CN111788589A - 训练用于计算光刻术的机器学习模型的方法 - Google Patents

训练用于计算光刻术的机器学习模型的方法 Download PDF

Info

Publication number
CN111788589A
CN111788589A CN201980015018.XA CN201980015018A CN111788589A CN 111788589 A CN111788589 A CN 111788589A CN 201980015018 A CN201980015018 A CN 201980015018A CN 111788589 A CN111788589 A CN 111788589A
Authority
CN
China
Prior art keywords
model
mask
image
pattern
machine learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980015018.XA
Other languages
English (en)
Inventor
曹宇
罗亚
卢彦文
陈炳德
拉斐尔·C·豪厄尔
邹毅
苏静
孙德政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN111788589A publication Critical patent/CN111788589A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Abstract

本文描述了训练与图案化过程相关的机器学习模型的不同方法。本文描述了一种用于训练被配置成预测掩模图案的机器学习模型的方法。该方法包括获得:(i)图案化过程的被配置成预测衬底上的图案的过程模型,其中该过程模型包括一个或更多个经训练的机器学习模型;和(ii)目标图案;以及由硬件计算机系统基于过程模型和成本函数来训练被配置成预测掩模图案的机器学习模型,该成本函数确定预测图案与目标图案之间的差异。

Description

训练用于计算光刻术的机器学习模型的方法
相关申请的交叉引用
本申请要求2018年2月23日提交的美国申请62/634,523的优先权,该美国申请的全部内容通过引用并入本文中。
技术领域
本文的描述大体上涉及图案化过程以及确定图案形成装置的与设计布局相对应的图案的设备和方法。
背景技术
光刻投影设备可以用于例如集成电路(IC)的制造中。在这种情况下,图案化装置(例如掩模)可以包含或提供对应于IC的单个层(“设计布局”)的图案,并且可以通过诸如通过图案化装置上的图案照射目标部分的方法将该图案转印到已经涂覆有辐射敏感材料(“抗蚀剂”)层的衬底(例如硅晶片)上的目标部分(例如,包括一个或更多个管芯)上。通常,单个衬底包含多个相邻目标部分,由光刻投影设备将图案连续转印到所述多个相邻目标部分,一次转印到一个目标部分。在一种光刻投影设备中,整个图案化装置上的图案一次转印到一个目标部分上;这种设备通常被称为步进器。在替代的设备(通常被称为步进和扫描设备)中,投影束在给定的参考方向(“扫描”方向)上在图案化装置上进行扫描,同时沿与该参考方向平行或反向平行地移动衬底。图案化装置上的图案的不同部分被逐渐转印到一个目标部分上。由于光刻投影设备通常会具有一减小比M(例如,4),所以衬底移动的速度F将是投影束扫描图案化装置的速度的1/M。可以例如从US 6046792中收集关于本文描述的光刻设备的更多信息,该文献通过引用并入本文。
在将图案从图案化装置转印到衬底之前,衬底可以经历各种过程,例如涂底料、涂覆抗蚀剂和软烘烤。在曝光之后,衬底可以经历其它过程(“曝光后过程”),例如曝光后烘烤(PEB)、显影、硬烘烤和转印的图案的测量/检查。这一系列过程用作制作器件的单个层(例如IC)的基础。然后,衬底可以经历多种过程,例如蚀刻、离子注入(掺杂)、金属化、氧化、化学机械抛光等,这些过程都旨在完成器件的单层。如果器件中需要多个层,则针对每一层重复整个过程或其变型。最终,在衬底上的每个目标部分中都会出现一器件。然后,通过诸如切割或锯切等技术将这些器件彼此分离开,由此,可以将单独的器件安装在载体上、连接到引脚等。
因此,制造诸如半导体器件之类的器件典型地包括使用数个制造过程来处理衬底(例如半导体晶片)以形成所述器件的各个特征且形成多个层。典型地使用例如沉积、光刻、蚀刻、化学机械抛光和离子注入来制造和处理这些层和特征。可以在衬底上的多个管芯上制造多个器件,并且接着将所述器件分离成单独的器件。这种器件制造过程可以被认为是图案化过程。图案化过程包括图案化步骤,诸如使用光刻设备中的图案形成装置进行的光学光刻和/或纳米压印光刻,以将图案形成装置上的图案转印至衬底,并且典型地但可选地,包括一个或更多个相关的图案处理步骤,诸如通过显影设备进行的抗蚀剂显影、使用焙烤工具焙烤衬底、使用蚀刻设备蚀刻图案等。
如上所述,光刻是器件(诸如IC)制造中的中心步骤,其中,在衬底上形成的图案限定了器件的功能元件,例如微处理器、存储芯片等。类似的光刻技术也用于形成平板显示器、微机电系统(MEMS)和其它器件。
随着半导体制造工艺的不断发展,功能元件的尺寸不断减小,而每个器件的功能元件(例如晶体管)的数量已经稳定地增加了数十年,这遵循通常被称为“摩尔定律”的趋势。在当前的技术水平下,使用光刻投影设备制造器件的层,该光刻投影设备使用来自深紫外照射源的照射将设计布局投影到衬底上,从而创建具有远低于100nm(即,小于来自照射源(例如193nm照射源)的辐射的波长的一半)的尺寸的单个功能元件。
根据分辨率公式CD=k1×λ/NA(其中,λ是所采用的辐射的波长(当前在大多数情况下为248nm或193nm),NA是光刻投影设备中的投影光学器件的数值孔径,CD是“临界尺寸”——通常是印刷的最小特征尺寸——并且k1是经验分辨率因子),其中打印了尺寸小于光刻投影设备的经典分辨率极限的特征的该工艺通常被称为低k1光刻术。通常,k1越小,就变得越难以在衬底上再现图案,该图案类似于设计者为了实现特定电功能和/或性能而计划的形状和尺寸。为了克服这些困难,将复杂的微调步骤应用于光刻投影设备、设计布局、或图案形成装置。这些步骤包括但不限于例如NA和光学相干设定的优化、定制的照射方案、相移图案化装置的使用、设计布局中的光学邻近效应校正项(OPC,有时也被称为“光学和过程校正项”)、或通常限定为“分辨率增强技术”(RET)的其它方法。如本文中所使用的术语“投影光学器件”应被广义地解释为涵盖各种类型的光学系统,例如包括折射式光学器件、反射式光学器件、孔径和反射折射式光学器件。术语“投影光学器件”还可以包括根据这些设计类型中的任一种的操作以共同或单独地引导、成形或控制辐射的投影束的部件。术语“投影光学器件”可以包括光刻投影设备中的任何光学部件,而不管光学部件位于光刻投影设备的光路上的什么位置。投影光学器件可以包括用于在来自源的辐射穿过图案形成装置之前成形、调节和/或投影所述辐射的光学部件,和/或用于在辐射穿过图案形成装置之后成形、调节和/或投影所述辐射的光学部件。投影光学器件通常不包括源和图案形成装置。
发明内容
根据实施例,提供了一种用于训练被配置成预测掩模图案的机器学习模型的方法。该方法包括获得:(i)图案化过程的被配置成预测衬底上的图案的过程模型;和(ii)目标图案;以及由硬件计算机系统基于过程模型和成本函数来训练被配置成预测掩模图案的机器学习模型,该成本函数确定预测图案与目标图案之间的差异。
此外,根据实施例,提供了一种用于训练图案化过程的过程模型以预测衬底上的图案的方法。该方法包括获得:(i)用于预测图案化过程的掩模透射的第一经训练的机器学习模型;和/或(ii)用于预测在图案化过程中使用的设备的光学行为的第二经训练的机器学习模型;和/或(iii)用于预测图案化过程的抗蚀剂过程的第三经训练的机器学习模型;和/或(iv)印刷图案;连接第一经训练的模型、第二经训练的模型、和/或第三经训练的模型以产生过程模型;以及由硬件计算机系统基于成本函数来训练被配置成预测衬底上的图案的过程模型,成本函数确定预测图案与印刷图案之间的差异。
此外,根据实施例,提供了一种用于确定与目标图案相对应的光学邻近效应校正项的方法。该方法包括获得:(i)被配置成预测光学邻近效应校正项的经训练的机器学习模型,以及(ii)待经由图案化过程印刷在衬底上的目标图案;以及由硬件计算机系统基于经训练的机器学习模型来确定光学邻近效应校正项,经训练的机器学习模型被配置成预测与目标图案相对应的光学邻近效应校正项。
此外,根据实施例,提供了一种用于训练被配置成基于缺陷预测掩模图案的机器学习模型的方法。该方法包括获得:(i)图案化过程的被配置成预测衬底上的图案的过程模型,其中该过程模型包括一个或更多个经训练的机器学习模型;(ii)被配置成基于衬底上的预测图案来预测缺陷的经训练的可制造性模型;和(iii)目标图案;以及由硬件计算机系统基于过程模型、经训练的可制造性模型和成本函数来训练被配置成预测掩模图案的机器学习模型,其中成本函数是目标图案与预测图案之间的差异。
此外,根据实施例,提供了一种用于训练被配置成基于掩模的制造违反概率预测掩模图案的机器学习模型的方法。该方法包括获得:(i)图案化过程的被配置成预测衬底上的图案的过程模型,其中该过程模型包括一个或更多个经训练的机器学习模型;(ii)被配置成预测掩模图案的制造违反概率的经训练的掩模规则检查模型;和(iii)目标图案;以及由硬件计算机系统基于经训练的过程模型、经训练的掩模规则检查模型和成本函数来训练被配置成预测掩模图案的机器学习模型,其中成本函数基于由掩模规则检查模型预测的制造违反概率。
此外,根据实施例,提供了一种用于确定与目标图案相对应的光学邻近效应校正项的方法。该方法包括获得:(i)被配置成基于掩模的制造违反概率和/或基于衬底上的缺陷来预测光学邻近效应校正项的经训练的机器学习模型,和(ii)待经由图案化过程印刷在衬底上的目标图案;以及由硬件计算机系统基于经训练的机器学习模型和目标图案来确定光学邻近效应校正项。
此外,根据实施例,提供了一种用于训练被配置成预测掩模图案的机器学习模型的方法。该方法包括获得:(i)一组基准图像;和(ii)与目标图案相对应的掩模图像;以及由硬件计算机系统基于基准图像和成本函数来训练被配置成预测掩模图案的机器学习模型,该成本函数确定预测掩模图案与基准图案之间的差异。
此外,根据实施例,提供了一种用于训练被配置成预测衬底上的缺陷的机器学习模型的方法。该方法包括获得:(i)抗蚀剂图像或蚀刻图像;和/或(ii)目标图案;以及由硬件计算机系统基于抗蚀剂图像或蚀刻图像、目标图案和成本函数来训练被配置成预测缺陷指标的机器学习模型,其中成本函数是预测的缺陷指标与真实缺陷指标之间的差异。
此外,根据实施例,提供了一种用于训练被配置成预测掩模图案的掩模规则检查违反的机器学习模型的方法。该方法包括获得:(i)一组掩模规则检查;(ii)一组掩模图案;以及由硬件计算机系统基于所述一组掩模规则检查、所述一组掩模图案和基于掩模规则检查指标的成本函数来训练被配置成预测掩模规则检查违反的机器学习模型,其中成本函数是预测的掩模规则检查指标和真实掩模规则检查指标之间的差异。
此外,根据实施例,提供了一种用于确定掩模图案的方法。该方法包括获得:(i)与目标图案相对应的初始图像;(ii)图案化过程的被配置成预测衬底上的图案的过程模型;和(ii)被配置成基于由过程模型预测的所述图案来预测缺陷的经训练的缺陷模型;以及由硬件计算机系统基于过程模型、经训练的缺陷模型和包括缺陷指标的成本函数来根据初始图像确定掩模图案。
此外,根据实施例,提供了一种用于训练被配置成预测掩模图案的机器学习模型的方法。该方法包括获得:(i)目标图案;(ii)与目标图案相对应的初始掩模图案;(iii)与初始掩模图案相对应的抗蚀剂图像;和(iv)一组基准图像;以及由硬件计算机系统基于目标图案、初始掩模图案、抗蚀剂图像、一组基准图像以及成本函数来训练被配置成预测掩模图案的机器学习模型,该成本函数确定预测掩模图案和基准图像之间的差异。
此外,根据实施例,提供了一种用于训练被配置成预测抗蚀剂图案的机器学习模型的方法。该方法包括获得:(i)图案化过程的被配置成根据抗蚀剂图像预测蚀刻图像的过程模型;和(ii)蚀刻目标;以及由硬件计算机系统基于蚀刻模型和成本函数来训练被配置成预测抗蚀剂图像的机器学习模型,该成本确定蚀刻图像与蚀刻目标之间的差异。
此外,根据实施例,提供了一种计算机程序产品,该计算机程序产品包括非暂时性计算机可读介质,非暂时性计算机可读介质具有在其上记录的指令,所述指令在由计算机执行时实施上述任一方法。
附图说明
图1示出了光刻系统的各个子系统的框图。
图2示出了根据一个实施例的模拟图像的方法的流程图,在该方法中考虑了M3D。
图3示意性地示出了根据一个实施例的使用掩模透射函数的流程图。
图4示意性地示出了根据实施例的训练神经网络的方法的流程图,该神经网络确定图案形成装置上的结构的M3D。
图5示意性地示出了根据实施例的训练神经网络的方法的流程图,该神经网络确定图案形成装置上的结构的M3D。
图6示意性地示出了在图4或图5的方法中使用的设计布局的一部分的特性的示例。
图7A示意性地示出了根据实施例的可以针对多个图案化过程导出M3D模型并将所述M3D模型存储在数据库中以供将来使用的流程图。
图7B示意性地示出了根据实施例的可以基于图案化过程从数据库中检索M3D模型的流程图。
图8是根据实施例的图案化过程的基于机器学习的架构的框图。
图9示意性地示出了根据实施例的用于训练图案化过程的过程模型以预测衬底上的图案的方法的流程图。
图10A示意性地示出了根据一个实施例的用于训练机器学习模型的方法的流程图,该机器学习模型被配置成预测在图案化过程中使用的掩模的掩模图案。
图10B示意性地示出了根据一个实施例的用于基于基准图像来训练机器学习模型的另一方法的流程图,该机器学习模型被配置成预测在图案化过程中使用的掩模的掩模图案。
图10C示意性地示出了根据一个实施例的用于训练机器学习模型的另一方法的流程图,该机器学习模型被配置成预测在图案化过程中使用的掩模的掩模图案。
图11示出了根据一个实施例的根据目标图案产生的具有OPC的掩模图像。
图12示出了根据一个实施例的根据目标图案产生的具有OPC的曲线掩模图像。
图13是根据实施例的图案化过程的基于机器学习的架构的框图。
图14A示意性地示出了根据一个实施例的用于训练机器学习模型的方法的流程图,该机器学习模型被配置成预测缺陷数据。
图14B示意性地示出了根据一个实施例的用于基于衬底上的预测的缺陷来训练机器学习模型的方法的流程图,该机器学习模型被配置成预测掩模图案。
图14C示意性地示出了根据一个实施例的用于基于衬底上的预测的缺陷来训练机器学习模型的另一方法的流程图,该机器学习模型被配置成预测掩模图案。
图15A、图15B和图15C示出了根据实施例的衬底上的示例性缺陷。
图16A示意性地示出了根据一个实施例的用于训练机器学习模型的方法的流程图,该机器学习模型被配置成预测在图案化过程中使用的掩模图案的掩模可制造性。
图16B示意性地示出了根据一个实施例的用于基于掩模可制造性训练机器学习模型的另一方法的流程图,该机器学习模型被配置成预测掩模图案。
图16C示意性地示出了根据一个实施例的用于基于掩模可制造性训练机器学习模型的另一方法的流程图,该机器学习模型被配置成预测掩模图案。
图17是根据实施例的示例性计算机系统的框图。
图18是根据实施例的光刻投影设备的示意图。
图19是根据实施例的另一光刻投影设备的示意图。
图20是根据实施例的图18中的设备的更详细的视图。
图21是根据实施例的图19和图20的设备的源收集器模块SO的更详细的视图。
具体实施方式
尽管在本文中可以具体参考IC的制造,但应明确理解,本文中的描述具有许多其它可能的应用。例如,可以在集成光学系统的制造、用于磁畴存储器的引导和检测图案、液晶显示面板、薄膜磁头等中使用本发明。本领域技术人员应理解,在这些替代应用的背景下,应当认为本文中对术语“掩模版”、“晶片”或“管芯”的任何使用可以分别与更上位的术语“掩模”、“衬底”或“目标部分”互换。
在本文中,术语“辐射”和“束”用于涵盖所有类型的电磁辐射,包括紫外辐射(例如具有365nm、248nm、193nm、157nm或126nm的波长)和EUV(极紫外辐射,例如具有在约5nm至约100nm的范围内的波长)。
图案形成装置可以包括或可以形成一种或更多种设计布局。可以利用CAD(计算机辅助设计)程序来产生设计布局,这种过程经常被称作EDA(电子设计自动化)。大多数CAD程序遵循一组预定的设计规则,以便产生功能设计布局/图案形成装置。由过程及设计限制来设定这些规则。例如,设计规则限定器件(诸如栅极、电容器等)或互联线之间的空间公差,以便确保器件或线彼此不会以不期望的方式相互作用。一个或更多个设计规则限制可以被称作“临界尺寸”(CD)。可以将器件的临界尺寸限定为线或孔的最小宽度,或者两条线或两个孔之间的最小空间。因此,CD确定所设计的器件的总尺寸和密度。当然,器件制造中的目标之一是(经由图案形成装置)在衬底上如实地再现初始设计意图。
图案布局设计例如可以包括诸如光学邻近效应校正项(OPC)之类的分辨率增强技术的应用。OPC解决了以下事实:投影到衬底上的设计布局的图像的最终尺寸和位置将不相同于图案形成装置上的设计布局的尺寸和位置,或者仅简单地依赖于图案形成装置上的设计布局的尺寸和位置。应当注意,术语“掩模”、“掩模版”、“图案形成装置”在本文中可以互换使用。而且,本领域技术人员将认识到,术语“掩模”、“图案形成装置”和“设计布局”可以互换使用,如在RET背景下,不一定要使用物理图案形成装置,但是可以使用设计布局来表示物理图案形成装置。对于在一些设计布局上存在的小特征尺寸和高特征密度,给定特征的特定边缘的位置将在一定程度上受到其它相邻特征的存在或不存在的影响。这些邻近效应是由从一个特征联接到另一特征的微量辐射或非几何光学效应(例如衍射和干涉)引起的。类似地,邻近效应可能是由曝光后焙烤(PEB)、抗蚀剂显影以及通常在光刻之后进行的蚀刻期间的扩散和其它化学作用引起的。
为了增加设计布局的被投影的图像是根据给定目标电路设计的要求的可能性,可以使用设计布局的复杂数值模型、校正或预变形来预测和补偿邻近效应。文献“Full-ChipLithography Simulation and Design Analysis-How OPC Is Changing IC Design(整芯片式光刻模拟和设计分析-OPC如何改变IC设计)”(C.Spence,Proc.SPIE,第5751卷,第1至14页(2005年))提供当前“基于模型的”光学邻近效应校正过程的综述。在典型的高端设计中,设计布局的几乎每一特征都具有一些修改,以便实现被投影的图像相对于目标设计的高保真度。这些修改可以包括边缘位置或线宽的移位或偏置,以及旨在辅助其它特征的投影的“辅助”特征的应用。
OPC的最简单的一种形式是选择性偏置。在给定CD与节距曲线的情况下,可以至少在最佳聚焦和曝光下通过改变图案形成装置的水平面处的CD而迫使所有不同的节距产生相同的CD。因此,如果特征在衬底的水平面处被印刷得太小,则图案形成装置水平特征将偏置成稍微大于标称值,反之亦然。由于从图案形成装置的水平面至衬底的水平面的图案转印过程是非线性的,所以偏置的量并非仅仅为在最佳聚焦和曝光下所测量的CD误差乘以缩小比率,而是利用建模和实验可以确定适当的偏置。特别是如果仅在标称过程条件下应用选择性偏置的情况下,选择性偏置是对邻近效应问题的不完全解决方案。尽管这种偏置原则上可以被应用以给出最佳聚焦和曝光下的均一的CD与节距曲线之间的关系,但一旦曝光过程从标称条件变化,每一偏置的节距曲线就将作出不同的响应,从而产生针对不同特征的不同过程窗口。过程窗口是两个或更多个过程参数(例如光刻设备中的聚焦和辐射剂量)的一系列值,在所述过程参数下,特征被足够准确地创建(例如特征的CD在诸如±10%或±5%的某一范围内)。因此,为给出相同CD与节距之间的关系的“最佳”偏置甚至可能对总过程窗口有负面影响,从而减小(而非放大)所有目标特征在所期望的过程容许度内印刷于衬底上的聚焦和曝光范围。
已开发了其它更复杂的OPC技术以用于上述一维偏置示例以外的应用。二维邻近效应是线端缩短的。线端具有作为曝光和聚焦的函数而从其所期望的端点部位“拉回”的倾向。在许多情况下,长线端的端部缩短的程度可以比对应的线窄化大几倍。如果线端没有完全横越其旨在覆盖的下层(诸如,源漏极区域上方的多晶硅栅极层),则这种类型的线端拉回可以导致正被制造的器件发生严重故障。由于这种类型的图案对聚焦和曝光高度敏感,所以使线端简单地偏置成长于设计长度是不够的,这是因为最佳聚焦和曝光下或在曝光不足的条件下的线会过长,从而在被延长的线端接触相邻结构时导致短路,或如果在电路中的单独特征之间添加更多空间,则会导致不必要大的电路尺寸。由于集成电路设计和制造的目标中的一个是最大化功能元件的数量,同时最小化每个芯片所需的面积,所以增加过量间隔是不期望的解决方案。
二维OPC方法可以帮助解决线端拉回问题。诸如“锤头”或“配线(serif)”的额外结构(也被称为“辅助特征”)可以被添加至线端,以将所述线端有效地锚固于适当位置且提供在整个过程窗口上的缩减的拉回。甚至在最佳聚焦和曝光下,这些额外结构也仍未被分辨,而是在其自身没有完全分辨的情况下更改了主要特征的外观。如本文中所使用的“主要特征”是指在过程窗口中的一些或全部条件下旨在印刷于衬底上的特征。辅助特征能够比添加至线端的简单的锤头呈现出更积极多样的形式,达到了图案形成装置上的图案不再简单地是被缩小比率放大的所期望的衬底图案的程度。诸如配线的辅助特征可以应用于除了简单地减小线端拉回之外的更多的情形。内部配线或外部配线可以应用到任何边缘(尤其是二维边缘),以减小角部圆化或边缘挤压。在利用足够的选择性偏置和所有尺寸和偏振的辅助特征的情况下,图案形成装置上的特征与衬底的水平面处所期望的最终图案的类似性越来越小。一般而言,图案形成装置图案变成衬底的水平面的图案的预变形的形式,其中所述变形旨在抵消或消除在制造过程期间将出现的图案变形,以在衬底上产生尽可能接近于设计者所预期的图案的图案。
另一OPC技术包括使用完全独立且不可分辨的辅助特征,以替代或补充连接到主要特征的那些辅助特征(例如配线)。这里术语“独立”意味着这些辅助特征的边缘未连接到主要特征的边缘。这些独立的辅助特征并非旨在或期望印刷为衬底上的特征,而是旨在修改附近主要特征的空间图像,以提高该主要特征的可印刷性和过程容许度。这些辅助特征(通常被称为“散射条”或“SBAR”)可以包括亚分辨率辅助特征(SRAF)和亚分辨率逆特征(SRIF),亚分辨率辅助特征是主要特征的边缘之外的特征,亚分辨率逆特征是从主要特征的边缘内被取出的特征。SBAR的存在为图案形成装置图案增加了又一层复杂度。使用散射条的一个简单示例是,在隔离线特征的两侧绘制规则的不可分辨的散射条阵列,这从空间图像的角度看具有使隔离线看起来更能代表密集线阵列内的单条线的效果,从而使过程窗口的聚焦和曝光容许度更接近密集图案的聚焦和曝光容许度。与在图案形成装置的水平面处绘制为隔离的特征相比,在这种装饰性隔离特征与密集图案之间的共同过程窗口将具有对聚焦和曝光变化来说更大的共同容许度。
辅助特征可以被看作是图案形成装置上的特征与设计布局中的特征之间的差异。术语“主要特征”和“辅助特征”不暗示在图案形成装置上的特定特征必须被标注为一个或另一个。
本文中使用的术语“掩模”或“图案形成装置”可以被宽泛地解释为是指可以用于向入射辐射束赋予图案化横截面的通用图案形成装置,该图案化横截面对应于待在衬底的目标部分中产生的图案;术语“光阀”也可以用于这种情形中。除了经典掩模(透射式或反射式;二元式、相移式、混合式等)以外,其它此类图案形成装置的示例包括:
-可编程反射镜阵列。这种装置的示例是具有黏弹性控制层和反射表面的矩阵可寻址表面。这种设备所依据的基本原理是(例如)反射表面的已寻址区域将入射辐射反射为衍射辐射,而未寻址区域将入射辐射反射为非衍射辐射。在使用适当的滤光片的情况下,可以从反射束滤除所述非衍射辐射,而仅留下衍射辐射;这样,束根据矩阵可寻址表面的寻址图案而变成图案化的。可以使用适当的电子装置来执行所需的矩阵寻址。
-可编程LCD阵列。这种构造的示例在美国专利No.5229872中给出,该美国专利通过引用并入本文中。
作为简要介绍,图1图示了示例性光刻投影设备10A。主要部件是:辐射源12A,该辐射源12A可以是深紫外准分子激光源或其它类型的源,包括极紫外(EUV)源(如上所述,光刻投影设备本身不需要具有辐射源);照明光学器件,该照明光学器件例如限定局部相干性(表示为西格马(sigma)),并且可以包括对来自源12A的辐射成形的光学器件14A、16Aa和16Ab;图案形成装置18A;以及透射式光学器件16Ac,该透射式光学器件16Ac将图案形成装置图案的图像投射到衬底平面22A上。在投影光学器件的光瞳平面处的可调滤光片或孔径20A可以限制入射在衬底平面22A上的束角度的范围,其中最大可能的角度限定了投影光学器件的数值孔径NA=n sin(Θmax),其中n是衬底与投影光学器件的最后一个元件之间的介质的折射率,并且Θmax是从投影光学器件出射的并仍可以入射在衬底平面22A上的束的最大角度。
在光刻投影设备中,源提供对图案形成装置的照射(即,辐射),并且投影光学器件经由图案形成装置将照射引导并成形到衬底上。投影光学器件可以包括部件14A、16Aa、16Ab和16Ac中的至少一些。空间图像(AI)是衬底的水平面处的辐射强度分布。曝光衬底上的抗蚀剂层,并且将空间图像转印到抗蚀剂层以在其中作为潜影“抗蚀剂图像”(RI)。可以将抗蚀剂图像(RI)限定为抗蚀剂层中的抗蚀剂的溶解度的空间分布。抗蚀剂模型可以用于根据空间图像计算抗蚀剂图像,其示例可以在美国专利申请公开出版物No.US2009-0157360中找到,该美国专利申请公开出版物的全部公开内容由此通过引用并入本文中。抗蚀剂模型仅与抗蚀剂层的特性相关(例如,在曝光、PEB和显影期间发生的化学过程的影响)。光刻投影设备的光学特性(例如,源、图案形成装置和投影光学器件的特性)决定了空间图像。由于在光刻投影设备中使用的图案形成装置可以改变,因此可以期望将图案形成装置的光学特性与至少包括源和投影光学器件的光刻投影设备的其余部分的光学特性分开。
理解光刻过程的一个方面是理解辐射与图案形成装置的相互作用。可以根据辐射到达图案形成装置之前的辐射的电磁场以及表征所述相互作用的函数来确定辐射穿过图案形成装置之后的辐射的电磁场。该函数可以被称为掩模透射函数(掩模透射函数可以用于描述由透射式图案形成装置和/或反射式图案形成装置进行的相互作用)。
掩模透射函数可以具有多种不同的形式。一种形式是二元式。二元式掩模透射函数在图案形成装置上的任何给定位置处具有两个值(例如,零和正常数)中的任一个。二元形式的掩模透射函数可以被称为二元掩模。另一种形式是连续的。即,图案形成装置的透射率(或反射率)的模量是图案形成装置上的位置的连续函数。透射率(或反射率)的相位也可以是图案形成装置上的位置的连续函数。连续形式的掩模透射函数可以被称为连续透射掩模(CTM)。例如,CTM可以被表示为像素化的图像,其中可以为每个像素分配0到1之间的值(例如0.1、0.2、0.3等),而不是0或1的二元值。可以在共同转让的美国专利No.8584056中找到示例性CTM流程及其细节,该美国专利的全部公开内容由此通过引用并入本文中。
根据实施例,可以将设计布局优化为连续透射掩模(“CTM优化”)。在这种优化中,在设计布局的所有位置处的透射不限于多个离散值。替代地,透射可以采用上限和下限内的任何值。可以在共同转让的美国专利No.8584056中找到更多细节,该美国专利的全部公开内容由此通过引用并入本文中。(如果不是不可能的话)在图案形成装置上实施连续透射掩模是非常困难的。然而,由于不将透射限制为多个离散值使得优化更加快速,因此连续透射掩模是一种有用的工具。在EUV光刻投影设备中,图案形成装置可以是反射式的。CTM优化的原理也适用于待在反射式图案形成装置上产生的设计布局,其中设计布局的所有位置处的反射率均不限于多个离散值。因此,如本文所使用的,术语“连续透射掩模”可以指待在反射式图案形成装置或透射式图案形成装置上产生的设计布局。CTM优化可以基于考虑了厚掩模效应的三维掩模模型。厚掩模效应是由光的矢量性质引起的,并且当设计布局上的特征尺寸小于在光刻过程中使用的光的波长时,该厚掩模效应可以是显著的。由于电场和磁场的不同边界条件、较小开口中的透射率、反射率和相位误差、边缘衍射(或散射)效应或电磁耦合,厚掩模效应包括偏振依赖性。可以在共同转让的美国专利No.7703069中找到三维掩模模型的更多细节,该美国专利的全部公开内容由此通过引用并入本文中。
在实施例中,可以基于被优化为连续透射掩模的设计布局而将辅助特征(亚分辨率辅助特征和/或可印刷的分辨率辅助特征)放置到设计布局中。这允许根据连续透射掩模来识别并设计辅助特征。
在实施例中,薄掩模近似法(也被称为基尔霍夫边界条件)被广泛使用以简化对辐射与图案形成装置的相互作用的确定。薄掩模近似法假设图案形成装置上的结构的厚度与波长相比非常小,并且掩模上的结构的宽度与波长相比非常大。因此,薄掩模近似法假设经过图案形成装置之后的电磁场是入射电磁场与掩模透射函数的乘积。然而,由于光刻过程使用更短的辐射和更短的波长,并且图案形成装置上的结构变得越来越小,因此薄掩模近似法的假设可能会失败。例如,由于结构(例如,顶表面与侧壁之间的边缘)的有限厚度,辐射与所述结构的相互作用(“掩模3D效应”或“M3D”)可以变得显著。在掩模透射函数中涵盖这种散射可以使得掩模透射函数更好地捕获辐射与图案形成装置的相互作用。在薄掩模近似法下的掩模透射函数可以被称为薄掩模透射函数。涵盖M3D的掩模透射函数可以被称为M3D掩模透射函数。
图2是根据实施例的用于确定图像(例如,空间图像、抗蚀剂图像或蚀刻图像)的方法的流程图,该图像是包括考虑了M3D的光刻工艺的图案化过程的结果。在过程2008中,图案形成装置的M3D掩模透射函数2006、照射源模型2005和投影光学器件模型2007用于确定(例如,模拟)空间图像2009。空间图像2009和抗蚀剂模型2010可以在可选过程2011中使用以确定(例如,模拟)抗蚀剂图像2012。抗蚀剂图像2012和蚀刻模型2013可以在可选过程2014中使用以确定(例如,模拟)蚀刻图像2015。可以将蚀刻图像限定为在衬底上使用显影的抗蚀剂作为蚀刻掩模对衬底进行蚀刻之后衬底中的蚀刻量的空间分布。
如上所述,图案形成装置的掩模透射函数(例如,薄掩模或M3D掩模透射函数)是一种基于辐射与图案形成装置相互作用之前所述辐射的电磁场确定辐射与图案形成装置相互作用之后所述辐射的电磁场的函数。如上所述,掩模透射函数可以描述透射式图案形成装置或反射式图案形成装置的相互作用。
图3示意性地示出了使用掩模透射函数的流程图。在过程3003中使用辐射与图案形成装置相互作用之前所述辐射的电磁场3001和掩模透射函数3002以确定辐射与图案形成装置相互作用之后所述辐射的电磁场3004。掩模透射函数3002可以是薄掩模透射函数。掩模透射函数3002可以是M3D掩模透射函数。在一般的数学形式中,电磁场3001和电磁场3004之间的关系可以用公式表示为Ea(r)=T(Eb(r)),其中Ea(r)是电磁场3004的电分量;Eb(r)是电磁场3001的电分量;并且T是掩模透射函数。
图案形成装置上的结构的(例如,如由M3D掩模透射函数的一个或更多个参数表示的)M3D可以由计算或经验模型确定。在示例中,计算模型可以包括对图案形成装置上的所有结构的M3D的严格模拟(例如,使用有限离散时间域(FDTD)算法或严格耦合波导分析(RCWA)算法)。在另一示例中,计算模型可以包括对趋于具有较大M3D的结构的某些部分的M3D的严格模拟,并将这些部分的M3D添加到图案形成装置上的所有结构的薄掩模透射函数。然而,严格模拟往往在计算上是很昂贵的。
相反,经验模型不模拟M3D;替代地,经验模型基于对经验模型的输入(例如,包括在图案形成装置中或由图案形成装置形成的设计布局的一个或更多个特性、图案形成装置的一个或更多个特性(诸如其结构和材料组成),以及在光刻过程中使用的照射的一个或更多个特性(诸如波长))和M3D之间的相关性来确定M3D。
经验模型的一个示例是神经网络。神经网络,也被称为人工神经网络(ANN),是“由多个简单、高度互连的处理元件组成的计算系统,这些处理元件通过对外部输入的动态响应来处理信息”,Neural Network Primer(神经网络基础):部分I,Maureen Caudill,AI专家,1989年2月。神经网络是处理装置(算法或实际硬件),所述处理装置按照哺乳动物大脑皮层的神经元结构粗略地建模,但规模要小得多。神经网络可能具有成百上千的处理器单元,而哺乳动物的大脑则具有数以亿计的神经元,其中这些神经元的整体交互作用和突现(emergent)行为的量级相应增加。
可以使用一组训练数据来训练神经网络(即,确定神经网络的参数)。训练数据可以包括一组训练样本或由一组训练样本组成。每个样本可以是包括输入对象(通常是向量,可以被称为特征向量)和期望的输出值(也被称为监督信号)或由所述输入对象和期望的输出值组成的对。训练算法分析训练数据并通过基于训练数据调节神经网络的参数(例如,一个或更多个层的权重)来调节神经网络的行为。经训练的神经网络可以用于映射新样本。
在确定M3D的情况下,特征向量可以包括:由图案形成装置包括或形成的设计布局的一个或更多个特性(例如,形状、位置、尺寸等),图案形成装置的一个或更多个特性(例如,一个或更多个物理属性,诸如尺寸、反射率、材料组成等),以及在光刻过程中使用的照射的一个或更多个特性(例如,波长)。监督信号可以包括M3D的一个或更多个特性(例如,M3D掩模透射函数的一个或更多个参数)。
给定一组形式为{(x1,y1),(x2,y2),...,(xN,yN)}的N个训练样本,使得xi是第i个示例的特征向量,并且yi是第i个示例的监督信号,训练算法寻求神经网络g:X→Y,其中X是输入空间并且Y是输出空间。特征向量是表示某一对象的数值特征的n维向量。与这些向量相关联的向量空间通常被称为特征空间。有时使用评分函数f:
Figure BDA0002646369090000171
来表示g是很方便的,使得g被定义为返回给出最高评分:g(x)=arg maxyf(x,y)的y值。用F来表示评分函数的空间。
当g采用条件概率模型g(x)=P(y|x)的形式或f采用联合概率模型f(x,y)=P(x,y)的形式时,神经网络可以是概率性的。
存在用于选择f或g的两种基本方法:经验风险最小化和结构风险最小化。经验风险最小化寻求最佳拟合训练数据的神经网络。结构风险最小化包括控制偏差/方差取舍的惩罚函数。例如,在实施例中,惩罚函数可以基于成本函数,该成本函数可以是误差平方、缺陷数量,EPE等。可以修改函数(或函数内的权重)以使方差减少或最小化。
在两种情况下,均假设训练集包括独立且相同分布的对(xi,yi)的一个或更多个样本,或由所述样本组成。为了测量函数拟合训练数据的程度,定义了损失函数L:
Figure BDA0002646369090000185
对于训练样本(xi,yi),预测值
Figure BDA0002646369090000182
的损失为
Figure BDA0002646369090000183
函数g的风险R(g)被定义为g的预期损失。这可以根据训练数据被评估为
Figure BDA0002646369090000184
图4示意性地示出了根据实施例的训练神经网络的方法的流程图,该神经网络确定图案形成装置上的一个或更多个结构的(例如,如由M3D掩模透射函数的一个或更多个参数所表示的)M3D。获得设计布局的一部分的一个或更多个特性410的值。设计布局可以是二元设计布局、连续性设计布局(例如,根据二元设计布局渲染出的)或其它适当形式的设计布局。一个或更多个特性410可以包括所述部分中的一个或更多个图案的一个或更多个几何特征(例如,绝对位置、相对位置和/或形状)。一个或更多个特性410可以包括所述部分中的一个或更多个图案的统计特性。一个或更多个特性410可以包括所述部分的参数化(例如,所述部分中的一个或更多个图案的函数值),诸如某基函数上的投影。一个或更多个特性410可以包括从所述部分中导出的(像素化、二元或连续性的)图像。使用任何适当的方法来确定包括或形成所述部分的图案形成装置的M3D的一个或更多个特性430的值。可以基于所述部分或所述部分的一个或更多个特性410来确定M3D的一个或更多个特性430的值。例如,可以使用计算模型来确定M3D的一个或更多个特性430。例如,一个或更多个特性430可以包括图案形成装置的M3D掩模透射函数的一个或更多个参数。可以从使用图案形成装置的图案化过程的结果420中导出M3D的一个或更多个特性430的值。结果420可以是通过图案化过程形成在衬底上的图像(例如,空间图像、抗蚀剂图像和/或蚀刻图像),或者是所述图像的特性(例如,CD、掩模误差增强因子(MEEF)、过程窗口、产量等)。设计布局的所述部分的一个或更多个特性410的值和M3D的一个或更多个特性430的值作为一个或更多个样本被包括在训练数据440中。一个或更多个特性410是样本的特征向量,并且一个或更多个特性430是样本的监督信号。在过程450中,使用训练数据440来训练神经网络460。
图5示意性地示出了根据实施例的训练神经网络的方法的流程图,该神经网络确定图案形成装置上的一个或更多个结构的(例如,如由M3D掩模透射函数的一个或更多个参数所表示的)M3D。获得设计布局的一部分的一个或更多个特性510的值。设计布局可以是二元设计布局、连续性设计布局(例如,根据二元设计布局渲染出的)或其它适当形式的设计布局。一个或更多个特性510可以包括所述部分中的一个或更多个图案的一个或更多个几何特征(例如,绝对位置、相对位置和/或形状)。一个或更多个特性510可以包括所述部分中的一个或更多个图案的一个或更多个统计特性。一个或更多个特性510可以包括所述部分的参数化(即,所述部分中的一个或更多个图案的一个或更多个函数的值),诸如某基函数上的投影。一个或更多个特性510可以包括从所述部分中导出的(像素化、二元或连续性的)图像。还获得图案化过程的一个或更多个特性590的值。图案化过程的一个或更多个特性590可以包括在光刻过程中使用的光刻设备的照射源的一个或更多个特性、在光刻过程中使用的光刻设备的投影光学器件的一个或更多个特性、曝光后过程的一个或更多个特性(例如,抗蚀剂显影、曝光后烘烤、蚀刻等)或从中选择的组合。确定使用包括或形成所述部分的图案形成装置的图案化过程的结果的一个或更多个特性580的值。可以基于所述部分和图案化过程来确定所述结果的一个或更多个特性580的值。所述结果可以是通过图案化过程形成在衬底上的图像(例如,空间图像、抗蚀剂图像和/或蚀刻图像)。一个或更多个特性580可以是CD、掩模误差增强因子(MEEF)、处理窗口或产量。可以使用计算模型来确定所述结果的一个或更多个特性580。设计布局的所述部分的一个或更多个特性510的值、图案化过程的一个或更多个特性590的值、以及所述结果的一个或更多个特性580的值作为一个或更多个样本被包括在训练数据540中。一个或更多个特性510和一个或更多个特性590是样本的特征向量,并且一个或更多个特性580是样本的监督信号。在过程550中,使用训练数据540来训练神经网络560。
图6示意性地示出了一个或更多个特性410和510的示例,可以包括:设计布局的部分610、所述部分的参数化620、所述部分的一个或更多个几何部分630(例如,一个或更多个区域、一个或更多个角部、一个或更多个边缘等)、一个或更多个几何部分的连续性渲染结果(rendering)640、和/或所述部分的连续性渲染结果650。
图7A示意性地示出了针对多个图案化过程导出一个或更多个M3D模型并将所述M3D模型存储在数据库中以供将来使用的流程图。在过程6002中,图案化过程6001(参见图7B)的一个或更多个特性被用于导出图案化过程6001的M3D模型6003(参见图7B)。可以通过模拟获得M3D模型6003。M3D模型6003存储在数据库6004中。
图7B示意性地示出了基于图案化过程从数据库中检索M3D模型的流程图。在过程6005中,图案化过程6001的一个或更多个特性用于查询数据库6004,并针对图案化过程6001检索M3D模型6003。
在实施例中,可以使用表示光刻设备的投影光学器件的光学特性(包括由投影光学器件引起的辐射强度分布和/或相位分布的变化)的光学器件模型。投影光学器件模型可以表示投影光学器件的光学特性,包括像差、变形、一个或更多个折射率、一个或更多个物理大小、一个或更多个物理尺寸等。
在实施例中,可以训练机器学习模型(例如,CNN)来表示抗蚀剂过程。在示例中,可以基于使用成本函数来训练抗蚀剂CNN,该成本函数表示抗蚀剂CNN的输出相对于模拟值的偏差(例如,从基于物理学的抗蚀剂模型中获得的,可以在美国专利申请公开出版物No.US2009-0157360中找到这种示例)。这样的抗蚀剂CNN可以基于由以上讨论的光学器件模型预测的空间图像来预测抗蚀剂图像。通常,通过空间图像曝光衬底上的抗蚀剂层,并且将空间图像转印到抗蚀剂层以在其中作为潜影“抗蚀剂图像”(RI)。可以将抗蚀剂图像(RI)限定为抗蚀剂层中的抗蚀剂的溶解度的空间分布。可以使用抗蚀剂CNN从空间图像中获得抗蚀剂图像。抗蚀剂CNN可以用于根据空间图像预测抗蚀剂图像,可以在美国专利申请No.US62/463560中找到训练方法的示例,该美国专利申请的全部公开内容由此通过引用并入本文中。抗蚀剂CNN可以预测在抗蚀剂曝光、曝光后烘烤(PEB)和显影期间发生的化学过程的效应,以便例如预测形成在衬底上的抗蚀剂特征的轮廓,因此其通常仅与抗蚀剂层的此类属性(例如,在曝光、曝光后烘烤和显影期间发生的化学过程的效应)相关。在实施例中,抗蚀剂层的光学属性(例如折射率、膜厚度、传播和偏振效应)可以被捕获作为光学器件模型的一部分。
因此,通常,光学模型和抗蚀剂模型之间的关联是抗蚀剂层内的预测的空间图像强度,这是由辐射到衬底上的投影、抗蚀剂界面处的折射以及抗蚀剂膜叠层中的多次反射引起的。通过吸收入射能量,辐射强度分布(空间图像强度)变成潜影“抗蚀剂图像”,并通过扩散过程和各种载荷效应进一步被修改。对于全芯片应用而言足够快的有效模型和训练方法可以预测抗蚀剂叠层中真实的3维强度分布。
在实施例中,可以将抗蚀剂图像用作图案化后转印过程模型模块的输入。图案化后转印过程模型可以是被配置成预测一个或更多个抗蚀剂后显影过程(例如,蚀刻、显影等)的性能的另一CNN。
图案化过程的不同机器学习模型的训练可以例如预测抗蚀剂和/或蚀刻后图像中的轮廓、CD、边缘位置(例如,边缘放置误差)等。因此,训练的目的在于能够准确预测例如印刷后图案的边缘位置和/或空间图像强度斜率和/或CD等。可以将这些值与预期的设计进行比较,以例如校正图案化过程,识别预测在哪里发生缺陷等。预期的设计(例如,待印刷在衬底上的目标图案)通常被限定为是可以以标准化的数字文件格式(诸如GDSII或OASIS)或其它文件格式提供的OPC前设计布局。
图案化过程的建模是计算光刻应用中的重要部分。图案化过程的建模通常包括建立与图案化过程的不同方面相对应的数个模型,所述方面包括掩模衍射、光学成像、抗蚀剂显影、蚀刻过程等。这些模型通常是物理模型和经验模型的混合,具有不同程度的严格度或近似度。基于各种衬底测量数据来拟合模型,通常使用扫描电子显微镜(SEM)或其它与光刻相关的测量工具(例如,HMI、YieldStar等)来收集所述数据。模型拟合是一个回归过程,其中模型参数被调节以使模型输出和测量之间的差异被最小化。
这样的模型呈现出了与模型的运行时间以及与从模型中获得的结果的准确性和一致性相关的挑战。由于需要处理(例如,与芯片上数以亿计的晶体管相关的)大量数据,因此运行时间要求对在模型内实施的算法的复杂度施加了严格的约束。同时,随着待印刷的图案的尺寸变得越来越小(例如,小于20nm或甚至个位数nm),对准确度的要求也越来越严格。在此类问题包括反函数计算时,模型使用非线性优化算法(诸如Broyden-Fletcher-Goldfarb-Shanno(BFGS)),该算法通常需要梯度的计算(即,成本函数在衬底水平面处相对于与掩模对应的变量的导数)。这样的算法通常是计算密集型的,并且可能仅适合于芯片水平面的应用。芯片水平面是指衬底的印刷有选定图案的一部分;衬底可以具有成千上万个这样的管芯。因此,不仅需要更快的模型,还需要能够比现有模型产生更准确结果的模型,以能够在衬底上印刷更小尺寸(例如,小于20nm到个位数nm)的特征和图案。另一方面,根据本公开,基于机器学习的过程模型或掩模优化模型(i)由于机器学习模型的更高的拟合能力(即,可以调节相对更多数量的参数,诸如权重和偏差),因此与基于物理学的模型或经验模型相比提供了更好的拟合;以及(ii)与传统的基于物理学的模型或经验模型相比提供了更简单的梯度计算。此外,根据本公开,经训练的机器学习模型(例如,CTM模型、LMC模型(也被称为可制造性模型)、MRC模型、其它类似模型或其组合,如在本公开下文进行讨论的)可以提供诸如以下的益处:(i)提高对例如掩模图案或衬底图案的预测的准确度,(ii)对于针对其可以确定掩模布局的任何设计布局,大大减少了运行时间(例如,减少了10倍以上、100倍以上等);以及(iii)与基于物理学的模型相比,梯度计算更加简单,这也可以改善在图案化过程中使用的计算机的计算时间。
根据本公开,可以训练诸如深度卷积神经网络之类的机器学习模型来对图案化过程的不同方面进行建模。这种经训练的机器学习模型可以相对于非线性优化算法(通常在逆光刻过程(例如,iOPC)中使用以用于确定掩模图案)提供显著的速度提高,并因此能够实现全芯片应用的模拟或预测。
在美国申请62/462337和62/463560中提出了基于卷积神经网络(CNN)情况下的深度学习的几种模型。这样的模型通常针对光刻过程的各个方面(例如,3D掩模衍射或抗蚀剂过程)。因此,可以获得物理模型、经验或准物理模型和机器学习模型的混合。本公开提供了针对基于机器学习的建模的均一化模型架构和训练方法,基于机器学习的建模能够针对可能地整个图案化过程实现附加的准确度增加。
在实施例中,可以用根据本公开产生的机械学习模型来代替与诸如光学邻近效应校正项之类的掩模优化过程(或一般地,源掩模优化(SMO))相关的现有分析模型(例如,基于物理学的模型或经验模型),与现有分析模型相比,机械学习模型可以提供更快的投放市场的时间以及更好的产量。例如,基于经验模型或基于物理学模型的OPC确定包括一种逆算法(例如,逆OPC(iOPC)和SMO),该逆算法在给定模型和衬底目标的情况下求解最佳掩模布局,即,梯度的计算(其是高度复杂的且资源密集的并具有长运行时间)。根据本公开,机器学习模型提供了更简单的梯度计算(与例如基于iOPC的方法相比),从而减小了过程模型和/或与掩模优化相关的模型的计算复杂度和运行时间。
图8是图案化过程的基于机器学习的架构的框图。该框图示出了基于机器学习的架构的不同元素,包括:(i)表示例如光刻过程的一组经训练的机器学习模型(例如8004、8006、8008),(ii)表示或被配置成预测掩模图案(例如,CTM图像或OPC)的机器学习模型(例如,8002),以及(iii)用于根据本公开的经训练的不同机器学习模型的成本函数8010(例如,第一成本函数和第二成本函数)。掩模图案是图案形成装置的图案,当在图案化过程中使用该掩模图案时,该掩模图案产生待印刷在衬底上的目标图案。掩模图案可以被表示为图像。在确定掩模图案的过程中,可以产生数个相关图像,诸如CTM图像、二元图像、OPC图像等。这样的相关图像通常也被称为掩模图案。
在实施例中,机器学习架构可以分为数个部分:(i)训练各个过程模型(例如,8004、8006和8008),如在本公开下文中进一步讨论的;(ii)联接各个过程模型,并基于第一训练数据集(例如,印刷图案)和第一成本函数(例如,印刷图案与预测图案之间的差异)来进一步训练和/或微调经训练的过程模型,如在图9中进一步讨论的;以及(iii)使用经训练的过程模型基于第二训练数据集(例如,目标图案)和第二成本函数(例如,在目标图案和预测图案之间的EPE)来训练另一机器学习模型(例如,8002),该另一机器学习模型被配置成预测掩模图案(例如,包括OPC),如在图10A中进一步讨论的。可以认为过程模型的训练是一种监督学习方法,其中将图案的预测与实验数据(例如,印刷后的衬底)进行比较。另一方面,可以认为使用经训练的过程模型进行的例如CTM模型的训练为无监督学习,其中基于成本函数(诸如EPE)将目标图案与预测图案进行比较。
在实施例中,图案化过程可以包括光刻过程,该光刻过程可以由一个或更多个机器学习模型来表示,诸如卷积神经网络(CNN)或深度CNN。每个机器学习模型(例如,深度CNN)可以被单独地预训练以预测图案化过程的一个方面或过程(例如,掩模衍射、光学器件、抗蚀剂、蚀刻等)的结果。图案化过程的每个这样的经预训练的机器学习模型可以耦合在一起以表示整个图案化过程。例如,在图8中,第一经训练的机器学习模型8004可以耦合到第二经训练的机器学习模型8006,并且第二经训练的机器学习模型8006可以进一步耦合到第三经训练的机器学习模型8008,使得耦合后的模型表示光刻过程模型。此外,在实施例中,可以将被配置成预测蚀刻过程的第四经训练的模型(未示出)耦合到第三经训练的模型8008,从而进一步扩展光刻过程模型。
然而,即使每个模型都被优化以准确地预测各个方面或过程输出,简单地耦合各个模型可能无法产生对光刻过程的准确预测。因此,可以进一步对耦合后的模型进行微调以改进耦合后的模型在衬底水平面处而不是光刻过程的特定方面(例如,衍射或光学器件)的预测。在这种微调的模型内,各个经训练的模型可以具有修改后的权重,因此使各个模型没有被优化,但是与各个经训练的模型相比,产生相对更准确的整体耦合的模型。可以通过基于成本函数调节第一经训练的模型8004、第二经训练的模型8006和/或第三经训练的模型8008中的一个或更多个的权重来对耦合后的模型进行微调。
可以基于实验数据(即,衬底上的印刷图案)与第三模型8008的输出之间的差异来限定成本函数(例如,第一成本函数)。例如,成本函数可以是基于图案化过程的参数(例如,CD、重叠)的指标(例如,RMS、MSE、MXE等),图案化过程的参数是基于第三经训练的模型(例如,预测抗蚀剂过程的结果的经训练的抗蚀剂CNN模型)的输出确定的。在实施例中,成本函数可以是边缘放置误差,可以基于从第三经训练的模型8008获得的预测图案的轮廓和衬底上的印刷图案来确定边缘放置误差。在微调过程期间,训练可以包括修改过程模型的参数(例如权重、偏差等),使得第一成本函数(例如,RMS)减小,在实施例中,第一成本函数被最小化。因此,与通过简单地耦合图案化过程的不同过程/方面的各个经训练的模型而获得的非微调模型相比,对耦合后的模型进行训练和/或微调可以产生相对更准确的光刻过程模型。
在实施例中,第一经训练的模型8004可以是被配置成在图案化过程期间预测掩模的衍射效应/行为的经训练的掩模3D CNN和/或经训练的薄掩模CNN模型。掩模可以包括针对光学邻近效应校正项而被校正的目标图案(例如,SRAF、配线等),以使得能够经由图案化过程将目标图案印刷在衬底上。第一经训练的模型8004可以接收例如像素化图像形式的连续透射掩模(CTM)。基于CTM图像,第一经训练的模型8004可以预测掩模图像(例如,图6中的640)。掩模图像还可以是像素化图像,可以进一步以向量形式、矩阵形式、张量形式等来表示该像素化图像,以由其它经训练的模型进一步处理。在实施例中,可以产生深度卷积神经网络或可以获得经预训练的模型。例如,可以如先前针对图2至图6所讨论的来训练用于预测3D掩模衍射的第一经训练的模型8004。经训练的3D CNN然后可以产生可以被发送到第二经训练的模型8006的掩模图像。
在实施例中,第二经训练的模型8006可以是经训练的CNN模型,该经训练的CNN模型被配置成预测光刻设备(通常也被称为扫描仪或图案形成设备)的投影光学器件(例如,包括光学系统)的行为。例如,第二经训练的模型可以接收由第一经训练的模型8004预测的掩模图像,并且可以预测光学图像或空间图像。在实施例中,可以基于包括与多个掩模图像相对应的多个空间图像的训练数据来训练第二CNN模型,其中每个掩模图像可以与印刷在衬底上的选定图案相对应。在实施例中,训练数据的空间图像可以根据光学模型的模拟获得。基于训练数据,第二CNN模型的权重可以被迭代地调节,使得成本函数减小,在实施例中成本函数被最小化。在几次迭代之后,成本函数可以收敛(即,在预测的空间图像中没有观察到进一步改进),此时可以认为第二CNN模型是第二经训练的模型8006。
在实施例中,第二经训练的模型8006可以是非机器学习模型(例如,如先前所讨论的基于物理学的光学器件模型),诸如阿贝(Abbe)或霍普金斯(Hopkins)公式(通常通过中间项、传递交叉系数(TCC)来扩展)。在阿贝和霍普金斯公式中,将掩模图像或近场与一系列核进行卷积,然后进行平方并求和,以获得光学图像或空间图像。可以将卷积核直接携带到其它CNN模型。在这样的光学器件模型内,平方运算可以对应于CNN中的激活函数。因此,这样的光学器件模型可以与其它CNN模型直接兼容,并因此可以与其它CNN模型耦合。
在实施例中,第三经训练的模型8008可以是被配置成预测抗蚀剂过程的行为的CNN模型,如先前所讨论的。在实施例中,机器学习模型(例如,ML-抗蚀剂模型)的训练是基于以下来进行的:(i)例如由空间图像模型(例如,基于机器学习的模型或基于物理学的模型)预测的一个或更多个空间图像,和/或(ii)目标图案(例如,根据目标布局渲染出的掩模图像)。此外,训练过程可以包括减少(在实施例中,最小化)成本函数,该成本函数描述预测的抗蚀剂图像与实验测得的抗蚀剂图像(SEM图像)之间的差异。成本函数可以基于图像像素强度差异、轮廓之间的差异或CD差异等。在训练之后,ML-抗蚀剂模型可以根据输入图像(例如空间图像)预测抗蚀剂图像。
本公开不限于以上讨论的经训练的模型。例如,在实施例中,第三经训练的模型8008可以是抗蚀剂和蚀刻的组合过程,或者第三模型8008可以进一步耦合到表示蚀刻过程的第四经训练的模型。这种第四模型的输出(例如,蚀刻图像)可以用于训练耦合后的模型。例如,可以基于蚀刻图像来确定图案化过程的参数(例如,EPE、重叠等)。
此外,光刻模型(即,以上讨论的微调后的耦合的模型)可以用于训练被配置成预测光学邻近效应校正项的另一机器学习模型8002。换句话说,可以通过光刻模型的正向模拟来训练用于OPC预测的机器学习模型(例如,CNN),其中基于衬底水平面处的图案来计算成本函数(例如,EPE)。此外,训练可以包括根据基于梯度的方法进行的优化过程,其中通过穿过CNN的不同层的反向传播来获取局部导数(或偏导数)(这类似于计算逆函数的偏导数)。训练过程可以继续直到成本函数(例如,EPE)减小,在实施例中成本函数被最小化。在实施例中,用于OPC预测的CNN可以包括用于预测连续透射掩模的CNN。例如,CTM-CNN模型8002可以被配置成预测CTM图像,该CTM图像还被用于确定与目标图案的光学邻近效应校正项相对应的结构。因此,机器学习模型可以基于将被印刷在衬底上的目标图案来执行光学邻近效应校正项预测,从而考虑到图案化过程的多个方面(例如,掩模衍射、光学行为、抗蚀剂过程等)。
另一方面,典型的OPC或典型的逆OPC方法是基于更新掩模图像变量(例如,CTM图像的像素值)进行的,更新掩模图像变量是根据基于梯度的方法进行的。基于梯度的方法包括基于成本函数相对于掩模变量的导数来产生梯度图。此外,优化过程可以包括多次迭代,在多次迭代中计算所述成本函数,直到均方误差(MSE)或EPE减小,在实施例中均方误差(MSE)或EPE被最小化。例如,可以将梯度计算为dcost/dvar,其中“cost”可以是EPE的平方(即,EPE2),并且var可以是CTM图像的像素值。在实施例中,变量可以被限定为var=var-alpha*gradient,其中alpha可以是用于调整训练过程的超参数,该var可以用于更新CTM,直到cost被最小化。
因此,使用基于机器学习的光刻模型使得能够限定衬底水平面的成本函数,使得与基于物理学的模型或经验模型中的成本函数相比,该衬底水平面的成本函数可易于微分。例如,具有多个层(例如5层、10层、20层、50层等)的CNN包括更简单的激活函数(例如,诸如ax+b之类的线性形式),该激活函数被卷积数次以形成CNN。与在基于物理学的模型中计算梯度相比,确定CNN的这种函数的梯度在计算方面上是廉价的。此外,与CNN的权重的数量和层数相比,基于物理学的模型中的变量(例如,与掩模相关的变量)的数量受到限制。因此,与具有有限数量的变量的基于物理学的模型相比,CNN能够对模型进行更高阶的微调,从而实现更准确的预测。因此,根据本公开,在基于机器学习的架构的基础上的方法具有数个优点,例如,与采用例如基于物理学的过程模型的传统方法相比,提高了预测的准确度。
图9是用于训练图案化过程的过程模型以预测衬底上的图案的方法900的流程图,如先前所讨论的。方法900示出了在以上讨论的图案化过程的不同方面的模型的训练/微调/再训练中所包含的步骤。根据实施例,以该方法900训练的过程模型PM不仅可以用于训练附加模型(例如,机器学习模型8002),而且可以用于一些其它应用。例如,在基于CTM的掩模优化方法中包括:正向光刻模拟和掩模变量的基于梯度的更新,直到过程收敛;和/或需要正向光刻模拟的任何其它应用(如LMC和/或MRC),这些将在本公开下文中进行讨论。
训练过程900在过程P902中包括:获得和/或产生多个机器学习模型和/或多个经训练的机器学习模型(如先前所讨论的)和训练数据。在实施例中,机器学习模型可以是(i)用于预测图案化过程的掩模透射的第一经训练的机器学习模型8004,(ii)用于预测在图案化过程中使用的设备的光学行为的第二经训练的机器学习模型8006,(iii)用于预测图案化过程的抗蚀剂过程的第三经训练的机器学习模型。在实施例中,第一经训练的模型8004、第二经训练的模型8006和/或第三经训练的模型8008是卷积神经网络,该卷积神经网络被训练以单独地优化图案化过程的一个或更多个方面,如在本公开中先前所讨论的。
训练数据可以包括从例如印刷后的衬底中获得的印刷图案9002。在实施例中,可以从印刷后的衬底中选择多个印刷图案。例如,印刷图案可以是与在经历图案化过程之后的印刷后衬底的管芯相对应的图案(例如,包括栅条、接触孔等)。在实施例中,印刷图案9002可以是印刷在衬底上的整个设计图案的一部分。例如,最具代表性的图案、用户选择的图案等可以用作印刷图案。
训练方法在过程P904中包括连接第一经训练的模型8004、第二经训练的模型8006和/或第三经训练的模型8008以产生初始过程模型。在实施例中,连接是指顺序地将第一经训练的模型8004连接到第二经训练的模型8006,并且将第二经训练的模型8006连接到第三经训练的模型8008。这样的顺序连接包括将第一经训练的模型8004的第一输出作为第二输入提供给第二经训练的模型8004,以及将第二经训练的模型8006的第二输出作为第三输入提供给第三经训练的模型8008。在本公开的前面讨论了每个模型的这种连接以及相关的输入和输出。例如,在实施例中,输入和输出可以是像素化图像,诸如第一输出可以是掩模透射图像,第二输出可以是空间图像,并且第三输出可以是抗蚀剂图像。因此,模型8004、8006和8008的顺序链接产生初始过程模型,对该初始过程模型进行进一步训练或微调以产生经训练的过程模型。
训练方法在过程P906中包括训练初始过程模型(即,包括耦合后的模型或连接后的模型),该初始过程模型被配置成基于确定印刷图案9002与预测图案9006之间的差异的成本函数(例如,第一成本函数)来预测衬底上的图案9006。在实施例中,第一成本函数对应于基于衬底水平面处的信息(例如基于第三输出(例如,抗蚀剂图像))的指标的确定。在实施例中,第一成本函数可以是RMS、MSE或限定印刷图案与预测图案之间的差异的其它指标。
训练包括基于第一成本函数迭代地确定与第一经训练的模型、第二经训练的模型和/或第三经训练的模型相对应的一个或更多个权重。训练可以包括基于梯度的方法,该方法确定:第一成本函数相对于与掩模相关的不同变量或CNN模型8004的权重的导数、第一成本函数相对于与抗蚀剂过程相关的变量或CNN模型8008的权重的导数、第一成本函数相对于与光学器件相关的变量或CNN模型8006的权重的导数、或第一成本函数相对于其它适当的变量的导数,如先前所讨论的。此外,基于第一成本函数的导数产生梯度图,该梯度图提供关于增加或减小与变量相关联的权重或参数的建议,以使第一成本函数的值减小,在实施例中第一成本函数的值被最小化。在实施例中,第一成本函数可以是预测图案与印刷图案之间的误差。例如,印刷图案与预测图案之间的边缘放置误差、均方误差或用于量化印刷图案与预测图案之间的差异的其它适当的量度。
此外,在过程P908中,确定成本函数是否减小,在实施例中确定成本函数是否被最小化。最小化的成本函数表示训练过程收敛。换句话说,使用一个或更多个印刷图案的附加训练不会导致预测图案的进一步改进。例如,如果成本函数被最小化,则认为过程模型已训练完成。在实施例中,可以在预定次数的迭代(例如,50000或100000次迭代)之后停止训练。这样的经训练的过程模型PM具有独特的权重,使得与如上所述的没有训练或微调权重的简单耦合或连接的模型相比,经训练的过程模型能够以更高的准确度预测衬底上的图案。
在实施例中,如果成本函数未被最小化,则可以在过程P908中产生梯度图9008。在实施例中,梯度图9008可以是成本函数(例如,RMS)相对于机器学习模型的参数的偏导数。例如,参数可以是一个或更多个模型8004、8006和8008的偏差和/或权重。可以在通过模型8008、8006和/或8004的反向传播的期间以该顺序确定偏导数。如前所述,由于模型8004、8006和8008是基于CNN的,因此与针对基于物理学的过程模型计算偏导数相比,使得偏导数的计算更加容易。梯度图9008然后可以建议如何修改模型8008、8006和/或8004的权重,从而减小或最小化成本函数。在数次迭代之后,当成本函数被最小化或收敛时,可以认为产生了微调后的过程模型PM。
在实施例中,依赖于所使用的训练数据集的类型和成本函数,可以训练一个或更多个机器学习模型以预测CTM图像,所述一个或更多个机器学习模型还可以用于预测掩模图案或包括掩模图案的掩模图像。例如,本公开在图10A、图10B和图10C中分别讨论了训练第一机器学习模型(在下文中被称为CTM1模型)、训练第二机器学习模型(在下文中被称为CTM2模型)和训练第三机器学习模型(在下文中被称为CTM3模型)的三种不同的方法。例如,可以使用目标图案(例如,待印刷在衬底上的设计布局、设计布局的渲染结果等)、(例如,从图9的经训练的过程模型或被配置成预测抗蚀剂图像的模型中获得的)抗蚀剂图像和成本函数(例如,EPE)来训练CTM1模型。可以使用(例如,由SMO/iOPC产生的)CTM基准图像(或地面真实图像)和成本函数(例如,CTM基准图像(或地面真实图像)与预测CTM图像之间的均方根误差(RMS))来训练CTM2模型。可以使用(例如,从CTM1模型或被配置成预测掩模图像的其它模型中获得的)掩模图像、(例如,从被配置成预测抗蚀剂图像的基于物理学的模型或经验模型中获得的)模拟的抗蚀剂图像、目标图案(例如待印刷在衬底上的设计布局)和成本函数(例如,EPE或基于像素的成本函数)来训练CTM3模型。在实施例中,经由使用掩模图像的模拟来获得模拟的抗蚀剂图像。接下来,分别参照图10A、图10B和图10C来讨论针对CTM1模型、CTM2模型和CTM3模型的训练方法。
图10A是用于训练机器学习模型1010的方法1001A的流程图,该机器学习模型1010被配置成预测CTM图像或掩模图案(例如,经由CTM图像),CTM图像或掩模图案包括例如在图案化过程中使用的掩模的光学邻近效应校正项。在实施例中,机器学习模型1010可以是卷积神经网络(CNN)。在实施例中,CNN 1010可以被配置成预测连续透射掩模(CTM),因此,CNN可以被称为CTM-CNN。在不限制本公开的范围的情况下,在下文中将机器学习模型1010称为CTM1模型1010。
训练方法1001A在过程P1002中包括获得:(i)图案化过程的经训练的过程模型PM(例如,通过上述方法900产生的经训练的过程模型PM),该过程模型PM被配置成预测衬底上的图案,其中经训练的过程模型包括一个或更多个经训练的机器学习模型(例如8004、8006和8006);以及(ii)待印刷在衬底上的目标图案。通常,在OPC过程中,基于目标图案产生具有与目标图案相对应的图案的掩模。基于OPC的掩模图案包括附加结构(例如,SRAF)和对目标图案的边缘(例如,配线)的修改,使得在图案化过程中使用掩模时,图案化过程最终在衬底上产生目标图案。
在实施例中,一个或更多个经训练的机器学习模型包括:第一经训练的模型(例如,模型8004),该第一经训练的模型被配置成预测图案化过程的掩模衍射;第二经训练的模型(例如,模型8006),该第二经训练的模型耦合到第一经训练的模型(例如,8004),并且被配置成预测在图案化过程中使用的设备的光学行为;以及第三经训练的模型(例如,8008),该第三经训练的模型耦合到第二经训练的模型并被配置成预测图案化过程的抗蚀剂过程。这些模型中的每一个都可以是包括多个层的CNN,每一层都包括一组权重和激活函数,这些模型经由训练过程被训练/分配特定权重,例如如在图9中所讨论的。
在实施例中,第一经训练的模型8004包括被配置成预测图案化过程的二维掩模衍射或三维掩模衍射的CNN。在实施例中,第一经训练的机器学习模型接收图像形式的CTM,并预测与CTM相对应的二维掩模衍射图像和/或三维掩模衍射图像。在训练方法的第一遍期间,可以由被配置成预测CTM的初始或未经训练的CTM1模型1010来预测连续透射掩模,例如,作为OPC过程的一部分。由于CTM1模型1010是未经训练的,因此预测可能会不理想,从而产生相对于期望印刷在衬底上的目标图案的相对较高的误差。然而,在CTM1模型1010的训练过程的几次迭代之后,误差将逐渐减小,在实施例中误差将被最小化。
第二经训练的模型可以接收预测掩模透射图像(例如,来自第一经训练的模型的三维掩模衍射图像)作为输入,并且预测与CTM相对应的空间图像。此外,第三经训练的模型可以接收预测空间图像并预测与CTM相对应的抗蚀剂图像。
这样的抗蚀剂图像包括可以在图案化过程期间印刷在衬底上的预测图案。如前所述,在所述第一遍中,由于通过CTM1模型1010预测的初始CTM可能不理想或不准确,因此在抗蚀剂图像上所产生的图案可能与目标图案不同,其中预测图案与目标图案之间的(例如,在EPE方面测量的)差异与经过CTM-CNN的训练的数次迭代之后的差异相比将是高的。
训练方法在过程P1004中包括训练机器学习模型1010(例如,CTM1模型1010),该机器学习模型1010被配置成基于经训练的过程模型和确定预测图案与目标图案之间的差异的成本函数来预测CTM和/或进一步预测OPC。机器学习模型1010(例如,CTM1模型1010)的训练包括基于梯度值迭代地修改机器学习模型1010的权重,使得成本函数减小,在实施例中成本函数被最小化。在实施例中,成本函数可以是目标图案与预测图案之间的边缘放置误差。例如,成本函数可以表示为:cost=f(PM-CNN(CTM-CNN(input,ctm_parameter),pm_parameter),target),其中cost可以是EPE(或EPE2或其它合适的基于EPE的指标),函数f确定预测图像与目标图像之间的差异。例如,函数f可以首先从预测图像中导出轮廓,然后计算相对于目标图像的EPE。此外,PM-CNN表示经训练的过程模型,并且CTM-CNN表示经训练的CTM模型。pm_parameter是在PM-CNN模型的训练阶段期间确定的PM-CNN的参数。ctm_parameter是使用基于梯度的方法在CTM-CNN训练期间确定的优化参数。在实施例中,参数可以是CNN的权重和偏差。此外,与成本函数相对应的梯度可以是dcost/dparameter,其中可以基于方程式(例如,parameter=parameter+learning_rate*gradient)来更新parameter。在实施例中,parameter可以是机器学习模型(例如,CNN)的权重和/或偏差,并且learning_rate可以是用于调整训练过程的超参数,并且可以由用户或计算机来选择learning_rate以改进训练过程的收敛(例如,快速收敛)。
在训练过程的数次迭代后,可以获得被配置成直接根据待印刷在衬底上的目标图案来预测CTM图像的经训练的机器学习模型1020(该机器学习模型1020是先前讨论的模型8002的示例)。此外,经训练的模型1020可以被配置成预测OPC。在实施例中,OPC可以包括基于CTM图像的辅助特征的放置。OPC可以是图像形式,并且训练可以基于图像或图像的像素数据。
在过程P1006中,可以确定成本函数是否减小,在实施例中确定成本函数是否被最小化。最小化的成本函数表示训练过程收敛。换句话说,使用一个或更多个目标图案的附加训练不会导致预测图案的进一步改进。例如,如果成本函数被最小化,则认为机器学习模型1020已训练完成。在实施例中,可以在预定次数的迭代(例如,50000或100000次迭代)之后停止训练。这种经训练的模型1020具有使经训练的模型1020(例如,CTM-CNN)能够根据目标图案以更高的准确度和速度来预测掩模图像(例如,CTM图像)的独特权重,如前所述。
在实施例中,如果成本函数未被最小化,则可以在过程P1006中产生梯度图1006。在实施例中,梯度图1006可以是成本函数(例如,EPE)相对于机器学习模型1010的权重的偏导数的表示。梯度图1006然后可以建议如何修改模型1010的权重,从而减小或最小化成本函数。在数次迭代之后,当成本函数被最小化或收敛时,可以认为模型1010是经训练的模型1020。
在实施例中,可以获得经训练的模型1020(该模型1020是先前讨论的模型8002的示例),并且该模型1020可以进一步用于直接针对目标图案确定光学邻近效应校正项。此外,可以制造包括与OPC相对应的结构(例如,SRAF、配线)的掩模。由于OPC经由诸如8004、8006、8008和8002之类的经训练的模型考虑了图案化过程的数个方面,因此这种基于来自机器学习模型的预测的掩模至少在边缘放置误差方面可以是高度准确的。换句话说,当该掩模在图案化过程期间使用时,该掩模将以(例如在EPE、CD、重叠等方面的)最小误差在衬底上产生期望的图案。
图10B是用于训练被配置成预测CTM图像的机器学习模型1030(也被称为CTM2模型1030)的方法1001B的流程图。根据一个实施例,训练可以基于例如通过执行SMO/iOPC以预产生CTM真实图像而产生的基准图像(或地面真实图像)来进行。可以基于确定基准CTM图像与预测CTM图像之间的差异的成本函数来进一步优化机器学习模型。例如,成本函数可以是均方根误差(RMS),可以通过采用基于梯度的方法(与之前讨论的方法类似)来减小均方根误差。
训练方法1001B在过程P1031中获得一组基准CTM图像1031和被配置成预测CTM图像的未训练的CTM2模型1030。在实施例中,可以通过基于SMO/iOPC的模拟(例如,使用Tachyon软件)来产生基准CTM图像1031。在实施例中,模拟可以包括在模拟过程期间在空间上移位掩模图像(例如,CTM图像)以产生与掩模图案相对应的一组基准CTM图像1031。
此外,在过程P1033中,该方法包括基于所述一组基准CTM图像1031和成本函数(例如,RMS)的评估来训练CTM2模型1030以预测CTM图像。训练过程包括调节机器学习模型的参数(例如,权重和偏差),以使相关联的成本函数被最小化(或依赖于所使用的指标而被最大化)。在训练过程的每次迭代中,计算成本函数的梯度图1036,并且该梯度图还用于引导优化的方向(例如,CTM2模型1030的权重的修改)。
例如,在过程P1035中,评估成本函数(例如,RMS),并确定成本函数是否被最小化/最大化。在实施例中,如果成本函数没有减小(在实施例中,成本函数被最小化),则通过采用成本函数相对于CTM2模型1030的参数的导数来产生梯度图1036。在数次迭代后,在实施例中,如果成本函数被最小化,则可以获得经训练的CTM2模型1040,其中CTM2模型1040具有根据该训练过程确定的独特权重。
图10C是用于训练被配置成预测CTM图像的机器学习模型1050(也被称为CTM3模型1050)的方法1001C的流程图。根据一个实施例,训练可以基于另一训练数据集和成本函数(例如,EPE或RMS)来进行。训练数据可以包括:与目标图案相对应的掩模图像(例如,从CTM1模型1020或CTM1模型1030中获得的CTM图像);与掩模图像相对应的模拟的过程图像(例如,抗蚀剂图像、空间图像、蚀刻图像等);例如通过执行SMO/iOPC以预产生CTM真实图像而产生的基准图像(或地面真实图像);以及目标图案。可以基于确定基准CTM图像与预测CTM图像之间的差异的成本函数来进一步优化机器学习模型。例如,成本函数可以是可以通过采用基于梯度的方法(与之前讨论的方法类似)而减小的均方误差(MSE)、高阶误差(MXE)、均方根误差(RMS)或其它适当的统计指标。可以基于确定目标图案与从抗蚀剂图像中提取出的图案之间的差异的成本函数来进一步优化机器学习模型。例如,成本函数可以是可以通过采用基于梯度的方法(与之前讨论的方法类似)而减小的EPE。本领域普通技术人员可以理解,可以使用与不同目标图案相对应的多组训练数据来训练本文所描述的机器学习模型。
训练方法1001C在过程P1051中获得训练数据,该训练数据包括:(i)掩模图像1052(例如,从CTM1模型1020或CTM1模型1030中获得的CTM图像),(ii)与掩模图像1052相对应的模拟的过程图像1051(例如,抗蚀剂图像、空间图像、蚀刻图像等),(iii)目标图案1053,以及(iv)一组基准CTM图像1054和被配置成预测CTM图像的未经训练的CTM3模型1050。在实施例中,可以以与例如根据基于物理学的抗蚀剂模、基于机器学习的抗蚀剂模型或本公开中讨论的其它模型的模拟来产生模拟的抗蚀剂图像不同的方式获得模拟的抗蚀剂图像。
此外,该方法在过程P1053中包括基于训练数据和成本函数(例如,EPE、基于像素的值或RMS)的评估来训练CTM3模型1050以预测CTM图像,与先前讨论的过程P1033类似。并且,由于该方法使用包括模拟的过程图像(例如,抗蚀剂图像)的附加输入作为输入,因此与其它方法相比,根据该方法获得的掩模图案(或掩模图像)将预测更紧密地匹配(例如,匹配度超过99%)目标图案的衬底轮廓。
CTM3模型的训练包括调节机器学习模型的参数(例如,权重和偏差),以使相关联的成本函数被最小化/最大化。在训练过程的每次迭代中,计算成本函数的梯度图1036,并且该梯度图还用于引导优化的方向(例如,CTM3模型1050的权重的修改)。
例如,在过程P1055中,评估成本函数(例如,RMS),并确定成本函数是否被最小化/最大化。在实施例中,如果成本函数没有减小(在实施例中,成本函数被最小化),则通过采用成本函数相对于CTM3模型1050的参数的导数来产生梯度图1056。在数次迭代后,在实施例中,如果成本函数被最小化,则可以获得经训练的CTM3模型1050,其中CTM3模型1050具有根据该训练过程确定的独特权重。
在实施例中,基于在图案化衬底中观察到的缺陷(例如,基脚(footing)、颈缩、桥接、无接触孔、栅条的屈曲(buckling)等),和/或基于具有OPC的掩模的可制造性方面,可以进一步扩展上述方法以训练一个或更多个机器学习模型(例如,CTM4模型、CTM5模型等),从而预测掩模图案、掩模优化和/或光学邻近效应校正项(例如,经由CTM图像)。例如,可以使用图14A中的方法来训练基于缺陷的模型(在本公开中通常被称为LMC模型)。LMC模型还可以用于使用如针对图14B所讨论的不同方法以及针对图14C所讨论的另一CTM产生过程来训练机器学习模型(例如,CTM4模型)。此外,可以使用图16A中的训练方法来训练基于掩模可制造性的模型(在本公开中通常被称为MRC模型)。MRC模型还可以用于训练针对图16B所讨论的机器学习模型(例如,CTM5模型),或者针对图16C所讨论的另一CTM产生过程。换句话说,以上讨论的机器学习模型(或新的机器学习模型)还可以被配置成基于LMC模型和/或MRC模型来预测例如掩模图案(例如,经由CTM图像)。
在实施例中,可制造性方面可以指图案经由图案化过程(例如,使用光刻设备)以最小至没有缺陷地形成在衬底上的可制造性(即,印刷或图案化)。换句话说,可以训练机器学习模型(例如,CTM4模型)以预测例如OPC(例如,经由CTM图像),从而减少衬底上的缺陷,在实施例中使所述缺陷最小化。
在实施例中,可制造性方面可以指制造掩模本身的能力(例如,具有OPC)。掩模制造过程(例如,使用电子束写入器)可能具有以下限制:限制掩模衬底上某些形状和/或尺寸的图案的制造。例如,在掩模优化过程期间,OPC可以产生具有例如曼哈顿(Manhattan)图案或曲线图案(相应的掩模被称为曲线掩模)的掩模图案。在实施例中,具有曼哈顿图案的掩模图案通常包括直线(例如,目标图案的修改后的边缘)和围绕目标图案以竖直或水平方式设置的SRAF(例如,图11中的OPC校正后的掩模1108)。与曲线掩模的曲线图案相比,这种曼哈顿图案可以相对更容易制造。
曲线掩模是指具有如下图案的掩模,在所述图案中,目标图案的边缘在OPC期间被修改以形成弯曲的(例如多边形)边缘和/或弯曲的SRAF。由于较大的过程窗口,这种曲线掩模可以在图案化过程期间在衬底上产生更准确和一致的图案(与曼哈顿图案化的掩模相比)。然而,曲线掩模具有与多边形的几何形状相关的数个制造限制,例如,可以制造以产生曲线掩模的曲率半径、尺寸、角部处的曲率等。此外,曲线掩模的制造或制作过程可以包括“曼哈顿化(Manhattanization)”过程,该过程可以包括使形状破裂或破碎成较小的矩形和三角形,并强制拟合所述形状以模拟曲线图案。这样的曼哈顿化过程可能是时间密集的,但与曲线掩模相比却产生不太精确的掩模。因此,增加了设计到掩模的制造时间,但准确度可能降低。因此,应考虑掩模的制造限制以提高准确度并减少从设计到制造的时间;最终导致在图案化过程期间增加图案化衬底的产量。
根据本公开的用于OPC确定的基于机器学习模型的方法(例如,在图16B中)可以解决这种与缺陷和掩模可制造性相关的问题。例如,在实施例中,可以使用基于缺陷的成本函数来训练机器学习模型(例如,CTM5模型)并将该机械学习模型配置成预测OPC(例如,经由CTM图像)。在实施例中,可以使用基于图案化过程的参数(例如,EPE)以及掩模可制造性(例如,掩模规则检查或制造要求违反概率)的成本函数来训练另一机器学习模型(例如,CTM5模型)并将该另一机械学习模型配置成预测OPC(例如,经由CTM图像)。掩模规则检查被限定为基于掩模的可制造性的一组规则或检查,可以评估这样的掩模规则检查以确定是否可以制造掩模图案(例如,包括OPC的曲线图案)。
在实施例中,可以使用例如多束掩模写入器来制造曲线掩模而无需进行曼哈顿化过程;然而,制造曲线或多边形形状的能力可能会受到限制。因此,在掩模设计过程期间需要考虑这种制造限制或制造违反,以使得能够制造准确的掩模。
根据基于物理学的过程模型的OPC确定的常规方法还可以考虑到缺陷和/或制造违反概率检查。然而,这样的方法需要确定梯度,这在计算方面可能是时间密集的。此外,由于缺陷检测和可制造性违反检查可以是不可区分的算法的形式(例如,包括如果-则-否则(if-then-else)条件检查),因此基于缺陷或掩模规则检查(MRC)违反来确定梯度可能是不可行的。因此,由于可能没有准确地确定这样的OPC(例如,经由CTM图像),所以梯度计算可能是不可行的。
图11示出了根据一个实施例的用于根据目标图案制造掩模的示例性OPC过程。该过程包括:获得目标图案1102;根据目标图案1102产生CTM图像1104(或二元图像)以围绕目标图案1102放置SRAF;根据CTM图像1104产生具有SRAF的二元图像1106;以及确定对目标图案1102的边缘的校正,从而产生具有OPC(例如,具有SRAF和配线)的掩模1108。此外,如贯穿本公开所讨论的,可以执行包括根据基于物理学的模型进行的复杂梯度计算的常规掩模优化。
在实施例中,目标图案1102可以是期望印刷在衬底上的图案的一部分、期望印刷在衬底上的图案的多个部分、或者待印刷在衬底上的整个图案。目标图案1102通常由设计者提供。
在实施例中,可以通过根据本公开实施例训练的机器学习模型(例如,CTM-CNN)来产生CTM图像1104。例如,可以基于微调的过程模型(先前所讨论的),使用基于EPE的成本函数、基于缺陷的成本函数和/或基于可制造性违反的成本函数。基于所采用的以训练机械学习模型的成本函数,每个这样的机器学习模型可以是不同的。基于包括在过程模型PM中和/或耦合到过程模型PM的附加过程模型(例如,蚀刻模型、缺陷模型等),经训练的机器学习模型(例如,CTM-CNN)也可以是不同的。
在实施例中,机器学习模型可以被配置成直接根据目标图像1102产生具有OPC的掩模,诸如最终掩模1108。可以采用本公开的一种或多种训练方法来产生这样的机器学习模型。因此,可以扩展或产生一个或更多个机器学习模型(例如,CNN),每个模型(例如,CNN)被配置成基于训练过程、在训练过程中使用的过程模型和/或在训练过程中使用的训练数据以不同的方式预测OPC(或CTM图像)。过程模型可以指图案化过程的一个或更多个方面的模型,如贯穿本公开所讨论的。
在实施例中,可以认为是CTM过程的扩展的CTM+过程可以包括曲线掩模函数(也被称为phi函数或水平集函数),该曲线掩模函数确定对图案轮廓的基于多边形的修改,从而实现根据实施例的如图12所示的曲线掩模图像1208的产生。与曼哈顿图案相反,曲线掩模图像包括具有多边形形状的图案。如前所述,与(例如,曼哈顿图案的)最终掩模图像1108相比,这样的曲线掩模可以在衬底上产生更准确的图案。在实施例中,这种CTM+过程可以是掩模优化和OPC过程的一部分。然而,曲线SRAF的几何形状、曲线SRAF相对于目标图案的位置或其它相关参数可能会产生制造限制,因为这样的曲线形状可能无法制造。因此,在掩模设计过程期间,设计者可以考虑这种限制。在Spence等人的“Manufacturing Challenges forCurvilinear Masks(曲线掩模的制造挑战)”(SPIE学报,卷10451,光掩模技术,1045104(2017年10月16日);数字对象标识符(doi):10.1117/12.2280470)中详细讨论了制造曲线掩模时的限制和挑战,该文献通过引用并入本文中。
图13是根据实施例的针对基于缺陷和/或基于掩模可制造性的训练方法的图案化过程的基于机器学习的架构的框图。该架构包括被配置成根据目标图案预测OPC(或CTM/CTM+图像)的机器学习模型1302(例如,CTM-CNN或CTM+CNN)。该架构还包括经训练的过程模型PM,该过程模型PM如先前针对图8和图9所讨论的那样被配置和训练。另外,被配置成预测衬底上的缺陷的另一经训练的机器学习模型1310(例如,使用稍后讨论的图14A的方法训练的机器学习模型)可以耦合到经训练的过程模型PM。此外,由机器学习模型预测的缺陷可以用作成本函数指标以进一步训练模型1302(例如,图14B和图14C的训练方法)。在下文中,为了更好的可读性,将经训练的机器学习模型1310称为光刻可制造性检查(LMC)模型1310,并且不限制本公开的范围。LMC模型通常也可以被解释为与衬底(例如衬底上的缺陷)相关联的可制造性模型。
在实施例中,被配置成根据(例如,由1302产生的)曲线掩模图像来预测MRC违反概率的另一经训练的机器学习模型1320(例如,使用稍后讨论的图16A的方法训练的机器学习模型)可以包含在训练过程中。在下文中,为了更好的可读性,将经训练的机器学习模型1320称为MRC模型1320,并且不限制本公开的范围。此外,由机器学习模型1320预测的MRC违反可以用作成本函数指标以进一步训练模型1302(例如,图16B和图16C的训练方法)。在实施例中,MRC模型1320可以不耦合到过程模型PM,但是MRC模型1320的预测可以用于补充成本函数(例如,成本函数1312)。例如,成本函数可以包括两个条件检查,两个条件检查包括:(i)基于EPE和(ii)MRC违反的次数(或MRC违反概率)。成本函数然后可以用于计算梯度图以修改CTM+CNN模型的权重,从而减小成本函数(在实施例中,成本函数被最小化)。因此,训练CTM+CNN模型能够克服数个挑战,包括提供更易于获取导数并计算用于优化由CTM+CNN模型产生的CTM+CNN图像的梯度或梯度图的模型。
在实施例中,图13的机器学习架构可以广泛地分为两部分:(i)使用(先前讨论的)经训练的过程模型PM、LMC模型1310以及基于缺陷的成本函数和/或其它成本函数(例如,EPE)来训练机器学习模型(例如,1302,诸如图14B中的CTM4模型);以及(ii)使用(先前讨论的)经训练的过程模型PM、经训练的MRC模型1320和基于MRC的成本函数和/或其它成本函数(例如,EPE)来训练另一机器学习模型(例如,1302′,诸如图16B中的CTM5模型)。在实施例中,可以同时使用LMC模型1310和MRC模型1320两者以及相应的成本函数来训练被配置成预测CTM图像的机器学习模型。在实施例中,LMC模型和MRC模型中的每一个还可以用于结合非机器学习过程模型(例如,基于物理学的模型)来训练不同的机器学习模型(例如,CTM4模型和CTM5模型)。
图14A是用于训练机器学习模型1440(例如,LMC模型)的流程图,该机器学习模型1440被配置成预测输入图像(例如,根据过程模型(例如,PM)的模拟获得的抗蚀剂图像)内的缺陷(例如,缺陷的类型、缺陷的数量或与缺陷相关的其它指标)。训练是基于训练数据进行的,训练数据包括:(i)(例如,从印刷后的衬底中获得的)缺陷数据或真实缺陷指标,(ii)与目标图案相对应的抗蚀剂图像,以及(iii)(可选的)目标图案,以及基于缺陷的成本函数。例如,取决于缺陷类型和/或用于检测缺陷的检测器(例如,CD变化检测器),在抗蚀剂轮廓可以与目标图案进行比较的情况下可以例如使用目标图案。缺陷数据可以包括在印刷后的衬底上的一组缺陷。在训练结束时,机器学习模型1440演变为经训练的机器学习模型1310(即,LMC模型1310)。
训练方法在过程P1431中包括获得训练数据,训练数据包括缺陷数据1432、抗蚀剂图像1431(或蚀刻图像)以及可选的目标图案1433。缺陷数据1432可以包括在印刷后的衬底上可以观察到的不同类型的缺陷。例如,图15A、图15B和图15C示出了诸如栅条1510的屈曲、基脚1520、桥接1530和颈缩1540之类的缺陷。可以例如使用模拟(例如,经由Tachyon LMC器件)、使用实验数据(例如,印刷后的衬底数据)、SEM图像或其它缺陷检测工具来确定这种缺陷。通常,SEM图像可以被输入到缺陷检测算法,该缺陷检测算法被配置成识别可以在印刷在衬底(也被称为图案化衬底)上的图案中观察到的不同类型的缺陷。缺陷检测算法可以包括数个如果-则-否则(if-then-else)条件或其它适当的语法,其中缺陷条件编码在所述语法内,当(例如,由处理器、硬件计算机系统等)执行算法时检查/评估所述缺陷条件。当一个或更多个这样的缺陷条件被评估为真时,则可以检测到缺陷。缺陷条件可以基于与图案化过程的衬底相关的一个或更多个参数(例如,CD、重叠等)。例如,据说可以沿着其中CD(例如,10nm)小于总CD或期望CD(例如,25nm)的50%的栅条的长度检测到颈缩(例如,参见图15C中的1540)。类似地,可以评估其它几何属性或其它适当的与缺陷相关的参数。这样的常规算法可能不是可微分的,因此可能不会在基于梯度的掩模优化过程中使用。根据本公开,经训练的LMC模型1310(例如,LMC-CNN)可以提供可以针对其确定导数的模型,从而使得能够实现基于缺陷的OPC优化或掩模优化过程。
在实施例中,训练数据可以包括:目标图案(例如,图11中的1102)、具有缺陷的对应抗蚀剂图像1431(或该抗蚀剂图像的蚀刻图像或轮廓)、以及缺陷数据(例如,具有缺陷的一个或更多个图案化衬底的像素化图像)。在实施例中,对于给定的抗蚀剂图像和/或目标图案,缺陷数据可以具有不同的格式:1)抗蚀剂图像中的缺陷数量;2)二元变量,即是否存在缺陷(是或否);3)缺陷概率;4)缺陷尺寸;5)缺陷类型等。缺陷数据可以包括在经过图案化过程的图案化衬底上发生的不同类型的缺陷。例如,缺陷可以是颈缩缺陷(例如图15C中的1540)、基脚缺陷(例如图15B中的1520)、桥接缺陷(例如图15B中的1530)和屈曲缺陷(例如图15A中的1510)。颈缩缺陷是指与特征(例如,栅条)的期望CD相比,沿着该特征的长度在一个或更多个位置处的减小的CD(例如,小于期望CD的50%)。基脚缺陷(例如,参见图15B的1520)可以指在应当存在贯通的腔或接触孔的情况下由抗蚀剂层阻挡腔或接触孔的(即,在衬底处的)底部。桥接缺陷(例如,参见图15B中的1530)可以指阻挡腔或接触孔的顶表面,从而阻止形成从抗蚀剂层的顶部到衬底的贯通的腔或接触孔。屈曲缺陷可以指例如由于相对于宽度的相对较大的高度而导致的抗蚀剂层中的例如栅条(例如,参见图15A的1510)的屈曲。在实施例中,栅条1510可以由于形成在栅条顶部上的另一图案化层的重量而屈曲。
此外,该方法在过程P1433中包括基于训练数据(例如,1431和1432)训练机器学习模型1440。此外,训练数据可以用于根据基于缺陷的成本函数来修改模型1440的权重(或偏差或其它相关参数)。成本函数可以是缺陷指标(例如,是否存在缺陷、缺陷概率、缺陷尺寸以及其它与缺陷相关的指标)。对于每个缺陷指标,可以限定不同类型的成本函数,例如,如果针对缺陷尺寸,成本函数可以是预测缺陷尺寸与真实缺陷尺寸之间的差异的函数。在训练期间,可以迭代地减小成本函数(在实施例中,成本函数被最小化)。在实施例中,经训练的LMC模型1310可以预测缺陷指标,该缺陷指标被限定为例如缺陷尺寸、缺陷数量、指示是否存在缺陷的二元变量、缺陷类型和/或其它适当的与缺陷相关的指标。在训练期间,可以计算和监测指标,直到模型1440可以预测缺陷数据内的大部分缺陷(在实施例中预测所有缺陷)。在实施例中,成本函数的指标的计算可以包括图像(例如,抗蚀剂图像或蚀刻图像)的分割,以识别不同的特征并基于这种分割的图像识别缺陷(或缺陷概率)。因此,LMC模型1310可以建立目标图案与缺陷(或缺陷概率)之间的关系。这样的LMC模型1310现可以被耦合到经训练的过程模型PM,并且还可以用于训练模型1302以预测OPC(例如,包括CTM图像)。在实施例中,可以在训练过程期间使用梯度方法来调节模型1440的参数。在这种梯度方法中,可以相对于变量来计算梯度(例如,dcost/dvar)以优化变量(变量例如是LMC模型1310的参数)。
在训练过程结束时,可以获得经训练的LMC模型1310,该LMC模型1310可以基于例如根据过程模型(例如,PM)的模拟获得的抗蚀剂图像(或蚀刻图像)来预测缺陷。
图14B示意性地示出了根据一个实施例的用于训练机器学习模型1410的方法1401的流程图,该机器学习模型1410被配置成基于经历图案化过程后的衬底上的缺陷来预测掩模图案(例如,包括OPC或CTM图像)。在实施例中,OPC预测可以包括CTM图像的产生。机器学习模型1410可以是被配置成预测连续透射掩模(CTM)的卷积神经网络(CNN),并且相应的CNN可以被称为CTM-CNN。作为示例性模型,模型1410被称为CTM-CNN 1410以清楚地说明训练过程,并且不限制本公开的范围。下面还将进一步详细阐述先前也针对图13进行了部分讨论的训练方法。根据训练方法1401,可以训练CTM-CNN 1410以确定与目标图案相对应的掩模图案,使得掩模图案包括围绕目标图案的结构(例如,SRAF)以及对目标图案的边缘的修改(例如,配线),使得当在图案化过程中使用这种掩模时,图案化过程最终在衬底上产生目标图案。
训练方法1401在过程P1402中包括获得:(i)图案化过程的经训练的过程模型PM(例如,通过上述方法900产生的经训练的过程模型PM),该过程模型PM被配置成预测衬底上的图案;(ii)经训练的LMC模型1310,该LMC模型1310被配置成预测经历图案化过程后的衬底上的缺陷;以及(iii)目标图案1402(例如,目标图案1102)。
在实施例中,经训练的过程模型PM可以包括一个或更多个经训练的机器学习模型(例如,针对图8和图9所讨论的8004、8006和8006)。例如,第一经训练的模型(例如,模型8004)可以被配置成预测图案化过程的掩模衍射。第二经训练的模型(例如,模型8006)耦合到第一经训练的模型(例如,8004),并且被配置成预测在图案化过程中使用的设备的光学行为。第三经训练的模型(例如,模型8008)耦合到第二经训练的模型8006,并且被配置成预测图案化过程的抗蚀剂过程。
训练方法在过程P1404中包括训练CTM-CNN 1410,该CTM-CNN 1410被配置成基于经训练的过程模型来预测CTM图像和/或进一步预测OPC。在训练方法的第一次迭代或第一遍中,初始或未经训练的CTM-CNN 1410可以根据目标图案1402预测CTM图像。由于CTM-CNN1410可能是未经训练的,因此预测可能会不理想,从而导致相对于期望印刷在衬底上的目标图案1402的相对较高的误差(例如,在EPE、重叠、缺陷数量等方面)。然而,在CTM-CNN1410的训练过程的几次迭代之后,误差将逐渐减小,在实施例中误差将被最小化。然后由过程模型PM(先前针对图8和图9讨论了PM的内部工作)接收CTM图像,该过程模型PM可以预测抗蚀剂图像或蚀刻图像。此外,可以导出预测的抗蚀剂图像或蚀刻图像中的图案的轮廓,所述轮廓被进一步用于确定图案化过程的参数,并且可以评估相应的成本函数(例如,EPE)。
可以由经训练的LMC模型1310接收过程模型PM的预测,LMC模型1310被配置成预测抗蚀剂(或蚀刻)图像内的缺陷。如前所述,在第一次迭代中,由CTM-CNN预测的初始CTM可能是不理想或不准确的,因此在抗蚀剂图像上所产生的图案可能与目标图案不同。预测图案与目标图案之间的(例如,在EPE或缺陷数量方面测量的)差异与经过CTM-CNN的训练的数次迭代之后的差异相比将是高的。在训练过程的数次迭代之后,CTM-CNN 1410可以产生一掩模图案,该掩模图案将在经历图案化过程后的衬底上产生数量减少的缺陷,从而实现与目标图案相对应的期望的生产率。
此外,训练方法在过程P1404中可以包括确定预测图案与目标图案之间的差异的成本函数。CTM-CNN 1410的训练包括基于梯度图1406迭代地修改CTM-CNN 1410的权重,使得成本函数减小,在实施例中成本函数被最小化。在实施例中,成本函数可以是衬底上的缺陷的数量或目标图案和预测图案之间的边缘放置误差。在实施例中,缺陷的数量可以是由经训练的LMC模型1310预测的缺陷的总数量(例如,颈缩缺陷、基脚缺陷、屈曲缺陷等的总和)。在实施例中,缺陷的数量可以是各缺陷的集合(例如,包含基脚缺陷、颈缩缺陷、屈曲缺陷等的集合),并且训练方法可以被配置成减少(在实施例中,最小化)所述各缺陷的集合中的一个或更多个缺陷(例如,仅使基脚缺陷最小化)。
在训练过程的数次迭代后,据说可以产生被配置成直接根据待印刷在衬底上的目标图案1402来预测CTM图像的经训练的CTM-CNN 1420(该CTM-CNN 1020是先前讨论的模型1302的示例)。此外,经训练的模型1420可以被配置成预测OPC。在实施例中,OPC可以包括基于CTM图像的辅助特征和/配线的放置。OPC可以是图像形式,并且训练可以基于图像或图像的像素数据。
在过程P1406中,可以确定成本函数是否减小,在实施例中确定成本函数是否被最小化。最小化的成本函数表示训练过程已收敛。换句话说,使用一个或更多个目标图案的附加训练不会导致预测图案的进一步改进。例如,如果成本函数被最小化,则认为机器学习模型1420已训练完成。在实施例中,可以在预定次数的迭代(例如,50000或100000次迭代)之后停止训练。这种经训练的模型1420具有使经训练的模型1420(例如,CTM-CNN)能够预测一掩模图案的独特权重,所述掩模图案将在衬底经历图案化过程时在衬底上产生最小化的缺陷,如前所述。
在实施例中,如果成本函数未被最小化,则可以在过程P1406中产生梯度图1406。在实施例中,梯度图1406可以是成本函数(例如,EPE、缺陷的数量)相对于CTM-CNN 1410的权重的偏导数的表示。可以在通过LMC CNN模型1310、过程模型PM和/或CTM-CNN 1410的不同层的反向传播期间按照该顺序确定偏导数。由于模型1310、PM和1410是基于CNN的,因此在反向传播期间的偏导数计算可以包括采用相对于层的相应权重表示CNN的不同层的函数的逆变换,这与包括基于物理学的函数的逆变换的计算相比更易于计算,如前所述。梯度图1406然后可以提供如何修改模型1410的权重的指导,从而减小或最小化成本函数。在数次迭代之后,当成本函数被最小化或收敛时,可以认为模型1410是经训练的模型1420。
在实施例中,可以获得经训练的模型1420(该模型1020是先前讨论的模型1302的示例),并且该模型1420可以进一步用于直接针对目标图案确定光学邻近效应校正项。此外,可以制造包括与OPC相对应的结构(例如,SRAF、配线)的掩模。由于OPC经由诸如8004、8006、8008、1302和1310之类的经训练的模型考虑了图案化过程的数个方面,因此这种基于机器学习模型的预测的掩模至少在衬底上的缺陷的数量(或产量)方面可以是高度准确的。换句话说,当在图案化过程期间使用时,该掩模将以最小化的缺陷在衬底上产生期望的图案。
在实施例中,成本函数1406可以包括可以同时减小(在实施例中,同时被最小化)的一个或更多个条件。例如,除了缺陷的数量之外,还可以包括EPE、重叠、CD或其它参数。因此,可以基于这样的成本函数来产生一个或更多个梯度图,并且可以基于这样的梯度图来修改CTM-CNN的权重。因此,在衬底上所产生的图案不仅会产生高产量(例如,最小化的缺陷),而且还在例如EPE或重叠方面具有高准确度。
图14C是用于基于LMC模型1310预测OPC(或CTM/CTM+图像)的另一种方法的流程图。该方法是一迭代过程,其中模型(可以是机器学习模型或非机器学习模型)被配置成基于与由LMC模型1310预测的缺陷相关的成本函数来产生CTM图像(或CTM+图像)。该方法的输入可以是初始图像1441(例如,目标图案或掩模图像,即目标图案的渲染结果),该初始图像1441用于产生优化后的CTM图像或OPC图案。
该方法在过程P1441中包括基于初始图像(例如,二元掩模图像或初始CTM图像)产生CTM图像1442。在实施例中,可以例如经由掩模模型(例如,以上讨论的掩模布局模型、薄掩模和/或M3D模型)的模拟来产生CTM图像1441。
此外,在过程P1443中,过程模型可以接收CTM图像1442并预测过程图像(例如,抗蚀剂图像)。如先前所讨论的,过程模型可以是光学器件模型、抗蚀剂模型和/或蚀刻模型的组合。在实施例中,过程模型可以是非机器学习模型(例如,基于物理学的模型)。
此外,在过程P1445中,可以将过程图像(例如,抗蚀剂图像)传递给LMC模型1310以预测过程图像(例如,抗蚀剂图像)内的缺陷。此外,过程P1445可以被配置成基于由LMC模型预测的缺陷来评估成本函数。例如,成本函数可以是被限定为缺陷尺寸、缺陷的数量、指示是否存在缺陷的二元变量、缺陷类型的缺陷指标或其它适当的与缺陷相关的指标。
在过程P1447中,可以确定成本函数是否减小(在实施例中确定成本函数是否被最小化)。在实施例中,如果成本函数没有被最小化,则可以通过使用基于梯度的方法(类似于贯穿本公开所使用的方法)来逐渐地(以迭代的方式)减小成本函数的值。
例如,在过程P1449中,可以基于成本函数产生梯度图,该梯度图进一步用于确定掩模变量的与初始图像相对应的值(例如,掩模图像的像素值),使得成本函数减小。
在数次迭代后,可以使成本函数最小化,并且可以认为通过过程P1441产生的CTM图像(例如,CTM图像1442或1441的修改版本)是优化后的CTM图像。此外,可以使用这种优化后的CTM图像来制造掩模,从而可以减少缺陷。
图16A是用于训练机器学习模型1640的方法的流程图,该机器学习模型1640被配置成(根据曲线掩模图像)预测掩模制造限制(也被称为掩模规则检查)的违反概率。在实施例中,训练可以基于训练数据来进行,训练数据包括输入图像1631(例如曲线掩模)、MRC1632(例如,一组掩模规则检查)、以及基于MRC违反概率的成本函数。在训练结束时,机器学习模型1640演变为经训练的机器学习模型1320(即,MRC模型1320)。可以基于针对掩模图案的特定特征的违反相对于全部违反的总次数来确定违反的概率。
训练方法在过程P1631中包括获得训练数据,该训练数据包括MRC 1632(例如,MRC违反概率、MRC违反的次数等)和掩模图像1631(例如,具有曲线图案的掩模图像)。在实施例中,可以经由CTM+过程的模拟来产生曲线掩模图像(如先前已讨论的)。
此外,该方法在过程P1633中包括基于训练数据(例如,1631和1632)训练机器学习模型1640。此外,训练数据可以用于根据基于缺陷的成本函数来修改模型1640的权重(或偏差或其它相关参数)。成本函数可以是MRC指标,诸如MRC违反的次数、指示MRC违反或无MRC违反的二元变量、MRC违反概率或其它适当的与MRC相关的指标。在训练期间,可以计算和监测MRC指标,直到模型1640可以预测大部分MRC违反(在实施例中为预测所有MRC违反)。在实施例中,成本函数的指标的计算可以包括针对图像1631的MRC 1632的评估,以识别具有MRC违反的不同特征。
在实施例中,可以在训练过程期间使用梯度方法来调节模型1640的参数。在这种梯度方法中,可以相对于待优化的变量(例如MRC模型1320的参数)来计算梯度(例如,dcost/dvar)。因此,MRC模型1320可以建立曲线掩模图像与MRC违反或MRC违反概率之间的关系。这样的MRC模型1320现在可以用于训练模型1302以预测OPC(例如,包括CTM图像)。在训练过程结束时,可以获得经训练的MRC模型1320,该MRC模型1320可以基于例如曲线掩模图像来预测MRC违反。
图16B示意性地示出了根据一个实施例的用于训练机器学习模型1610的方法1601的流程图,该机器学习模型1610被配置成基于在图案化过程中使用的曲线掩模的可制造性来预测OPC。然而,本公开不限于曲线掩模,并且方法1601也可以用于曼哈顿类型的掩模。机器学习模型1610可以是被配置成预测曲线掩模图像的卷积神经网络(CNN)。如先前所讨论的,在实施例中,CTM+过程(CTM过程的扩展)可以用于产生曲线掩模图像。因此,作为示例,机器学习模型1610被称为CTM+CNN模型1610,并且不限制本公开的范围。此外,下面还将进一步详细阐述先前也针对图13进行了部分讨论的训练方法。
根据训练方法1601,训练CTM+CNN 1610以确定与目标图案相对应的曲线掩模图案,使得曲线掩模图案包括围绕目标图案的曲线结构(例如,SRAF)以及对目标图案的边缘的多边形修改(例如,配线),使得当在图案化过程中使用这种掩模时,图案化过程最终在衬底上产生比通过曼哈顿图案式的掩模所产生的目标图案更准确的目标图案。
训练方法1601在过程P1602中包括获得:(i)图案化过程的经训练的过程模型PM(例如,通过上述方法900产生的经训练的过程模型PM),该过程模型PM被配置成预测衬底上的图案;(ii)经训练的MRC模型1320,该MRC模型1320被配置成预测制造违反概率(如先前针对图13所讨论的);以及(iii)目标图案1602(例如,目标图案1102)。如先前针对图8和图9所提到的,经训练的过程模型PM可以包括一个或更多个经训练的机器学习模型(例如,8004、8006和8006)。
训练方法在过程P1604中包括训练CTM+CNN 1610,该CTM+CNN 1610被配置成基于经训练的过程模型来预测曲线掩模图像。在训练方法的第一次迭代或第一遍中,初始或未经训练的CTM+CNN 1610可以根据与目标图案1602相对应的CTM图像来预测曲线掩模图像。由于CTM+CNN 1610可能是未经训练的,因此预测的曲线掩模图像可能会不理想,从而导致相对于期望印刷在衬底上的目标图案1602的相对较高的误差(例如,在EPE、重叠、制造违反等方面)。然而,在CTM+CNN 1610的训练过程的几次迭代之后,误差将逐渐减小,在实施例中误差将被最小化。然后由过程模型PM(先前针对图8和图9讨论了PM的内部运作)接收预测的曲线掩模图像,该过程模型PM可以预测抗蚀剂图像或蚀刻图像。此外,可以导出所预测的抗蚀剂图像或蚀刻图像中的图案的轮廓以确定图案化过程的参数(例如,EPE、重叠等)。轮廓可以进一步用于评估待减小的成本函数。
由CTM+CNN模型产生的曲线掩模图像也可以被传递到MRC模型1320,以确定制造约束/限制的违反概率(也被称为MRC违反概率)。除了现有的基于EPE的成本函数之外,MRC违反概率也可以是成本函数的一部分。换句话说,成本函数可以包括至少两个条件,即,基于EPE的(如贯穿本公开所讨论的)和基于MRC违反概率的。
此外,该训练方法在过程P1606中可以包括确定成本函数是否减小,在实施例中为确定成本函数是否被最小化。如果成本函数没有减小(或被最小化),则CTM+CNN 1610的训练包括基于梯度图1606迭代地修改CTM+CNN 1610的权重(在过程1604中),使得成本函数减小,在实施例中成本函数被最小化。在实施例中,成本函数可以是由经训练的MRC模型1320预测的MRC违反概率。因此,梯度图1606可以提供指导以同时降低MRC违反概率和EPE。
在实施例中,如果成本函数未被最小化,则可以在过程P1606中产生梯度图1606。在实施例中,梯度图1606可以是成本函数(例如,EPE和MRC违反概率)相对于CTM+CNN 1610的权重的偏导数的表示。可以在通过MRC模型1320、过程模型PM和/或CTM+CNN 1610的反向传播期间按照该顺序确定偏导数。由于模型1320、PM和1610是基于CNN的,因此在反向传播期间的偏导数计算可以包括采用相对于层的相应权重表示CNN的不同层的函数的逆变换,这与包括基于物理学的函数的逆变换的计算相比更易于计算,如前所述。梯度图1606然后可以提供如何修改模型1610的权重的指导,从而减小或最小化成本函数。在数次迭代之后,当成本函数被最小化或收敛时,可以认为模型1610是经训练的模型1620。
在训练过程的数次迭代后,据说可以产生经训练的CTM+CNN 1620(该CTM+CNN1620是先前讨论的模型1302的示例),该经训练的CTM+CNN 1620可以准备好直接根据待印刷在衬底上的目标图案1602来预测曲线掩模图像。
在实施例中,可以在预定次数的迭代(例如,50000或100000次迭代)之后停止训练。这种经训练的模型1620具有使得经训练的模型1620能够预测一曲线掩模图案的独特权重,该曲线掩模图案将满足曲线掩模制造的制造限制(例如,经由多束掩模写入器)。
在实施例中,可以获得经训练的模型1620(该模型1620是先前讨论的模型1302的示例),并且该模型1620可以进一步用于直接针对目标图案确定光学邻近效应校正项。此外,可以制造包括与OPC相对应的结构(例如,SRAF、配线)的掩模。由于OPC经由诸如8004、8006、8008、1602和1310之类的经训练的模型考虑了图案化过程的数个方面,因此这种基于机器学习模型的预测的掩模至少在曲线掩模的可制造性(或产量)方面可以是高度准确的。换句话说,当在图案化过程期间使用时,该掩模将以最小化的缺陷在衬底上产生期望的图案。
在实施例中,成本函数1606可以包括可以同时减小(在实施例中,同时被最小化)的一个或更多个条件。例如,除了MRC违反概率之外,还可以包括缺陷的数量、EPE、重叠、CD的差异(即,ΔCD)或其它参数,并且可以同时减小(或最小化)所有条件。因此,可以基于这样的成本函数来产生一个或更多个梯度图,并且可以基于这样的梯度图来修改CNN的权重。因此,在衬底上所产生的图案不仅会产生高产量(即,最小化的缺陷)的可制造的曲线掩模,而且还在例如EPE或重叠方面具有高准确度。
图16C是用于基于MRC模型1320预测OPC(或CTM/CTM+图像)的另一种方法的流程图。该方法是一迭代过程,其中模型(可以是机器学习模型或非机器学习模型)被配置成基于与由MRC模型1320预测的MRC相关的成本函数来产生CTM图像(或CTM+图像)。类似于图14C的方法,该方法的输入可以是初始图像1441(例如,目标图案或掩模图像,即目标图案的渲染结果),该初始图像1441产生优化后的CTM图像(或CTM+图像)或OPC图案。
该方法在(以上所讨论的)过程P1441中包括涉及基于初始图像(例如,二元掩模图像或初始CTM图像)产生CTM图像1442(或CTM+图像)。在实施例中,可以例如经由掩模模型(例如,以上讨论的薄掩模和/或M3D模型)的模拟来产生CTM图像1441。在实施例中,可以基于例如水平集函数根据优化后的CTM图像产生CTM+图像。
此外,在过程P1643中,过程模型可以接收CTM图像(或CTM+图像)1442并预测过程图像(例如,抗蚀剂图像)。如先前所讨论的,过程模型可以是光学器件模型、抗蚀剂模型和/或蚀刻模型的组合。在实施例中,过程模型可以是非机器学习模型(例如,基于物理学的模型)。过程图像(例如,抗蚀剂图像)可以用于确定成本函数(例如,EPE)。
另外,CTM图像1442也可以被传递到MRC模型1320以确定诸如违反概率之类的MRC指标。此外,过程P1643可以被配置成基于由MRC模型预测的MRC违反概率来评估成本函数。例如,成本函数可以被限定为EPE和/或MRC违反概率的函数。在实施例中,如果MRC模型1320的输出是违反概率,则成本函数可以是针对所有训练样本的预测的违反概率与相应的真值之间的差值的平均值(例如,该差值可以是(预测的MRC概率-真实违反概率)2)。
在过程P1447中,可以确定成本函数是否减小(在实施例中确定成本函数是否被最小化)。在实施例中,如果成本函数没有被最小化,则可以通过使用基于梯度的方法(类似于贯穿本公开所使用的方法)来逐渐地(以迭代的方式)减小成本函数的值。
例如,在过程P1449中,可以基于成本函数产生梯度图,该梯度图进一步用于确定掩模变量的与初始图像相对应的值(例如,掩模图像的像素值),使得成本函数减小。
在数次迭代后,可以使成本函数最小化,并且可以认为通过过程P1441产生的CTM图像(例如,CTM图像1442或1441的修改版本)是优化后的、也是可制造的CTM图像。
在实施例中,图16C的方法还可以包括过程P1445,过程P1445确定由LMC模型1310预测的缺陷,如先前所讨论的。因此,可以修改成本函数和梯度计算以考虑多个条件,包括基于缺陷的指标、基于MRC的指标和EPE。
在实施例中,使用上述方法确定的OPC包括可以是曼哈顿类型或曲线形状的结构特征,诸如SRAF、配线等。掩模写入器(例如,电子束或多束掩模写入器)可以接收与OPC相关的信息并进一步制造掩模。
此外,在实施例中,来自以上讨论的不同机器学习模型的预测掩模图案可以进一步被优化。预测掩模图案的优化可以包括迭代地修改预测掩模图案的掩模变量。每次迭代都包括:经由基于物理学的掩模模型的模拟,基于预测掩模图案来预测掩模透射图像;经由基于物理学的抗蚀剂模型的模拟,基于掩模透射图像来预测抗蚀剂图像;基于抗蚀剂图像评估成本函数(例如,EPE、旁瓣(sidelobe)等);以及经由模拟,基于成本函数的梯度来修改与预测掩模图案相关联的掩模变量,从而减小成本函数。
此外,在实施例中,用于训练机器学习模型的方法被配置成基于蚀刻图案来预测抗蚀剂图像(或从抗蚀剂图像中导出抗蚀剂图案)。该方法包括获得:(i)图案化过程的基于物理学或基于机器学习的过程模型(例如,如本公开中先前所讨论的蚀刻模型),该过程模型被配置成根据抗蚀剂图像预测蚀刻图像;以及(ii)(例如,图像形式的)蚀刻目标。在实施例中,蚀刻目标可以是在图案化过程的蚀刻步骤之后的印刷后的衬底上的蚀刻图案、期望的蚀刻图案(例如,目标图案)或其它基准蚀刻图案。
此外,该方法可以包括由硬件计算机系统基于蚀刻模型和确定蚀刻图像与蚀刻目标之间的差异的成本函数来训练被配置成预测抗蚀剂图像的机器学习模型。
图17是示出了计算机系统100的框图,计算机系统100可以帮助实现本文中公开的方法、流程或设备。计算机系统100包括用于通信信息的总线102或其它通信机构,以及与总线102耦合以用于处理信息的处理器104(或多个处理器104和105)。计算机系统100还包括耦合至总线102以用于储存待由处理器104执行的指令和信息的主存储器106,诸如随机存取存储器(RAM)或其它动态存储装置。主存储器106还可以用于在待由处理器104执行的指令的执行期间储存暂时性变量或其它中间信息。计算机系统100还包括耦合至总线102以用于储存用于处理器104的静态信息和指令的只读存储器(ROM)108或其它静态存储装置。提供诸如磁盘或光盘之类的存储装置110,并且所述存储装置耦合至总线102以用于储存信息和指令。
计算机系统100可以经由总线102耦合至用于向计算机用户显示信息的显示器112,诸如阴极射线管(CRT)或平板显示器或触摸面板显示器。包括字母数字按键和其它按键的输入装置114耦合至总线102以用于将信息和命令选择通信至处理器104。另一类型的用户输入装置为用于将方向信息和命令选择通信至处理器104且用于控制显示器112上的光标移动的光标控制件116,诸如鼠标、轨迹球或光标方向键。这种输入装置典型地具有在两个轴(第一轴(例如,x轴)和第二轴(例如,y轴))上的两个自由度,这允许所述装置指定在平面中的位置。触摸面板(屏幕)显示器也可以被用作输入装置。
根据一个实施例,本文所描述的一种或更多种方法的一些部分可以由计算机系统100执行,以响应于处理器104执行主存储器106中包含的一个或更多个指令的一个或更多个序列。可以将这些指令从另一计算机可读介质(诸如存储装置110)读取至主存储器106中。主存储器106中包含的指令序列的执行使得处理器104执行本文中描述的过程步骤。也可以采用呈多处理布置的一个或更多个处理器来执行主存储器106中所包含的指令序列。在替代实施例中,可以代替或结合软件指令而使用硬连线电路系统。因此,本文中的描述不限于硬件电路系统与软件的任何特定组合。
如本文中所使用的术语“计算机可读介质”是指参与将指令提供至处理器104以供执行的任何介质。这种介质可以采取许多形式,包括但不限于非易失性介质、易失性介质和传输介质。非易失性介质包括例如光盘或磁盘,诸如存储装置110。易失性介质包括动态存储器,诸如主存储器106。传输介质包括同轴缆线、铜线和光纤,包括包含总线102的电线。传输介质也可以采取声波或光波的形式,诸如在射频(RF)和红外线(IR)数据通信期间产生的声波或光波。计算机可读介质的常见形式包括例如软盘、柔性磁盘、硬盘、磁带、任何其它磁性介质、CD-ROM、DVD、任何其它光学介质、打孔卡、纸带、具有孔图案的任何其它实体介质、RAM、PROM和EPROM、FLASH-EPROM、任何其它存储器芯片或卡匣、如下文描述的载波,或可以供计算机读取的任何其它介质。
在将一个或更多个指令的一个或更多个序列承载至处理器104以供执行时可能涉及各种形式的计算机可读介质。例如,最初可以将所述指令承载在远程计算机的磁盘上。远程计算机可以将指令加载至其动态存储器中,并且使用调制解调器经由电话线来发送指令。在计算机系统100本地的调制解调器可以接收电话线上的数据,并且使用红外线传输器将数据转换成红外信号。耦合至总线102的红外检测器可以接收红外信号中所承载的数据且将数据放置在总线102上。总线102将数据承载至主存储器106,处理器104从所述主存储器3206获取并执行指令。由主存储器106接收的指令可以可选地在由处理器104执行之前或之后储存在存储装置110上。
计算机系统100也可以包括耦合至总线102的通信接口118。通信接口118提供对网络链路120的双向数据通信耦合,所述网络链路120连接至局域网络122。例如,通信接口118可以是综合业务数字网(ISDN)卡或调制解调器以提供对对应类型的电话线的数据通信连接。作为另一示例,通信接口118可以是局域网络(LAN)卡以提供对兼容LAN的数据通信连接。也可以实施无线链路。在任何这样的实施方式中,通信接口118发送且接收承载表示各种类型的信息的数字数据流的电信号、电磁信号或光学信号。
网络链路120典型地经由一个或更多个网络将数据通信提供至其它数据装置。例如,网络链路120可以经由局域网络122而向主计算机124或向由因特网服务提供商(ISP)126操作的数据装置提供连接。ISP 126又经由全球封包数据通信网络(现在通常被称作“因特网”)128而提供数据通信服务。局域网络122和因特网128两者都使用承载数字数据流的电信号、电磁信号或光学信号。经由各种网络的信号和在网络链路120上且经由通信接口118的信号(所述信号承载至计算机系统100的数字数据和来自计算机系统100的数字数据)是输送信息的示例性载波的形式。
计算机系统100可以经由网络、网络链路120和通信接口118发送消息和接收数据(包括程序代码)。在因特网示例中,服务器130可以经由因特网128、ISP 126、局域网络122和通信接口118而传输用于应用程序的被请求的程序代码。例如,一个这样的下载应用可以提供本文描述的方法的全部或一部分。所接收的程序代码可以在其被接收时由处理器104执行,和/或储存在存储装置110或其它非易失性储存器中以供稍后执行。以这种方式,计算机系统100可以获得呈载波形式的应用程序代码。
图18示意性描绘了可以与本文所描述的技术结合使用的示例性光刻投影设备。该设备包括:
-照射系统IL,该照射系统IL用于调节辐射的束B。在该特定情况下,照明系统还包括辐射源SO;
-第一物体台(例如,图案形成装置台)MT,该第一物体台设置有用于保持图案形成装置MA(例如,掩模版)的图案形成装置保持器,并且连接到用于相对于项PS准确地定位图案形成装置的第一定位器;
-第二物体台(衬底台)WT,该第二物体台设置有用于保持衬底W(例如,涂覆有抗蚀剂的硅晶片)的衬底保持器,并且连接到用于相对于项PS精确地定位衬底的第二定位器;
-投影系统(“透镜”)PS(例如,折射式、反射式或反射折射式光学系统),该投影系统用于将图案形成装置MA的被辐射的部分成像至衬底W的(例如包括一个或更多个管芯的)目标部分C上。
如本文所描绘的,该设备属于透射类型(即,具有透射式图案形成装置)。然而,通常,该设备也可以是反射类型的,例如(具有反射式图案形成装置)。该设备可以采用与传统掩模不同类型的图案形成装置;示例包括可编程反射镜阵列或LCD矩阵。
源SO(例如,汞灯或准分子激光器、LPP(激光产生的等离子体)EUV源)产生辐射束。该束例如直接地或在经过诸如扩束器Ex之类的调节装置之后被馈送到照明系统(照明器)IL中。照明器IL可以包括调节装置AD,调节装置AD用于设定束中的强度分布的外部径向范围和/或内部径向范围(通常分别被称为σ-外部和σ-内部)。另外,照射器通常会包括各种其它部件,诸如积分器IN和聚光器CO。以这种方式,入射在图案形成装置MA上的束B在其横截面中具有期望的均一性和强度分布。
针对图18,应注意,虽然源SO可以在光刻投影设备的外壳内(这经常是当源SO为例如汞灯时的情况),但源SO也可以远离光刻投影设备,源SO所产生的辐射束(例如,借助于适当的定向反射镜)被引导到该设备中;该后一情形经常是当源SO为(例如,基于KrF、ArF或F2发射激光的)准分子激光时的情况。
束PB随后截断在被保持在图案形成装置台MT上的图案形成装置MA。在已横穿图案形成装置MA之后,束B传递通过透镜PL,该透镜PL将所述束B聚焦到衬底W的目标部分C上。借助于第二定位装置(和干涉测量装置IF),可以准确地移动衬底台WT,以便例如将不同目标部分C定位在束PB的路径中。类似地,第一定位装置可以用于例如在从图案形成装置库中机械地检索图案形成装置MA之后或在扫描期间相对于束B的路径来准确地定位图案形成装置MA。通常,将借助于未在图18中明确地描绘的长行程模块(粗定位)和短行程模块(精定位)来实现物体台MT、WT的移动。然而,在步进器(与步进扫描工具相反)的情况下,图案形成装置台MT可以仅连接到短行程致动器,或者可以是固定的。
所描绘的工具可以用于两种不同的模式中:
-在步进模式下,将图案形成装置台MT保持基本静止,并且将整个图案形成装置图像一次投影(即,单次“闪光”)到目标部分C上。然后,使衬底台WT在x和/或y方向上移位,以使得不同的目标部分C可以被束PB辐射;
-在扫描模式下,除了单次“闪光”中不曝光给定目标部分C之外,基本上适用于相同的情形。替代地,图案形成装置台MT能够在给定方向(所谓的“扫描方向”,例如y方向)上以速率v移动,以使得投影束B在图案形成装置图像上进行扫描;同时,衬底台WT以速率V=Mv在相同或相反方向上同时移动,其中,M是透镜PL的放大率(典型地M=1/4或1/5)。以这种方式,可以在不必折中分辨率的情况下曝光相对大的目标部分C。
图19示意性描绘了可以与本文所描述的技术结合使用的另一示例性光刻投影设备1000。
该光刻投影系统1000包括:
-源收集器模块SO
-照射系统(照射器)IL,该照射系统被配置成调节辐射束B(例如EUV辐射)。
-支撑结构(例如图案化装置台)MT,该支撑结构被配置成支撑图案化装置(例如掩模或掩模版)MA,并且连接到被配置成精确地定位图案形成装置的第一定位器PM;
-衬底台(例如晶片台)WT,该衬底台被构造成保持衬底(例如涂覆有抗蚀剂的晶片)W,并且连接到被配置成精确地定位衬底的第二定位器PW;和
-投影系统(例如反射式投影系统)PS,该投影系统用于将由图案化装置MA赋予至辐射束B的图案投影到衬底W的(例如,包括一个或更多个管芯的)目标部分C上。
如这里描绘的,设备1000属于反射类型(例如,使用反射式图案形成装置)。应注意,因为大多数材料在EUV波长范围内是吸收性的,所以图案化装置可以具有多层反射器,该多层反射器包括例如多叠层钼和硅。在一个示例中,多叠层反射器具有钼和硅的40对层,其中,每一层的厚度为四分之一波长。利用X射线光刻可以产生更短的波长。由于大多数材料在EUV和X射线波长处都是吸收性的,所以在图案化装置的形貌上的一薄片的图案吸收材料(例如,在多层反射器的顶部上的TaN吸收体)限定了特征将打印(正抗蚀剂)或不打印(负抗蚀剂)在哪里。
参照图19,照射器IL从源收集器模块SO接收极紫外辐射束。用于产生EUV辐射的方法包括但不必限于将材料转换为等离子体状态,该材料具有至少一种元素(例如氙、锂或锡),至少一种元素在EUV范围内具有一个或更多个发射线。在一种通常被称为激光产生的等离子体(“LPP”)的这样的方法中,等离子体可以通过用激光束照射燃料来产生,燃料例如是具有线发射元素的材料的微滴、流或簇团。源收集器模块SO可以是包括用于提供激发燃料的激光束的激光器(图19中未示出)的EUV辐射系统的一部分。所得到的等离子体发射输出辐射,例如EUV辐射,输出辐射通过使用设置在源收集器模块中的辐射收集器来被收集。例如当使用CO2激光器以提供用于燃料激发的激光束时,激光器和源收集器模块可以是分立的实体。
在这种情况下,不认为激光器形成光刻设备的一部分,并且辐射束借助于包括例如合适的定向反射镜和/或扩束器的束传递系统而从激光器传递至源收集器模块。在其它情况下,例如,当源是通常被称为DPP源的放电产生等离子体EUV发生器时,源可以是源收集器模块的组成部分。
照射器IL可以包括用于调节辐射束的角强度分布的调节器。通常,可以调节照射器的光瞳平面中的强度分布的至少外部径向范围和/或内部径向范围(通常分别被称作σ-外部和σ-内部)。另外,照射器IL可以包括各种其它部件,诸如琢面场反射镜装置和琢面光瞳反射镜装置。照射器可以用于调节辐射束,以在其横截面中具有期望的均一性和强度分布。
辐射束B入射到被保持在支撑结构(例如,图案形成装置台)MT上的图案形成装置(例如,掩模)MA上,并且由图案形成装置图案化。在从图案形成装置(例如,掩模)MA反射之后,辐射束B穿过投影系统PS,投影系统PS将所述束聚焦至衬底W的目标部分C上。借助于第二定位器PW和位置传感器PS2(例如,干涉装置、线性编码器、电容性传感器),可以准确地移动衬底台WT,例如,以便将不同的目标部分C定位到辐射束B的路径中。类似地,第一定位器PM和另一位置传感器PS1可以用于相对于辐射束B的路径精确地定位图案形成装置(例如,掩模)MA。可以使用图案形成装置对准标记M1、M2和衬底对准标记P1、P2来对准图案形成装置(例如,掩模)MA和衬底W。
可以通过以下模式中的至少一种来使用所描绘的设备1000:
1.在步进模式中,在将被赋予至辐射束的整个图案一次性投影至目标部分C上时,使支撑结构(例如图案形成装置台)MT和衬底台WT保持基本上静止(即,单次静态曝光)。然后使衬底台WT在X和/或Y方向上移位,使得可以曝光不同的目标部分C。
2.在扫描模式中,在将被赋予至辐射束的图案投影至目标部分C上时,同步地扫描支撑结构(例如,图案形成装置台)MT和衬底台WT(即,单次动态曝光)。可以通过投影系统PS的放大率(缩小率)和图像反转特性来确定衬底台WT相对于支撑结构(例如,图案形成装置台)MT的速度和方向。
3.在另一模式中,在将被赋予至辐射束的图案投影至目标部分C上时,将用于保持可编程图案形成装置的支撑结构(例如,图案形成装置台)MT保持为基本静止,并且移动或扫描衬底台WT。在这种模式中,通常采用脉冲式辐射源,并且在衬底台WT的每次移动之后或在扫描期间的连续辐射脉冲之间根据需要而更新可编程图案形成装置。这种操作模式可以易于应用至利用可编程图案形成装置(诸如上文提及的类型的可编程反射镜阵列)的无掩模光刻术。
图20更详细地示出了设备1000,设备1000包括源收集器模块SO、照射系统IL和投影系统PS。源收集器模块SO被构造和布置成使得可以在源收集器模块SO的封闭结构220中维持真空环境。可以由放电产生式等离子体源形成EUV辐射发射的等离子体210。可以由气体或蒸汽(例如Xe气体、Li蒸气或Sn蒸气)产生EUV辐射,其中,产生极热的等离子体210以发射处于电磁波谱的EUV范围内的辐射。通过例如引起至少部分地离子化的等离子体的放电,产生极热等离子体210。为了有效地产生辐射,可能需要例如10Pa的Xe、Li、Sn蒸气或任何其它适当的气体或蒸汽的分压。在实施例中,提供被激发的锡(Sn)的等离子体,以产生EUV辐射。
从热等离子体210发射的辐射从源腔211经由定位在源腔211中的开口中或开口后方的可选的气体阻挡件或污染物阱230(在一些情况下,也被称为污染物阻挡件或阻止阱)进入收集器腔212中。污染物阱230可以包括通道结构。污染阱230还可以包括气体阻挡件或者气体阻挡件和通道结构的组合。如本领域中已知的,本文进一步示出的污染物阱或污染物阻挡件230至少包括通道结构。
收集器腔211可以包括辐射收集器CO,该辐射收集器CO可以是所谓的掠入射收集器。辐射收集器CO具有上游辐射收集器侧251和下游辐射收集器侧252。横穿收集器CO的辐射可以从光栅光谱滤光片240反射,以沿着光轴聚焦在虚源点IF中,该光轴由点划线‘O’表示。虚源点IF通常被称为中间焦点,并且源收集器模块被布置成使得中间焦点IF位于封闭结构220中的开口221处或开口221附近。虚源点IF是发射辐射的等离子体210的图像。
随后,辐射穿过照射系统IL,该照射系统IL可以包括琢面场反射镜装置22和琢面光瞳反射镜装置24,该琢面场反射镜装置22和琢面光瞳反射镜装置24被布置成在图案形成装置MA处提供辐射束21的期望的角度分布并在图案形成装置MA处提供辐射强度的期望的均一性。当辐射束21在由支撑结构MT保持的图案形成装置MA处反射时,形成被图案化的束26,并且被图案化的束26经由反射元件28、30被投影系统PS成像到由衬底台WT保持的衬底W上。
在照射光学装置单元IL和投影系统PS中通常可以存在比所示元件的更多的元件。依赖于光刻设备的类型,可以可选地存在光栅光谱滤光片240。此外,可以存在比附图所示的反射镜更多的反射镜,例如,在投影系统PS中可以存在比图20所示的反射元件多1至6个额外的反射元件。
如图20所示,收集器光学装置CO被描绘为具有掠入射反射器253、254和255的巢状收集器,巢状收集器仅作为收集器(或收集器反射镜)的示例。掠入射反射器253、254和255围绕光轴O轴向地对称设置,并且这种类型的收集器光学装置CO可以与放电产生式等离子体源(经常称为DPP源)结合使用。
替代地,源收集器模块SO可以是如图21所示的LPP辐射系统的一部分。激光器LA被布置成将激光能量沉积到燃料(例如氙(Xe)、锡(Sn)或锂(Li))中,产生具有几十eV的电子温度的高度离子化的等离子体210。在这些离子的去激发和再结合期间产生的高能辐射从等离子体发射,由附近的正入射收集器光学装置CO收集,并且聚焦到封闭结构220中的开口221上。
可以使用以下方面进一步描述实施例:
1、一种用于训练被配置成预测掩模图案的机器学习模型的方法,所述方法包括:
获得:(i)图案化过程的被配置成预测衬底上的图案的过程模型;和(ii)目标图案;以及
由硬件计算机系统基于所述过程模型和成本函数来训练被配置成预测掩模图案的所述机器学习模型,所述成本函数确定预测图案与所述目标图案之间的差异。
2、根据方面1所述的方法,其中,训练被配置成预测所述掩模图案的所述机器学习模型包括:
根据基于梯度的方法迭代地修改所述机器学习模型的参数,使得所述成本函数减小。
3、根据方面1至2中任一项所述的方法,其中,所述基于梯度的方法产生梯度图,所述梯度图指示一个或更多个参数是否被修改以使得所述成本函数减小。
4、根据方面3所述的方法,其中,所述成本函数被最小化。
5、根据方面1至4中任一项所述的方法,其中,所述成本函数是所述目标图案与所述预测图案之间的边缘放置误差。
6、根据方面1至5中任一项所述的方法,其中,所述过程模型包括一个或更多个经训练的机器学习模型,所述一个或更多个经训练的机器学习模型包括:
(i)第一经训练的机器学习模型,所述第一经训练的机器学习模型被配置成预测所述图案化过程的掩模透射;和/或
(ii)第二经训练的机器学习模型,所述第二经训练的机器学习模型耦合到所述第一经训练的模型,并且被配置成预测在所述图案化过程中使用的设备的光学行为;和/或
(iii)第三经训练的机器学习模型,所述第三经训练的机器学习模型耦合到所述第二经训练的模型,并且被配置成预测所述图案化过程的抗蚀剂过程。
7、根据方面6所述的方法,其中,所述第一经训练的机器学习模型包括被配置成预测所述图案化过程的二维掩模透射效应或三维掩模透射效应的机器学习模型。
8、根据方面1至7中任一项所述的方法,其中,所述第一经训练的机器学习模型接收与所述目标图案相对应的掩模图像,并预测掩模透射图像,
其中,所述第二经训练的机器学习模型接收所预测的掩模透射图像并预测空间图像,并且
其中,所述第三经训练的机器学习模型接收所预测的空间图像并预测抗蚀剂图像,其中所述抗蚀剂图像包括所述衬底上的所述预测图案。
9、根据方面1至8中任一项所述的方法,其中,被配置成预测所述掩模图案的所述机器学习模型、所述第一经训练的模型、所述第二经训练的模型、和/或所述第三经训练的模型是卷积神经网络。
10、根据方面8至9中任一项所述的方法,其中,所述掩模图案包括光学邻近效应校正项,所述光学邻近效应校正项包括辅助特征。
11、根据方面10所述的方法,其中,所述光学邻近效应校正项是掩模图像的形式,并且所述训练是基于所述掩模图像或所述掩模图像的像素数据以及所述目标图案的图像进行的。
12、根据方面8至11中任一项所述的方法,其中,所述掩模图像是连续透射掩模图像。
13、一种用于训练图案化过程的过程模型以预测衬底上的图案的方法,所述方法包括:
获得:(i)用于预测所述图案化过程的掩模透射的第一经训练的机器学习模型;和/或(ii)用于预测在所述图案化过程中使用的设备的光学行为的第二经训练的机器学习模型;和/或(iii)用于预测所述图案化过程的抗蚀剂过程的第三经训练的机器学习模型;和/或(iv)印刷图案;
连接所述第一经训练的模型、所述第二经训练的模型、和/或所述第三经训练的模型以产生所述过程模型;以及
由硬件计算机系统基于成本函数来训练被配置成预测衬底上的图案的所述过程模型,所述成本函数确定预测图案与所述印刷图案之间的差异。
14、根据方面13所述的方法,其中,所述连接包括将所述第一经训练的模型顺序地连接到所述第二经训练的模型,并且将所述第二经训练的模型顺序地连接到所述第三经训练的模型。
15、根据方面14所述的方法,其中,所述顺序地连接包括:
提供所述第一经训练的模型的第一输出作为所述第二经训练的模型的第二输入;以及
提供所述第二经训练的模型的第二输出作为所述第三经训练的模型的第三输入。
16、根据方面15所述的方法,其中,所述第一输出是掩模透射图像,所述第二输出是空间图像,并且所述第三输出是抗蚀剂图像。
17、根据方面13至16中任一项所述的方法,其中,所述训练包括基于所述成本函数迭代地确定与所述第一经训练的模型、所述第二经训练的模型和/或所述第三经训练的模型相对应的一个或更多个参数,以使所述成本函数减小。
18、根据方面17所述的方法,其中,所述成本函数被最小化。
19、根据方面13至18中任一项所述的方法,其中,所述成本函数是所述印刷图案与所述预测图案之间的均方误差、边缘放置误差和/或临界尺寸的差异。
20、根据方面13至19中任一项所述的方法,其中,所述一个或更多个参数的确定是根据基于梯度的方法进行的,其中,在所述第三经训练的模型、所述第二经训练的模型和/或所述第一经训练的模型处确定所述成本函数相对于相应模型的参数的局部导数。
21、根据方面13至20中任一项所述的方法,其中,所述第一经训练的模型、所述第二经训练的模型和/或所述第三经训练的模型是卷积神经网络。
22、一种用于确定目标图案的光学邻近效应校正项的方法,所述方法包括:
获得(i)被配置成预测光学邻近效应校正项的经训练的机器学习模型,以及(ii)待经由图案化过程印刷在衬底上的目标图案;以及
由硬件计算机系统基于所述经训练的机器学习模型来确定光学邻近效应校正项,所述经训练的机器学习模型被配置成预测与所述目标图案相对应的光学邻近效应校正项。
23、根据方面22所述的方法,还包括在表示掩模的数据中并入与所述光学邻近效应校正项相对应的结构特征。
24、根据方面23所述的方法,其中,所述光学邻近效应校正项包括辅助特征的设置和/或轮廓修改。
25、一种计算机程序产品,包括非暂时性计算机可读介质,所述非暂时性计算机可读介质具有在其上记录的指令,所述指令在由计算机执行时实施根据方面1至24中任一项所述的方法。
26、一种用于训练被配置成基于缺陷预测掩模图案的机器学习模型的方法,所述方法包括:
获得:(i)图案化过程的被配置成预测衬底上的图案的过程模型,其中所述过程模型包括一个或更多个经训练的机器学习模型;(ii)被配置成基于所述衬底上的预测图案来预测缺陷的经训练的可制造性模型;和(iii)目标图案;以及
由硬件计算机系统基于所述过程模型、所述经训练的可制造性模型和成本函数来训练被配置成预测掩模图案的所述机器学习模型,其中所述成本函数是所述目标图案与所述预测图案之间的差异。
27、根据方面26所述的方法,其中,所述成本函数包括由所述可制造性模型预测的缺陷的数量以及所述目标图案与所述预测图案之间的边缘放置误差。
28、根据方面26至27中任一项所述的方法,其中,所述缺陷包括颈缩缺陷、基脚缺陷、屈曲缺陷和/或桥接缺陷。
29、根据方面26所述的方法,其中,训练被配置成预测所述掩模图案的所述机器学习模型包括:
根据基于梯度的方法迭代地修改所述机器学习模型的一个或更多个参数,使得包括缺陷的总数量和/或所述边缘放置误差的所述成本函数减小。
30、根据方面29所述的方法,其中,所述缺陷的总数量和所述边缘放置误差同时减小。
31、根据方面29至30中任一项所述的方法,其中,所述基于梯度的方法产生梯度图,所述梯度图指示所述一个或更多个参数是否被修改以使得所述成本函数减小。
32、根据方面31所述的方法,其中,所述成本函数被最小化。
33、一种用于训练被配置成基于掩模的制造违反概率预测掩模图案的机器学习模型的方法,所述方法包括:
获得:(i)图案化过程的被配置成预测衬底上的图案的过程模型,其中所述过程模型包括一个或更多个经训练的机器学习模型;(ii)被配置成预测掩模图案的制造违反概率的经训练的掩模规则检查模型;和(iii)目标图案;以及
由硬件计算机系统基于所述过程模型、所述经训练的掩模规则检查模型和成本函数来训练被配置成预测所述掩模图案的所述机器学习模型,其中所述成本函数基于由所述掩模规则检查模型预测的所述制造违反概率。
34、根据方面33所述的方法,其中,所述掩模是包括曲线掩模图案的曲线掩模。
35、根据方面33所述的方法,其中,训练被配置成预测所述掩模图案的所述机器学习模型包括:
根据基于梯度的方法迭代地修改所述机器学习模型的参数,使得包括预测的制造违反概率和/或边缘放置误差的所述成本函数减小。
36、根据方面33至35中任一项所述的方法,其中,所述预测的制造违反概率和所述边缘放置误差同时减小。
37、根据方面35至36中任一项所述的方法,其中,所述基于梯度的方法产生梯度图,所述梯度图指示一个或更多个参数是否被修改以使得所述成本函数减小。
38、根据方面37所述的方法,其中,所述成本函数被最小化。
39、一种用于确定与目标图案相对应的光学邻近效应校正项的方法,所述方法包括:
获得:(i)被配置成基于掩模的制造违反概率、边缘放置误差、和/或衬底上的缺陷来预测光学邻近效应校正项的经训练的机器学习模型,以及(ii)待经由图案化过程印刷在衬底上的目标图案;以及
由硬件计算机系统基于所述经训练的机器学习模型和所述目标图案来确定光学邻近效应校正项。
40、根据方面39所述的方法,还包括在表示掩模的数据中并入与所述光学邻近效应校正项相对应的结构特征。
41、根据方面38至40中任一项所述的方法,其中,所述光学邻近效应校正项包括辅助特征的放置和/或轮廓修改。
42、根据方面38至41中任一项所述的方法,其中,所述光学邻近效应校正项包括曲线形状的结构特征。
43、一种用于训练被配置成预测衬底上的缺陷的机器学习模型的方法,所述方法包括:
获得:(i)抗蚀剂图像或蚀刻图像;和/或(ii)目标图案;以及
由硬件计算机系统基于所述抗蚀剂图像或所述蚀刻图像、所述目标图案和成本函数来训练被配置成预测缺陷指标的所述机器学习模型,其中所述成本函数是预测的缺陷指标与真实缺陷指标之间的差异。
44、根据方面43所述的方法,其中,所述缺陷指标是缺陷的数量、缺陷尺寸、指示是否存在缺陷的二元变量和/或缺陷类型。
45、一种用于训练被配置成预测掩模图案的掩模规则检查违反的机器学习模型的方法,所述方法包括:
获得:(i)一组掩模规则检查;(ii)一组掩模图案;以及
由硬件计算机系统基于所述一组掩模规则检查、所述一组掩模图案和基于掩模规则检查指标的成本函数来训练被配置成预测掩模规则检查违反的所述机器学习模型,其中所述成本函数是预测的掩模规则检查指标和真实掩模规则检查指标之间的差异。
46、根据方面45所述的方法,其中,所述掩模规则检查指标包括所述掩模规则检查的违反概率,其中所述违反概率是基于针对所述掩模图案的特定特征的违反总数量来确定的。
47、根据方面45至46中任一项所述的方法,其中,所述一组掩模图案是连续透射掩模图像的形式。
48、一种用于确定掩模图案的方法,所述方法包括:
获得:(i)与目标图案相对应的初始图像;(ii)图案化过程的被配置成预测衬底上的图案的过程模型;和(ii)被配置成基于由所述过程模型预测的所述图案来预测缺陷的经训练的缺陷模型;以及
由硬件计算机系统基于所述过程模型、所述经训练的缺陷模型和包括缺陷指标的成本函数来根据所述初始图像确定掩模图案。
49、根据方面48所述的方法,其中,确定所述掩模图案是迭代过程,迭代包括:
经由所述过程模型的模拟,根据输入图像预测所述衬底上的所述图案;
经由所述经训练的缺陷模型的模拟来预测所预测的图案中的缺陷;
基于所预测的缺陷评估所述成本函数;以及
基于所述成本函数的梯度来修改所述初始图像的像素值。
50、根据方面49所述的方法,其中,所述过程模型的输入图像是用于第一次迭代的初始图像,并且输入图像是用于后续迭代的修改后的初始图像。
51、根据方面48至50中任一项所述的方法,其中,所述缺陷指标是缺陷的数量、缺陷尺寸、指示是否存在缺陷的二元变量和/或缺陷类型。
52、根据方面48至51中任一项所述的方法,其中,所述成本函数还包括边缘放置误差。
53、根据方面48至52中任一项所述的方法,还包括:
获得经训练的掩模规则检查模型,所述经训练的掩模规则检查模型被配置成预测一组掩模规则检查的违反概率;
由硬件计算机系统基于所述掩模图案来预测所述违反概率;以及
通过所述硬件计算机系统基于包括所预测的违反概率的成本函数来修改所述掩模图案。
54、一种用于训练被配置成预测掩模图案的机器学习模型的方法,所述方法包括:
获得:(i)目标图案;(ii)与所述目标图案相对应的初始掩模图案;(iii)与所述初始掩模图案相对应的抗蚀剂图像;和(iv)一组基准图像;以及
由硬件计算机系统基于所述目标图案、所述初始掩模图案、所述抗蚀剂图像、所述一组基准图像以及成本函数来训练被配置成预测所述掩模图案的所述机器学习模型,所述成本函数确定预测掩模图案和所述基准图像之间的差异。
55、根据方面54所述的方法,其中,所述初始掩模图案是根据被配置成预测所述初始掩模图案的经训练的机器学习模型的模拟获得的连续透射掩模图像。
56、根据方面54至55中任一项所述的方法,其中,所述成本函数是所述预测掩模图案的像素强度与所述一组基准图像的像素强度之间的均方误差。
57、根据方面1至12、方面26至32、48至53或方面54至56中任一项所述的方法,还包括通过迭代地修改由所述经训练的机器学习模型预测的所述预测掩模图案的掩模变量来优化所述预测掩模图案,迭代包括:
经由基于物理学的掩模模型或基于机器学习的掩模模型的模拟,基于所述预测掩模图案来预测掩模透射图像;
经由基于物理学的光学模型或基于机器学习的光学模型的模拟,基于所述掩模透射图像来预测光学图像;
经由基于物理学的抗蚀剂模型或基于机器学习的抗蚀剂模型的模拟,基于所述光学图像来预测抗蚀剂图像;
基于所述抗蚀剂图像来评估所述成本函数;以及
经由模拟,基于所述成本函数的梯度来修改与所述预测掩模图案相关联的掩模变量,使得所述成本函数减小。
58、一种用于训练被配置成预测抗蚀剂图像的机器学习模型的方法,所述方法包括:
获得:(i)图案化过程的被配置成根据抗蚀剂图像预测蚀刻图像的过程模型;和(ii)蚀刻目标;以及
由硬件计算机系统基于所述蚀刻模型和确定所述蚀刻图像与所述蚀刻目标之间的差异的成本函数来训练被配置成预测抗蚀剂图像的所述机器学习模型。
本文所公开的构思可以模拟用于成像子波长特征的任何通用成像系统或对所述通用成像系统进行数学建模,并且可以尤其用于能够产生越来越短的波长的新兴成像技术。已经在使用的新兴技术包括能够使用ArF激光器来产生193nm波长的并且甚至使用氟激光器产生157nm波长的EUV(极紫外)、DUV光刻术。此外,EUV光刻术能够通过使用同步加速器或通过用高能电子撞击材料(固体或等离子体)以产生5nm至20nm范围内的波长,以便产生在该范围内的光子。
虽然本文所公开的构思可以用于在诸如硅晶片的衬底上成像,但是应当理解,所公开的构思可以与任何类型的光刻成像系统一起使用,例如用于在除了硅晶片之外的衬底上成像的那些光刻成像系统。
以上描述旨在是说明性的而不是限制性的。因此,对于本领域技术人员来说显而易见的是,可以在不脱离以下所述权利要求的范围的情况下对所描述的发明进行修改。

Claims (14)

1.一种用于训练被配置成预测掩模图案的机器学习模型的方法,所述方法包括:
获得:(i)图案化过程的被配置成预测衬底上的图案的过程模型;和(ii)目标图案;以及
由硬件计算机系统基于所述过程模型和成本函数来训练被配置成预测掩模图案的所述机器学习模型,所述成本函数确定预测图案与所述目标图案之间的差异。
2.根据权利要求1所述的方法,其中,训练被配置成预测所述掩模图案的所述机器学习模型包括:
根据基于梯度的方法迭代地修改所述机器学习模型的参数,使得所述成本函数减小。
3.根据权利要求1所述的方法,其中,所述基于梯度的方法产生梯度图,所述梯度图指示一个或更多个参数是否被修改成使得所述成本函数减小。
4.根据权利要求3所述的方法,其中,所述成本函数被最小化。
5.根据权利要求1所述的方法,其中,所述成本函数是所述目标图案与所述预测图案之间的边缘放置误差。
6.根据权利要求1所述的方法,其中,所述成本函数是所述目标图案与所述预测图案之间的均方误差、和/或临界尺寸的差异。
7.根据权利要求1所述的方法,其中,所述过程模型包括一个或更多个经训练的机器学习模型,所述一个或更多个经训练的机器学习模型包括:
(i)第一经训练的机器学习模型,所述第一经训练的机器学习模型被配置成预测所述图案化过程的掩模透射;和/或
(ii)第二经训练的机器学习模型,所述第二经训练的机器学习模型耦合到所述第一经训练的机器学习模型,并且被配置成预测在所述图案化过程中使用的设备的光学行为;和/或
(iii)第三经训练的机器学习模型,所述第三经训练的机器学习模型耦合到所述第二经训练的机器学习模型,并且被配置成预测所述图案化过程的抗蚀剂过程。
8.根据权利要求7所述的方法,其中,所述第一经训练的机器学习模型包括被配置成预测所述图案化过程的二维掩模透射效应或三维掩模透射效应的机器学习模型。
9.根据权利要求1所述的方法,其中,所述第一经训练的机器学习模型接收与所述目标图案相对应的掩模图像,并预测掩模透射图像,
其中,所述第二经训练的机器学习模型接收所预测的掩模透射图像并预测空间图像,以及
其中,所述第三经训练的机器学习模型接收所预测的空间图像并预测抗蚀剂图像,其中所述抗蚀剂图像包括所述衬底上的所述预测图案。
10.根据权利要求1所述的方法,其中,被配置成预测所述掩模图案的所述机器学习模型、所述第一经训练的机器学习模型、所述第二经训练的机器学习模型、和/或所述第三经训练的机器学习模型是卷积神经网络。
11.根据权利要求9所述的方法,其中,所述掩模图案包括光学邻近效应校正项,所述光学邻近效应校正项包括辅助特征。
12.根据权利要求11所述的方法,其中,所述光学邻近效应校正项是掩模图像的形式,并且所述训练是基于所述掩模图像或所述掩模图像的像素数据以及所述目标图案的图像进行的。
13.根据权利要求9所述的方法,其中,所述掩模图像是连续透射掩模图像。
14.根据权利要求1所述的方法,还包括通过迭代地修改由经训练的所述机器学习模型预测的被预测掩模图案的掩模变量来优化所述被预测掩模图案,迭代包括:
经由基于物理学的掩模模型的模拟或基于机器学习的掩模模型的模拟,基于所述被预测掩模图案来预测掩模透射图像;
经由基于物理学的光学模型的模拟或基于机器学习的光学模型的模拟,基于所述掩模透射图像来预测光学图像;
经由基于物理学的抗蚀剂模型的模拟或基于机器学习的抗蚀剂模型的模拟,基于所述光学图像来预测抗蚀剂图像;
基于所述抗蚀剂图像来评估所述成本函数;以及
经由模拟,基于所述成本函数的梯度来修改与所述被预测掩模图案相关联的掩模变量,使得所述成本函数减小。
CN201980015018.XA 2018-02-23 2019-02-20 训练用于计算光刻术的机器学习模型的方法 Pending CN111788589A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862634523P 2018-02-23 2018-02-23
US62/634,523 2018-02-23
PCT/EP2019/054246 WO2019162346A1 (en) 2018-02-23 2019-02-20 Methods for training machine learning model for computation lithography

Publications (1)

Publication Number Publication Date
CN111788589A true CN111788589A (zh) 2020-10-16

Family

ID=65516640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980015018.XA Pending CN111788589A (zh) 2018-02-23 2019-02-20 训练用于计算光刻术的机器学习模型的方法

Country Status (5)

Country Link
US (1) US20200380362A1 (zh)
KR (2) KR102459381B1 (zh)
CN (1) CN111788589A (zh)
TW (2) TWI696125B (zh)
WO (1) WO2019162346A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113168086A (zh) * 2021-03-19 2021-07-23 长江存储科技有限责任公司 用于设计光掩模的系统和方法
TWI812086B (zh) * 2022-03-18 2023-08-11 力晶積成電子製造股份有限公司 光學鄰近修正模型的產生方法
TWI823107B (zh) * 2020-12-08 2023-11-21 日商三菱電機股份有限公司 學習裝置、不良檢測裝置以及不良檢測方法
WO2023241267A1 (zh) * 2022-06-14 2023-12-21 腾讯科技(深圳)有限公司 光刻掩膜生成模型的训练方法、装置、设备及存储介质

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176000A1 (en) 2017-03-23 2018-09-27 DeepScale, Inc. Data synthesis for autonomous control systems
US10671349B2 (en) 2017-07-24 2020-06-02 Tesla, Inc. Accelerated mathematical engine
US11409692B2 (en) 2017-07-24 2022-08-09 Tesla, Inc. Vector computational unit
US11157441B2 (en) 2017-07-24 2021-10-26 Tesla, Inc. Computational array microprocessor system using non-consecutive data formatting
US11893393B2 (en) 2017-07-24 2024-02-06 Tesla, Inc. Computational array microprocessor system with hardware arbiter managing memory requests
US11561791B2 (en) 2018-02-01 2023-01-24 Tesla, Inc. Vector computational unit receiving data elements in parallel from a last row of a computational array
US11215999B2 (en) 2018-06-20 2022-01-04 Tesla, Inc. Data pipeline and deep learning system for autonomous driving
US11361457B2 (en) 2018-07-20 2022-06-14 Tesla, Inc. Annotation cross-labeling for autonomous control systems
US11636333B2 (en) 2018-07-26 2023-04-25 Tesla, Inc. Optimizing neural network structures for embedded systems
US11562231B2 (en) 2018-09-03 2023-01-24 Tesla, Inc. Neural networks for embedded devices
CN113039556B (zh) 2018-10-11 2022-10-21 特斯拉公司 用于使用增广数据训练机器模型的系统和方法
US11196678B2 (en) 2018-10-25 2021-12-07 Tesla, Inc. QOS manager for system on a chip communications
KR20230167453A (ko) * 2018-11-30 2023-12-08 에이에스엠엘 네델란즈 비.브이. 제조성에 기초한 패터닝 디바이스 패턴을 결정하기 위한 방법
US11816585B2 (en) 2018-12-03 2023-11-14 Tesla, Inc. Machine learning models operating at different frequencies for autonomous vehicles
US11537811B2 (en) 2018-12-04 2022-12-27 Tesla, Inc. Enhanced object detection for autonomous vehicles based on field view
JP2020095428A (ja) * 2018-12-12 2020-06-18 株式会社東芝 モデル学習システム、モデル学習方法、プログラム、及び記憶媒体
EP3671660A1 (en) * 2018-12-20 2020-06-24 Dassault Systèmes Designing a 3d modeled object via user-interaction
US11610117B2 (en) 2018-12-27 2023-03-21 Tesla, Inc. System and method for adapting a neural network model on a hardware platform
KR102617197B1 (ko) 2018-12-28 2023-12-27 에이에스엠엘 네델란즈 비.브이. 프린트된 기판으로부터의 측정 피드백에 기초한 패턴 랭킹 결정
TWI738169B (zh) 2019-01-29 2021-09-01 荷蘭商Asml荷蘭公司 用於為佈局圖案化程序判定訓練圖案之方法及相關的電腦程式產品
US10997461B2 (en) 2019-02-01 2021-05-04 Tesla, Inc. Generating ground truth for machine learning from time series elements
US11567514B2 (en) 2019-02-11 2023-01-31 Tesla, Inc. Autonomous and user controlled vehicle summon to a target
US10956755B2 (en) 2019-02-19 2021-03-23 Tesla, Inc. Estimating object properties using visual image data
KR20210130784A (ko) * 2019-03-25 2021-11-01 에이에스엠엘 네델란즈 비.브이. 패터닝 공정에서 패턴을 결정하는 방법
CN111949111B (zh) * 2019-05-14 2022-04-26 Oppo广东移动通信有限公司 交互控制方法、装置、电子设备及存储介质
CN114222993A (zh) * 2019-08-16 2022-03-22 美商新思科技有限公司 基于由人工神经网络预测的失效模式应用掩模版增强技术方案
US20210064977A1 (en) * 2019-08-29 2021-03-04 Synopsys, Inc. Neural network based mask synthesis for integrated circuits
CN114402262A (zh) * 2019-08-30 2022-04-26 Asml荷兰有限公司 半导体器件几何方法和系统
KR20220053029A (ko) * 2019-09-05 2022-04-28 에이에스엠엘 네델란즈 비.브이. 현상 후 이미지에 기초하여 패턴의 결함이 있음을 결정하는 방법
EP3789826A1 (en) * 2019-09-05 2021-03-10 ASML Netherlands B.V. Method for determining defectiveness of pattern based on after development image
US11394732B1 (en) * 2019-09-10 2022-07-19 NortonLifeLock Inc. Systems and methods for adaptively managing data drift in a classifier
US10943353B1 (en) 2019-09-11 2021-03-09 International Business Machines Corporation Handling untrainable conditions in a network architecture search
US11023783B2 (en) * 2019-09-11 2021-06-01 International Business Machines Corporation Network architecture search with global optimization
CN114402342A (zh) * 2019-09-16 2022-04-26 Asml荷兰有限公司 用于生成特性图案以及训练机器学习模型的方法
WO2021091838A1 (en) * 2019-11-04 2021-05-14 Synopsys, Inc. Using mask fabrication models in correction of lithographic masks
CN114556210A (zh) 2019-11-04 2022-05-27 美商新思科技有限公司 在校正光刻掩模中使用掩模制造模型
WO2021115766A1 (en) * 2019-12-13 2021-06-17 Asml Netherlands B.V. Method for improving consistency in mask pattern generation
US11762283B2 (en) * 2019-12-13 2023-09-19 Synopsys, Inc. Inverse lithography and machine learning for mask synthesis
CN111222558B (zh) * 2019-12-31 2024-01-30 富联裕展科技(河南)有限公司 图像处理方法及存储介质
CN115087925A (zh) * 2020-02-12 2022-09-20 Asml荷兰有限公司 包括使用经训练机器学习模型的光学邻近效应校正的用于确定掩模图案的方法
WO2021175570A1 (en) * 2020-03-03 2021-09-10 Asml Netherlands B.V. Machine learning based subresolution assist feature placement
KR20220154198A (ko) * 2020-04-20 2022-11-21 에이에스엠엘 네델란즈 비.브이. 임퓨터 모델의 구성 기술
US11055639B1 (en) * 2020-04-28 2021-07-06 Sas Institute Inc. Optimizing manufacturing processes using one or more machine learning models
CN111443569B (zh) * 2020-05-18 2023-11-17 中国科学院微电子研究所 一种修正模型的建立方法及装置、掩模优化方法及装置
KR20220001262A (ko) * 2020-06-29 2022-01-05 삼성전자주식회사 반도체 공정의 근접 보정 방법
EP3951496A1 (en) * 2020-08-07 2022-02-09 ASML Netherlands B.V. Apparatus and method for selecting informative patterns for training machine learning models
US11836965B2 (en) 2020-08-12 2023-12-05 Niantic, Inc. Determining visual overlap of images by using box embeddings
US20220121957A1 (en) * 2020-10-15 2022-04-21 Synopsys, Inc. Lithography simulation using machine learning
KR20220051868A (ko) * 2020-10-19 2022-04-27 삼성전자주식회사 반도체 장치의 제조를 위한 방법 및 컴퓨팅 장치
US20220129775A1 (en) * 2020-10-28 2022-04-28 Kla Corporation Prediction and metrology of stochastic photoresist thickness defects
CN114916238A (zh) * 2020-12-07 2022-08-16 乐天集团股份有限公司 学习系统、学习方法和程序
US20240004305A1 (en) 2020-12-18 2024-01-04 Asml Netherlands B.V. Method for determining mask pattern and training machine learning model
WO2022187276A1 (en) * 2021-03-01 2022-09-09 Onto Innovation Inc. Post-overlay compensation on large-field packaging
JP2024515937A (ja) * 2021-03-30 2024-04-11 エーエスエムエル ネザーランズ ビー.ブイ. 荷電粒子システムにおける検査中に局所焦点を特定するためのシステム及び方法
WO2023056012A1 (en) * 2021-10-01 2023-04-06 Synopsys, Inc. Mask fabrication effects in three-dimensional mask simulations using feature images
CN113872655B (zh) * 2021-10-20 2023-03-21 上海交通大学 一种多播波束赋形快速计算方法
FR3129030B1 (fr) * 2021-11-10 2024-03-01 St Microelectronics Sa Dispositif et procédé de génération de masques photolithographiques
EP4261616A1 (en) 2022-04-13 2023-10-18 ASML Netherlands B.V. Method and computer program for grouping pattern features of a substantially irregular pattern layout
WO2023131476A1 (en) 2022-01-07 2023-07-13 Asml Netherlands B.V. Method and computer program for grouping pattern features of a substantially irregular pattern layout
US11921420B2 (en) 2022-01-28 2024-03-05 D2S, Inc. Method and system for reticle enhancement technology
WO2023159298A1 (en) * 2022-02-28 2023-08-31 National Research Council Of Canada Deep learning based prediction of fabrication-process-induced structural variations in nanophotonic devices
WO2024022854A1 (en) * 2022-07-28 2024-02-01 Asml Netherlands B.V. Training a machine learning model to generate mrc and process aware mask pattern
CN115598937B (zh) * 2022-12-13 2023-04-07 华芯程(杭州)科技有限公司 一种光刻掩膜形状预测方法及装置、电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
WO1997033205A1 (en) 1996-03-06 1997-09-12 Philips Electronics N.V. Differential interferometer system and lithographic step-and-scan apparatus provided with such a system
JP2006318978A (ja) * 2005-05-10 2006-11-24 Toshiba Corp パターン設計方法
US7703069B1 (en) 2007-08-14 2010-04-20 Brion Technologies, Inc. Three-dimensional mask model for photolithography simulation
NL1036189A1 (nl) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Window Simulation.
JP5913979B2 (ja) * 2008-06-03 2016-05-11 エーエスエムエル ネザーランズ ビー.ブイ. モデルベースのプロセスシミュレーション方法
US8572517B2 (en) * 2008-06-10 2013-10-29 Cadence Design Systems, Inc. System and method for modifying a data set of a photomask
NL2003702A (en) * 2008-11-10 2010-05-11 Brion Tech Inc Pattern selection for lithographic model calibration.
JP5629691B2 (ja) 2008-11-21 2014-11-26 エーエスエムエル ネザーランズ ビー.ブイ. 高速自由形式ソース・マスク同時最適化方法
NL2007577A (en) * 2010-11-10 2012-05-14 Asml Netherlands Bv Optimization of source, mask and projection optics.
JP6173889B2 (ja) * 2013-11-28 2017-08-02 ソニーセミコンダクタソリューションズ株式会社 シミュレーション方法、シミュレーションプログラム、加工制御システム、シミュレータ、プロセス設計方法およびマスク設計方法
US10209615B2 (en) * 2017-05-26 2019-02-19 Xtal, Inc. Simulating near field image in optical lithography
US10657213B2 (en) * 2017-12-22 2020-05-19 D2S, Inc. Modeling of a design in reticle enhancement technology
CN111868625B (zh) * 2018-03-19 2024-01-23 Asml荷兰有限公司 用于确定图案形成装置的曲线图案的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI823107B (zh) * 2020-12-08 2023-11-21 日商三菱電機股份有限公司 學習裝置、不良檢測裝置以及不良檢測方法
CN113168086A (zh) * 2021-03-19 2021-07-23 长江存储科技有限责任公司 用于设计光掩模的系统和方法
WO2022193284A1 (en) * 2021-03-19 2022-09-22 Yangtze Memory Technologies Co., Ltd. Systems and methods for designing photomasks
TWI812086B (zh) * 2022-03-18 2023-08-11 力晶積成電子製造股份有限公司 光學鄰近修正模型的產生方法
WO2023241267A1 (zh) * 2022-06-14 2023-12-21 腾讯科技(深圳)有限公司 光刻掩膜生成模型的训练方法、装置、设备及存储介质

Also Published As

Publication number Publication date
KR102459381B1 (ko) 2022-10-26
WO2019162346A1 (en) 2019-08-29
KR20200113240A (ko) 2020-10-06
TWI736262B (zh) 2021-08-11
KR20220147716A (ko) 2022-11-03
US20200380362A1 (en) 2020-12-03
TWI696125B (zh) 2020-06-11
TW202040441A (zh) 2020-11-01
TW201939365A (zh) 2019-10-01
KR102644214B1 (ko) 2024-03-07

Similar Documents

Publication Publication Date Title
TWI736262B (zh) 用於計算微影之機器學習模型的訓練方法
US20230013919A1 (en) Machine learning based inverse optical proximity correction and process model calibration
CN110692017A (zh) 基于机器学习的辅助特征放置
TW201937305A (zh) 基於缺陷機率的製程窗
TWI639897B (zh) 模型化曝光後製程
CN111213090B (zh) 图案化过程的优化流程
KR102610060B1 (ko) 제조성에 기초한 패터닝 디바이스 패턴을 결정하기 위한 방법
CN113614638A (zh) 用于机器学习辅助的光学邻近效应误差校正的训练方法
US20230107556A1 (en) Machine learning based subresolution assist feature placement
TW201939157A (zh) 二值化方法及自由形式光罩最佳化流程
CN111512236A (zh) 涉及光学像差的图案化过程改进
CN111433680B (zh) 用于预测层变形的系统和方法
TW202032255A (zh) 用於在嵌塊邊界處產生圖案化器件圖案之方法
TWI667553B (zh) 判定圖案之特性之方法
TW202307722A (zh) 蝕刻系統、模型、及製造程序
EP3531206A1 (en) Systems and methods for improving resist model predictions
CN111492317A (zh) 用于减少抗蚀剂模型预测误差的系统和方法
KR20230010686A (ko) 수차 영향 시스템, 모델, 및 제조 프로세스
WO2023088649A1 (en) Determining an etch effect based on an etch bias direction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination