括至少一种选自铂、钯、锇、钌的金属盐。
3.权利要求1的工艺过程,其中多元醇包括1,2-乙二醇或甘油。
4.权利要求1的工艺过程,其中石墨体冷却后,与至少一种2到4个碳原子的多元醇接触,再用无遮盖气体火焰加热,然后冷却。
5.权利要求1的工艺过程,其中在(a)和(b)之间用至少一种2到4个碳原子的多元醇清洗石墨体。
6.权利要求2的工艺过程,其中在(a)和(b)之间用至少一种2到4个碳原子的多元醇洗涤石墨体,石墨体冷却后,与至少一种2到4个碳原子的多元醇接触,然后再用无遮盖气体火焰加热,接着冷却,多元醇包括1,2-乙二醇或甘油。
7.通过权利要求1的工艺过程生产的石墨体。
8.通过权利要求6的工艺过程生产的石墨体。
9.在带有石墨阴极的电解池中电解盐酸中,改进包括将权利要求5中的石墨体用作阴极。
10.权利要求8的工艺过程,其中该电解池中的电解需周期性中断,而在中断期间,要保持电解池中最小电流为0.1到1.5mA/cm2
11.权利要求10的工艺过程,其中电流保持大约为0.5至0.75mA/cm2
CN95105491A 1994-05-20 1995-05-19 适于在电解过程中作为阴极的石墨体的制备方法 Expired - Fee Related CN1052038C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4417744A DE4417744C1 (de) 1994-05-20 1994-05-20 Verfahren zur Herstellung stabiler Graphitkathoden für die Salzsäureelektrolyse und deren Verwendung
DEP4417744.5 1994-05-20

Publications (2)

Publication Number Publication Date
CN1118020A true CN1118020A (zh) 1996-03-06
CN1052038C CN1052038C (zh) 2000-05-03

Family

ID=6518610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95105491A Expired - Fee Related CN1052038C (zh) 1994-05-20 1995-05-19 适于在电解过程中作为阴极的石墨体的制备方法

Country Status (5)

Country Link
US (1) US5575985A (zh)
EP (1) EP0683247B1 (zh)
CN (1) CN1052038C (zh)
DE (2) DE4417744C1 (zh)
ZA (1) ZA954106B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104947137A (zh) * 2007-09-15 2015-09-30 拜尔材料科学股份公司 用于电解加工的石墨电极的制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW520575B (en) * 2000-04-21 2003-02-11 Sony Corp Positive electrode material and nickel-zinc battery
JP4723829B2 (ja) * 2004-08-13 2011-07-13 独立行政法人科学技術振興機構 貴金属担持カーボンナノホーンの製造方法
DE102005032663A1 (de) * 2005-07-13 2007-01-18 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten
DE102006023261A1 (de) * 2006-05-18 2007-11-22 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff
US20110027603A1 (en) * 2008-12-03 2011-02-03 Applied Nanotech, Inc. Enhancing Thermal Properties of Carbon Aluminum Composites
US20110147647A1 (en) * 2009-06-05 2011-06-23 Applied Nanotech, Inc. Carbon-containing matrix with additive that is not a metal
US20100310447A1 (en) * 2009-06-05 2010-12-09 Applied Nanotech, Inc. Carbon-containing matrix with functionalized pores

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3725C (de) * M. NEUERBURG in Köln a. Rh Harkenkette zum Austragen an Setzmaschinen
US2837412A (en) * 1956-12-18 1958-06-03 George A Bennett Preparation of impervious graphite by liquid phase impregnation
GB834640A (en) * 1957-06-17 1960-05-11 L Von Roll Ag Improvements in or relating to electrolytic processes
US3242065A (en) * 1960-12-21 1966-03-22 Oronzio De Nora Impianti Cell for electrolysis of hydrochloric acid
US3375132A (en) * 1964-03-03 1968-03-26 Union Carbide Corp Process for impregnating a carbon electrolytic anode and article
DE1216852B (de) * 1964-06-16 1966-05-18 Hoechst Ag Verfahren zur Elektrolyse von waessriger Salzsaeure in Diaphragmenzellen
US3632444A (en) * 1968-12-31 1972-01-04 Hooker Chemical Corp Graphite anode treatment
DE2042225C3 (de) * 1970-01-22 1975-02-27 Centro Sperimentale Metallurgico S.P.A., Rom Imprägnierlösung zur Verbesserung der Oxydationsbeständigkeit von kohlenstoffhaltigen Körpern
US3847862A (en) * 1970-08-10 1974-11-12 Marathon Oil Co Rubber compositions containing finely divided carbon treated with methanol
GB1399237A (en) * 1971-06-10 1975-06-25 Johnson Matthey Co Ltd Impregnation of graphite with metals and metallic compounds
DE2928911A1 (de) * 1979-06-29 1981-01-29 Bbc Brown Boveri & Cie Elektrode fuer die wasserelektrolyse
AU6609981A (en) * 1980-05-23 1981-11-26 Westinghouse Electric Corporation Preparation of platinum group metal on porous substrate electrode
JPS6033287A (ja) * 1983-07-29 1985-02-20 Toshiba Corp 単結晶半導体の製造方法
DE3516523A1 (de) * 1985-05-08 1986-11-13 Sigri GmbH, 8901 Meitingen Anode fuer elektrochemische prozesse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104947137A (zh) * 2007-09-15 2015-09-30 拜尔材料科学股份公司 用于电解加工的石墨电极的制造方法

Also Published As

Publication number Publication date
ZA954106B (en) 1996-01-19
EP0683247A1 (de) 1995-11-22
DE4417744C1 (de) 1995-11-23
CN1052038C (zh) 2000-05-03
EP0683247B1 (de) 1997-08-13
US5575985A (en) 1996-11-19
DE59500497D1 (de) 1997-09-18

Similar Documents

Publication Publication Date Title
US4061549A (en) Electrolytic cell anode structures containing cobalt spinels
US6267866B1 (en) Fabrication of a high surface area boron-doped diamond coated metal mesh for electrochemical applications
Murphy et al. Direct electrochemical oxidation of organics for wastewater treatment
US7285194B2 (en) Conductive diamond electrode and process for producing the same
US4897167A (en) Electrochemical reduction of CO2 to CH4 and C2 H4
Momota et al. Electrochemical fluorination of aromatic compounds in liquid R4NF· mHF—part I. Basic properties of R4NF· mHF and the fluorination o
NO156420B (no) Katode egnet for bruk ved en reaksjon som utvikler hydrogen, fremgangsmaate til fremstilling av denne, samt anvendelse av katoden.
US3428544A (en) Electrode coated with activated platinum group coatings
CN1052038C (zh) 适于在电解过程中作为阴极的石墨体的制备方法
NO158190B (no) Elektrode for elektrolyseprosesser og fremgangsmaate ved fremstilling derav.
Massa et al. Enhanced electrochemical oxidation of phenol over manganese oxides under mild wet air oxidation conditions
US20030161948A1 (en) Selective deposition of hydrous ruthenium oxide thin films
US7211177B2 (en) Electrode for electrolysis in acidic media
Okino et al. Electrochemical Fluorination of 1, 4‐Difluorobenzene Using Boron‐Doped Diamond Thin‐Film Electrodes
Diniz et al. Efficiency study of perforated diamond electrodes for organic compounds oxidation process
Ollo et al. Voltammetric study of formic acid oxidation via active chlorine on IrO2/Ti and RuO2/Ti electrodes
Hasnat et al. Silver modified platinum surface/H+ conducting Nafion membrane for cathodic reduction of nitrate ions
NO790997L (no) Fremgangsmaate ved elektrolyse av en vandig, halogenholdig opploesning
Fugivara et al. Electrochemical decomposition of cyanides on tin dioxide electrodes in alkaline media
Girenko et al. Electrooxidation of chloride-ions on Ti/Pt anodes
Ivandini Electrochemical conversion of CO2 at metal-modified boron-doped diamond electrodes
Spasojević et al. Structure, properties and optimization of an anodic electrocatalyst: RuOa2/TiO2 on titanium
FI82078B (fi) Elektrokemiskt avlaegsnande av hypokloriter ur kloratcelloesningar.
Yang Hypochlorite production on Ru‐Sn binary oxide electrode and its application in treatment of dye wastewater
Luin et al. Electrolysis energy efficiency of highly concentrated FeCl2 solutions for power-to-solid energy storage technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee