CN111786012A - 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法 - Google Patents

不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法 Download PDF

Info

Publication number
CN111786012A
CN111786012A CN202010667578.8A CN202010667578A CN111786012A CN 111786012 A CN111786012 A CN 111786012A CN 202010667578 A CN202010667578 A CN 202010667578A CN 111786012 A CN111786012 A CN 111786012A
Authority
CN
China
Prior art keywords
electrolyte
solid electrolyte
solution
precursor
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010667578.8A
Other languages
English (en)
Inventor
李�诚
陆子恒
陈佳华
杨铮
羿井司
刘国华
杨春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN202010667578.8A priority Critical patent/CN111786012A/zh
Publication of CN111786012A publication Critical patent/CN111786012A/zh
Priority to PCT/CN2020/139669 priority patent/WO2022011980A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种不可燃凝胶电解质前驱体,包括于无氧气氛中,将锂盐及有机磷脂溶剂混合形成基础电解质溶液,将甲基丙烯酸甲酯及所述基础电解质混合形成第一溶液将热引发剂及所述第一溶液混合形成不可燃凝胶电解质前驱体,制备工艺简单,原料来源广泛,成本低,适合工业化生产。另外,本发明还提供了一种改性固态电解质及包括改性固态电解质的锂电池,在现有固态电解质表面涂覆所述的不可燃凝胶电解质前驱体,从而降低了正极材料和负极材料与固态电解质的界面阻抗,同时能够抑制固态电解质与电极材料的副反应,有效提高固态电池的电化学性能。

Description

不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备 方法
技术领域
本发明涉及电池制备技术领域,特别涉及一种不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法。
背景技术
随着经济和科技的发展,传统的化石燃料的大量使用和不断枯竭,环境保护成为了全球共同关心的问题。发展高能量密度,高效能量存储和转换的二次电池至关重要。目前大规模商业化的锂离子电池普遍采用有机碳酸酯基的液态电解液。普遍存在着漏液、燃烧、爆炸等危险。因此,安全性问题已经成为制约锂离子电池发展的关键因素。引进固态电解质可以解决以前的问题,例如,电化学稳定窗口显然增加,以及无机固态电解质特有的不可燃性提高了电池的安全性。与液体相比,固体的反应性天生较慢,这也延长了固态电池的寿命。此外,引入固态电解质使它可以使用金属锂或潜在的硬质合金作为阳极和更高电位的潜在材料作为阴极,可以进一步提高电池的能量密度。
目前为止,固态电解质大都采用单一组分作为电解质,虽然能够提高锂离子电池的安全性能和能量密度,但也面临着一系列的挑战。目前,基于陶瓷的固态电池在实际应用中还存在两个主要问题:1)SSEs(固态电解质)的功率密度差;2)性能迅速下降。但是,这两个问题很大程度上与电极材料和固体电解质之间的界面有关,这对锂离子的运输造成了很大的障碍,严重影响了锂电池的性能。
发明内容
鉴于此,有必要提供一种通过改善电极材料和固体电解质界面问题,以提高电池电化学性能和安全性能的不可燃凝胶电解质前驱体及其制备方法。
此外,本发明还提供了一种改性固态电解质及其制备方法。
一种不可燃凝胶电解质前驱体的制备方法,包括下述步骤:
在无氧气氛中,将锂盐及有机磷脂溶剂混合形成基础电解质溶液;
保持无氧气氛,将甲基丙烯酸甲酯及所述基础电解质混合形成第一溶液;
保持无氧气氛,将热引发剂及所述第一溶液混合形成不可燃凝胶电解质前驱体。
在其中一些实施例中,所述将锂盐及有机磷脂溶剂混合形成基础电解质溶液的步骤包括:将锂盐及有机磷脂溶剂混合,并在25℃~45℃的温度下搅拌0.5~2h,形成基础电解质溶液。
在其中一些实施例中,所述锂盐选自双(氟磺酰)亚胺锂、高氯酸锂、四氟硼酸锂、双三氟甲烷磺酰亚胺锂和双乙二酸硼酸锂中的至少一种。
在其中一些实施例中,所述有机磷脂溶剂选自磷酸三甲酯、磷酸三乙酯中的至少一种。
在其中一些实施例中,所述将甲基丙烯酸甲酯及所述基础电解质混合形成第一溶液的步骤包括:将甲基丙烯酸甲酯及所述基础电解质混合,并在25℃~45℃的温度下搅拌0.25~2.5h,形成第一溶液。
在其中一些实施例中,所述将热引发剂及所述第一溶液混合形成不可燃凝胶电解质前驱体的步骤包括:将热引发剂及所述第一溶液混合,并在0-25℃搅拌0.25-2.5h,形成不可燃凝胶电解质前驱体。
在其中一些实施例中,所述热引发剂选自偶氮二异丁腈和过氧苯甲酰中的至少一种。
在其中一些实施例中,所述不可燃凝胶电解质前驱体中,所述基础电解质中锂盐的浓度为3-7mol/L,在所述第一溶液中,所述甲基丙烯酸甲酯与基础电解质的质量百分比为25%~28.57%;在不可燃凝胶中,所述热引发剂与不可燃凝胶前驱体的质量百分比为0.14%~0.29%。
一种不可燃凝胶电解质前驱体,由所述的不可燃凝胶电解质前驱体的制备方法制备而成。
一种改性固态电解质的制备方法,包括下述步骤:
在固态电解质表面涂覆所述的不可燃凝胶电解质前驱体经固化后得到改性的固态电解质。
在其中一些实施例中,所述固态电解质为无机固态电解质,所述无机固态电解质为Li7La3Zr2-xSnxO12,其中,x=0~1或Li6.25La3Sn1.25Bi0.75O12或Li7La3Zr1.7Ge0.3O12或Li6.75La3Zr1.75Ta0.25O12或LiTa2PO8中的一种。
一种改性固态电解质,包括固态电解质及设置在所述固态电解质上的改性层,所述改性层的材料为所述的不可燃凝胶电解质前驱体。
一种锂电池的制备方法,包括下述步骤:
将正极材料和负极材料分别贴合在所述的改性固态电解质两面,并加热聚合,得到所述锂电池。
在其中一些实施例中,所述的加热聚合温度为50℃~70℃,加热时间为6~10h。
一种锂电池,包括所述的改性固态电解质以及贴合在所述改性固态电解质两面的正极材料和负极材料。
上述不可燃凝胶电解质前驱体,于无氧气氛中,将锂盐及有机磷脂溶剂混合形成基础电解质溶液,将甲基丙烯酸甲酯及所述基础电解质混合形成第一溶液将热引发剂及所述第一溶液混合形成不可燃凝胶电解质前驱体,制备工艺简单,原料来源广泛,成本低,适合工业化生产。
上述改性固态电解质及包括改性固态电解质的锂电池,在现有固态电解质表面涂覆所述的不可燃凝胶电解质前驱体,凝胶电解质能够很好的浸润活性材料及固态电解质的表面,改善固态电解质与电极材料的固有点对点接触,使电极材料能够很好的接触固态电解质,从而降低了正极材料和负极材料与固态电解质的界面阻抗,同时能够抑制固态电解质与电极材料的副反应,有效提高固态电池的电化学性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施方式的不可燃凝胶电解质前驱体的步骤流程图;
图2为一实施方式提供的一种改性固态电解质的结构示意图;
图3为一实施方式提供的锂电池的结构示意图;
图4为实施例4样品的固态电池在不同倍率下的充放电曲线,测试温度为25℃;
图5为实施例4提供的LFP/GEL-LLZTO-GEL/Li固态电池在0.1C的循环性能,测试温度为25℃。
图6为实施例1提供的LFP/GEL-LLZTO-GEL/Li固态电池在0.1C的循环性能,测试温度为25℃。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
如图1所示,一实施方式的不可燃凝胶电解质前驱体100的制备方法,该不可燃凝胶电解质前驱体的制备方法包括如下步骤:
S110:在无氧气氛中,将锂盐及有机磷脂溶剂混合形成基础电解质溶液。
在其中一些实施例中,所述将锂盐及有机磷脂溶剂混合形成基础电解质溶液的步骤包括:将锂盐及有机磷脂溶剂混合,并在25℃~45℃的温度下搅拌0.5~2h,使其充分溶解,形成基础电解质溶液。
在其中一些实施例中,所述锂盐选自双(氟磺酰)亚胺锂、高氯酸锂、四氟硼酸锂、双三氟甲烷磺酰亚胺锂和双乙二酸硼酸锂中的至少一种。
可以理解,由于锂盐能够在有机磷脂溶剂中的解离,从而可以提高电解质中自由Li+的数量,进而改善电解质在室温离子电导率。
在其中一些实施例中,所述有机磷脂溶剂选自磷酸三甲酯、磷酸三乙酯中的至少一种。
可以理解,选用上述有机磷脂溶剂具有良好的阻燃效果。
S120:保持无氧气氛,将甲基丙烯酸甲酯及所述基础电解质混合形成第一溶液。
在其中一些实施例中,所述将甲基丙烯酸甲酯及所述基础电解质混合形成第一溶液的步骤包括:将甲基丙烯酸甲酯及所述基础电解质混合,并在25℃~45℃的温度下搅拌0.25~2.5h,形成第一溶液。
可以理解,由于甲基丙烯酸甲酯为聚合物单体,可在一定条件下发生原位聚合。
S130:保持无氧气氛,将热引发剂及所述第一溶液混合形成不可燃凝胶电解质前驱体。
在其中一些实施例中,所述将热引发剂及所述第一溶液混合形成不可燃凝胶电解质前驱体的步骤包括:将热引发剂及所述第一溶液混合,并在0-25℃搅拌0.25-2.5h,形成不可燃凝胶电解质前驱体。
在其中一些实施例中,所述热引发剂选自偶氮二异丁腈和过氧苯甲酰中的至少一种。
可以理解,在加热条件下,上述热引发剂将引发甲基丙烯酸甲酯单体聚合,形成聚甲基丙烯酸甲酯。
在其中一些实施例中,所述不可燃凝胶电解质前驱体中,所述基础电解质中锂盐的浓度为3-7mol/L;在所述第一溶液中,所述甲基丙烯酸甲酯与基础电解质的质量百分比为25%~28.57%;在不可燃凝胶中,所述热引发剂的质量与不可燃凝胶前驱体百分比为0.14%~0.29%。
可以理解,由于电解质中锂盐的浓度过高将会造成浸润性较差,难以很好浸润活性材料,浓度较低,将会造成较低的离子电导率;甲基丙烯酸甲酯含量过高,所述的凝胶电解质达不到阻燃效果,含量过低,所述的凝胶质地过软,难以成型,容易造成渗漏;热引发剂量过少,不能使甲基丙烯酸甲酯完全聚合,过多将会造成试剂的浪费,本实施例采用合适的物质比例范围,能够避免出现的缺陷,提高电性能。
上述不可燃凝胶电解质前驱体的制备方法,制备工艺简单,原料来源广泛,成本低,适合工业化生产。
一实施方式提供的一种改性固态电解质的制备方法,包括下述步骤:
S210:在固态电解质表面涂覆所述的不可燃凝胶电解质前驱体经固化后,得到改性的固态电解质。
在其中一些实施例中,所述固态电解质为无机固态电解质,所述无机固态电解质为Li7La3Zr2-xSnxO12,其中,x=0~1或Li6.25La3Sn1.25Bi0.75O12或Li7La3Zr1.7Ge0.3O12或Li6.75La3Zr1.75Ta0.25O12或LiTa2PO8中的一种。
请参阅图2,为一实施方式提供的一种改性固态电解质的结构示意图,包括固态电解质110及设置在所述固态电解质110上的改性层120,所述改性层120的材料为所述的不可燃凝胶电解质前驱体。
上述改性固态电解质,在现有固态电解质表面涂覆所述的不可燃凝胶电解质前驱体,从而降低了正极材料和负极材料与固态电解质的界面阻抗,同时能够抑制固态电解质与电极材料的副反应,有效提高固态电池的电化学性能。
一实施方式提供的一种锂电池的制备方法,包括下述步骤:
S310:将正极材料和负极材料分别贴合在所述的改性固态电解质两面,并加热聚合,得到所述锂电池。
在其中一些实施例中,所述的加热聚合温度为50℃~70℃,加热时间为6~10h。
请参阅图3,为一实施方式提供的锂电池的结构示意图,包括所述的改性固态电解质210以及贴合在所述改性固态电解质210两面的正极材料220和负极材料230。
其中,正极材料220和负极材料230为现有锂电池中常用的正极材料和负极材料。
上述锂电池,在现有固态电解质表面涂覆所述的不可燃凝胶电解质前驱体,凝胶电解质能够很好的浸润活性材料及固态电解质的表面,改善固态电解质与电极材料的固有点对点接触,使电极材料能够很好的接触固态电解质,从而降低了正极材料和负极材料与固态电解质的界面阻抗,同时能够抑制固态电解质与电极材料的副反应,有效提高固态电池的电化学性能。
以下为具体实施例部分:
实施例1
本实施例提供的锂电池的制备方法,具体包括如下步骤:
(1).将1.65g双(氟磺酰)亚胺锂溶于1.25mL的磷酸三甲酯溶剂中,在25℃的温度下搅拌0.5h,待锂盐完全溶解形成高浓度锂盐的基础电解质,其中,所述基础电解质中,双(氟磺酰)亚胺锂的摩尔浓度为7mol/L。
(2).将1g甲基丙烯酸甲酯加入到2.5g的所述高浓度锂盐的基础电解质中,在25℃的温度下搅拌0.5h,直至甲基丙烯酸甲酯均匀混合形成第一溶液,其中:甲基丙烯酸甲酯与基础电解质的质量比为28.57%。
(3).将0.005g偶氮二异丁腈加入到所述第一溶液中,在25℃的温度下搅拌15min,直至偶氮二异丁腈均匀分散到所述第一溶液中形成不可燃凝胶电解质前驱体,其中:偶氮二异丁腈占不可燃凝胶电解质前驱体质量的0.14%。
(4).在LLZTO固态电解质表面涂布所述的不可燃凝胶电解质溶液,利用不可燃凝胶修饰固态电解质表面,同时将正极材料和负极材料贴合在涂有不可燃凝胶的固态电解质两面,然后加热处理使其中的各个组分原位聚合,组装后得到锂电池,其中:加热温度为50℃,加热时间为10h。
经过试验,可以得知此不然凝胶电解质界面改性固态电解质具有很好的安全性,在明火的环境下具有高度不燃性。
实施例2
本实施例提供的锂电池的制备方法,具体包括如下步骤:
(1).将1.15g双三氟甲烷磺酰亚胺锂溶于1.25mL的磷酸三乙酯溶剂中,在15℃的温度下搅拌3h,待锂盐完全溶解,形成高浓度锂盐的基础电解质,所述基础电解质中,双三氟甲烷磺酰亚胺锂的摩尔浓度为5mol/L。
(2).将1g甲基丙烯酸甲酯加入到2.5g所述高浓度锂盐的基础电解质中,在20℃的温度下搅拌1h,直至甲基丙烯酸甲酯均匀混合,形成第一溶液,其中:甲基丙烯酸甲酯与基础电解质的质量比为28.57%。
(3).将0.010g偶氮二异丁腈加入到所述第一溶液中,在25℃的温度下搅拌0.5h,直至偶氮二异丁腈均匀分散在到所述第一溶液中形成不可燃凝胶电解质前驱体溶液,其中:偶氮二异丁腈占不可燃凝胶电解质前驱体的质量比0.14%。(4).在LLZTO固态电解质表面涂布所述的不可燃凝胶电解质溶液,利用不可燃凝胶修饰固态电解质表面,同时将正极材料和负极材料贴合在涂有不可燃凝胶的固态电解质两面,然后加热处理使其中的各个组分原位聚合,由此所述阻燃聚合物凝胶电解质直接制备形成在无纺布隔膜上,组装得到锂电池,其中:加热温度为50℃,加热时间为10h。
实施例3
本实施例提供的锂电池的制备方法,具体包括如下步骤:
(1).将2.3g六氟磷酸锂溶于5mL的磷酸酯溶剂,其中,磷酸酯溶剂为磷酸三甲酯与磷酸三乙酯按照体积比1:1的比例混合,在25℃的温度下搅拌0.5h,待锂盐完全溶解,形成高浓度锂盐的基础电解质,六氟磷酸锂的摩尔浓度为3mol/L。
(2).将1g甲基丙烯酸甲酯加入到3g所述高浓度锂盐的基础电解质中,在15℃的温度下搅拌2h,直至甲基丙烯酸甲酯均匀混合,形成第一溶液,甲基丙烯酸甲酯与基础电解质的质量比为25%。
(3).将0.010g热引发剂加入到所述第一溶液中,在20℃的温度下搅拌1h,直至热引发剂均匀分散在到所述第一溶液中形成不可燃凝胶电解质前驱体。热引发剂与不可燃凝胶电解质前驱体的质量比为0.25%,热引发剂为偶氮二异丁腈与过氧苯甲酰按照质量比1:1的比例混合。
(4).在LLZTO固态电解质表面涂布所述的不可燃凝胶电解质溶液(所述的第二溶液),利用不可燃凝胶修饰固态电解质表面,同时将正极材料和负极材料贴合在涂有不可燃凝胶的固态电解质两面,然后加热处理使其中的各个组分原位聚合,组装后得到锂电池,其中:加热温度为50℃,加热时间为10h。
实施例4
本实施例提供的锂电池的制备方法,具体包括如下步骤:
(1).将双(氟磺酰)亚胺锂2.3384g溶于2.5mL的磷酸三甲酯溶剂中,在25℃的温度下搅拌0.5h,待锂盐完全溶解,形成高浓度锂盐的基础电解质,双(氟磺酰)亚胺锂的摩尔浓度为5mol/L。
(2).将1g甲基丙烯酸甲酯加入到2.5g所述高浓度锂盐的基础电解质中,在15℃的温度下搅拌2h,直至甲基丙烯酸甲酯均匀混合,形成第一溶液。丙烯酸甲酯与基础电解质的质量比为28.57%。
(3).将0.010g热引发剂()加入到所述第一溶液中,在20℃的温度下搅拌1h,直至热引发剂均匀分散在到所述第一溶液中形成不可燃凝胶电解质前驱体。热引发剂与不可燃凝胶前驱体的质量比为0.29%,热引发剂为偶氮二异丁腈与过氧苯甲酰按照质量比1:1的比例混合。
(4).在LLZTO固态电解质表面涂布所述的不可燃凝胶电解质溶液,利用不可燃凝胶修饰固态电解质表面,同时将正极材料和负极材料贴合在涂有不可燃凝胶的固态电解质两面,然后加热处理使其中的各个组分原位聚合,组装后得到锂电池,其中,加热温度为50℃,加热时间为10h。
对比例1
在本实施例中,采用现有的无机固态电解质的界面不加任何修饰,组装全电池。
将以上实施例提供的不可燃凝胶界面改性固态电解质组装在锂电池中,以进行电化学测试,具体如下:
具体电池结构可以采用Swagelok cell模具,其包括正极、负极以及设置在所述正极与负极之间不可燃凝胶界面改性固态电解质电解质。其中,正极的电极片采用在铝箔集流体上涂覆磷酸铁锂形成的电极片,负极的电极片采用锂金属电极,获得以下电化学性能。
表1电化学性能测试参数表
Figure BDA0002581036380000111
图4示出了本实施例4样品的固态电池在不同倍率下的充放电曲线,0.1C、0.2C、0.5C、1C的放电容量分别为136、118、96、77mAh g-1。并且结合图5可知,在0.1C的倍率下循环60次后容量保持在140mAh/g以上,并且结合表1可知,利用不可燃凝胶界面改性固态电解质能够有效的降低界面阻抗,无机固态电解质界面没有任何修饰的固态电池界面面积比阻抗高达7500Ω.cm2。从图6可以看出,实施例1样品的固态电池在0.1C的倍率下循环60次后容量保持在80mAh/g左右。
以上仅为本发明的较佳实施例而已,仅具体描述了本发明的技术原理,这些描述只是为了解释本发明的原理,不能以任何方式解释为对本发明保护范围的限制。基于此处解释,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进,及本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其他具体实施方式,均应包含在本发明的保护范围之内。

Claims (15)

1.一种不可燃凝胶电解质前驱体的制备方法,其特征在于,包括下述步骤:
在无氧气氛中,将锂盐及有机磷脂溶剂混合形成基础电解质溶液;
保持无氧气氛,将甲基丙烯酸甲酯及所述基础电解质混合形成第一溶液;
保持无氧气氛,将热引发剂及所述第一溶液混合形成不可燃凝胶电解质前驱体。
2.如权利要求1所述的不可燃凝胶电解质前驱体的制备方法,其特征在于,所述在无氧气氛中,将锂盐及有机磷脂溶剂混合形成基础电解质溶液的步骤包括:将锂盐及有机磷脂溶剂混合,并在25℃~45℃的温度下搅拌0.5~2h,使其充分溶解,形成基础电解质溶液。
3.如权利要求1所述的不可燃凝胶电解质前驱体的制备方法,其特征在于,所述锂盐选自双(氟磺酰)亚胺锂、高氯酸锂、四氟硼酸锂、双三氟甲烷磺酰亚胺锂和双乙二酸硼酸锂中的至少一种。
4.如权利要求1所述的不可燃凝胶电解质前驱体的制备方法,其特征在于,所述有机磷脂溶剂选自磷酸三甲酯、磷酸三乙酯中的至少一种。
5.如权利要求1所述的不可燃凝胶电解质前驱体的制备方法,其特征在于,所述将甲基丙烯酸甲酯及所述基础电解质混合形成第一溶液的步骤包括:将甲基丙烯酸甲酯及所述基础电解质混合,并在25℃~45℃的温度下搅拌0.25~2.5h,形成第一溶液。
6.如权利要求1所述的不可燃凝胶电解质前驱体的制备方法,其特征在于,所述将热引发剂及所述第一溶液混合形成不可燃凝胶电解质前驱体的步骤包括:将热引发剂及所述第一溶液混合,并在0-25℃搅拌0.25-2.5h,形成不可燃凝胶电解质前驱体。
7.如权利要求1所述的不可燃凝胶电解质前驱体的制备方法,其特征在于,所述热引发剂选自偶氮二异丁腈和过氧苯甲酰中的至少一种。
8.如权利要求1~7任一项所述的不可燃凝胶电解质前驱体的制备方法,其特征在于,所述不可燃凝胶电解质前驱体中,所述基础电解质中锂盐的浓度为3-7mol/L;在所述第一溶液中,所述甲基丙烯酸甲酯的质量百分含量为25%~28.57%;在不可燃凝胶中,所述热引发剂与不可燃凝胶前驱体质量百分比为0.14%~0.29%。
9.一种不可燃凝胶电解质前驱体,其特征在于,由权利要求1-8任一项所述的不可燃凝胶电解质前驱体的制备方法制备而成。
10.一种改性固态电解质的制备方法,其特征在于,包括下述步骤:
在固态电解质表面涂覆权利要求9所述的不可燃凝胶电解质前驱体经固化后得到改性的固态电解质。
11.如权利要求10所述的改性固态电解质的制备方法,其特征在于,所述固态电解质为无机固态电解质,所述无机固态电解质的材料选自Li7La3Zr2-xSnxO12、Li6.25La3Sn1.25Bi0.75O12、Li7La3Zr1.7Ge0.3O12、Li6.75La3Zr1.75Ta0.25O12及LiTa2PO8中的一种,其中,x=0~1。
12.一种改性固态电解质,其特征在于,包括固态电解质及设置在所述固态电解质上的改性层,所述改性层的材料为权利要求9所述的不可燃凝胶电解质前驱体。
13.一种锂电池的制备方法,其特征在于,包括下述步骤:
将正极材料和负极材料分别贴合在权利要求12所述的改性固态电解质两面,经加热聚合,得到所述锂电池。
14.如权利要求13所述的锂电池的制备方法,其特征在于,所述的加热聚合的温度为50℃~70℃,时间为6~10h。
15.一种锂电池,其特征在于,包括权利要求12所述的改性固态电解质以及设置在所述改性固态电解质两面的正极材料和负极材料。
CN202010667578.8A 2020-07-13 2020-07-13 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法 Pending CN111786012A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010667578.8A CN111786012A (zh) 2020-07-13 2020-07-13 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法
PCT/CN2020/139669 WO2022011980A1 (zh) 2020-07-13 2020-12-25 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010667578.8A CN111786012A (zh) 2020-07-13 2020-07-13 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法

Publications (1)

Publication Number Publication Date
CN111786012A true CN111786012A (zh) 2020-10-16

Family

ID=72768467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010667578.8A Pending CN111786012A (zh) 2020-07-13 2020-07-13 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法

Country Status (2)

Country Link
CN (1) CN111786012A (zh)
WO (1) WO2022011980A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022011980A1 (zh) * 2020-07-13 2022-01-20 深圳先进技术研究院 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628778A (zh) * 2022-03-15 2022-06-14 北京理工大学 一种实现全固态锂电池室温运行的固态电解质、其制备及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109671977A (zh) * 2018-12-17 2019-04-23 深圳先进技术研究院 阻燃聚合物凝胶电解质及其制备方法、锂电池
CN110323491A (zh) * 2019-06-14 2019-10-11 天津力神电池股份有限公司 聚合物电解质、聚合物电解质膜以及锂离子电池
CN110518283A (zh) * 2019-09-12 2019-11-29 深圳先进技术研究院 全固态二次电池及其制备工艺、电动汽车
CN110808408A (zh) * 2019-11-14 2020-02-18 浙江大学 一种准固态锂电池及其制备方法
CN111081955A (zh) * 2019-12-20 2020-04-28 中国电子科技集团公司第十八研究所 一种固态电池的原位制备方法
US20200176743A1 (en) * 2016-05-13 2020-06-04 Quantumscape Corporation Solid electrolyte separator bonding agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452520C (zh) * 2003-08-26 2009-01-14 独立行政法人宇宙航空研究开发机构 不燃性非水电解质溶液及使用该电解质溶液的锂离子电池
CN106450442B (zh) * 2016-09-27 2020-02-11 湖南杉杉能源科技股份有限公司 锂离子电池用阻燃凝胶电解液及其制备方法、锂离子电池的制备方法
CN111786012A (zh) * 2020-07-13 2020-10-16 深圳先进技术研究院 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200176743A1 (en) * 2016-05-13 2020-06-04 Quantumscape Corporation Solid electrolyte separator bonding agent
CN109671977A (zh) * 2018-12-17 2019-04-23 深圳先进技术研究院 阻燃聚合物凝胶电解质及其制备方法、锂电池
CN110323491A (zh) * 2019-06-14 2019-10-11 天津力神电池股份有限公司 聚合物电解质、聚合物电解质膜以及锂离子电池
CN110518283A (zh) * 2019-09-12 2019-11-29 深圳先进技术研究院 全固态二次电池及其制备工艺、电动汽车
CN110808408A (zh) * 2019-11-14 2020-02-18 浙江大学 一种准固态锂电池及其制备方法
CN111081955A (zh) * 2019-12-20 2020-04-28 中国电子科技集团公司第十八研究所 一种固态电池的原位制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022011980A1 (zh) * 2020-07-13 2022-01-20 深圳先进技术研究院 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法

Also Published As

Publication number Publication date
WO2022011980A1 (zh) 2022-01-20

Similar Documents

Publication Publication Date Title
Xiang et al. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature
CN109888380B (zh) 一种固态聚合物电解质及其在锂金属电池中的应用
CN109608592B (zh) 一种聚离子液体固态电解质的交联聚合制备的方法
CN109103488B (zh) 一种聚合物钠电池及其制备方法和应用
CN107591536A (zh) 凝胶复合正极片及其制备方法和制备全固态锂电池的方法
CN114024025B (zh) 一种共聚合固体电解质、其制备方法及固态聚合物锂电池
Ren et al. Gel polymer electrolyte with high performances based on polyacrylonitrile composite natural polymer of lignocellulose in lithium ion battery
CN111668538A (zh) 一种陶瓷基复合固态电解质及其制备方法
CN111786018B (zh) 一种高压聚合物电解质、高压聚合物锂金属电池及此电池的制备方法
CN105406005A (zh) 有机/无机复合聚合物隔膜及其制备方法
CN111786012A (zh) 不可燃凝胶电解质前驱体、改性固态电解质、锂电池及其制备方法
CN111668540A (zh) 局部高浓度阻燃电解质、锂电池及其制备方法
CN112038687A (zh) 双层复合固态电解质膜及其制备方法
CN114335700A (zh) 一种固态电解质膜及其制备方法、二次电池以及制备方法
CN116914246A (zh) 一种热响应的宽温域电解质、电解质制备方法及电池
CN109360947B (zh) 一种准固态锂硫电池的多孔碳正极材料的制备方法
CN116231089A (zh) 一种局部高浓的离子液体改性电解液及其制备方法和应用
CN115224358A (zh) 一种聚合物基固态电解质、锂离子电池及其制备方法
CN115312852A (zh) 一种聚合物固态电解质及其制备方法和应用
CN115149097A (zh) 凝胶聚合物电解质的制备方法及二次锂电池
CN103515654A (zh) 一种聚合物固体电解质的制造方法
Ma et al. A Superior Flame‐Resistant and Wide‐Temperature Adaptable Yarn Lithium‐Ion Battery with a Highly Conductive Ionogel Electrolyte
WO2022021781A1 (zh) 阻燃液态电解质、锂电池及其制备方法
CN116284012B (zh) 一种聚合物固态电解质添加剂、制备与应用
CN115745798B (zh) 聚二氧戊烷基三维交联聚合物电解质及制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201016

RJ01 Rejection of invention patent application after publication