CN111777099A - 一种立方尖晶石型纳米片状亚铬酸铜的制备方法 - Google Patents

一种立方尖晶石型纳米片状亚铬酸铜的制备方法 Download PDF

Info

Publication number
CN111777099A
CN111777099A CN202010633234.5A CN202010633234A CN111777099A CN 111777099 A CN111777099 A CN 111777099A CN 202010633234 A CN202010633234 A CN 202010633234A CN 111777099 A CN111777099 A CN 111777099A
Authority
CN
China
Prior art keywords
spinel type
cubic spinel
copper chromite
type nano
flaky copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010633234.5A
Other languages
English (en)
Other versions
CN111777099B (zh
Inventor
张国防
张宇
李吉祯
樊学忠
谢遵园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Xian Modern Chemistry Research Institute
Original Assignee
Shaanxi Normal University
Xian Modern Chemistry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University, Xian Modern Chemistry Research Institute filed Critical Shaanxi Normal University
Publication of CN111777099A publication Critical patent/CN111777099A/zh
Application granted granted Critical
Publication of CN111777099B publication Critical patent/CN111777099B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/14Chromates; Bichromates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B29/00Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
    • C06B29/22Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate the salt being ammonium perchlorate
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种立方尖晶石型纳米片状亚铬酸铜的制备方法,将硝酸铜和硝酸铬溶解于超纯水中,加入六亚甲基四胺作为均匀沉淀剂,加入四乙基氟化铵、氟化铵、氟化钾等含氟化合物作为形貌调节剂,将溶液超声均匀后微波加热至80~95℃,反应后得到前驱体,将该前驱体用无水乙醇和超纯水多次洗涤后干燥、研磨均匀,然后在400~450℃下焙烧,即可得到立方尖晶石型纳米片状亚铬酸铜。本发明制备方法简单,所得立方尖晶石型纳米片状亚铬酸铜纯度高、比表面积大、表面活性位点多、催化效果好,能够显著降低高氯酸铵热分解的高温分解峰温,并且提升高氯酸铵的表观分解热。

Description

一种立方尖晶石型纳米片状亚铬酸铜的制备方法
技术领域
本发明属于固体推进剂技术领域,具体涉及一种立方尖晶石型纳米片状亚铬酸铜的制备方法。
背景技术
尖晶石型亚铬酸铜(CuCr2O4)被认为是一种多功能型材料,广泛应用于光催化、半导体、催化加氢等领域。近些年来,研究者发现CuCr2O4对于高氯酸铵(AP)的热分解有着优异的催化性能。李卫等(Solid State Science.2007,9(8):750-755)将立方相Cu-Cr-O纳米粒子加入到AP基的固体推进剂中,发现Cu-Cr-O纳米粒子不仅提高了推进剂燃速,而且降低了推进剂的压力指数。郝嘎子等(火炸药学报.2015,38(01):26-29)通过纳米化粉碎机,以商业的CuCr2O4为原料,制备了60nm的纳米CuCr2O4,使用溶剂挥发法将CuCr2O4和AP混合均匀,经测试,该纳米CuCr2O4可以使AP的高温分解温度降低67℃,表观分解热增加424.57J/g。邢玉静等(火炸药学报.2012,35(4):41-44)采用柠檬酸配位法合成了超细纯立方尖晶石型CuCr2O4,它可以使AP高温分解峰提前至339.6℃,复合改性双基推进剂在6MPa下燃速从35.84mm/s提高到61.00mm/s,压力指数从0.62降低至0.14。
发明内容
本发明的目的是提供一种比表面积大、活性位点多、催化性能好的立方尖晶石型纳米片状CuCr2O4的制备方法。
针对上述目的,本发明采用的技术方案由下述步骤组成:
1、将硝酸铜和硝酸铬完全溶解于超纯水中,然后加入六亚甲基四胺和含氟化合物,超声得到均匀溶液;其中,所述的含氟化合物为四乙基氟化铵、氟化铵、氟化钾中任意一种。
2、将步骤1的溶液微波加热至80~95℃,恒温反应35~45min,反应完后得到绿色的浑浊液。
3、将步骤2的浑浊液进行离心分离、洗涤,所得绿色沉淀经干燥、研磨,得到前驱体。
4、将步骤3的前驱体加热至400~450℃,恒温焙烧2.5~3.5h,得到立方尖晶石型纳米片状亚铬酸铜。
上述步骤1中,优选所述硝酸铜和硝酸铬、六亚甲基四胺、含氟化合物的摩尔比为1:2:4.5~6:4.5~5.5。
上述步骤1中,所述超声的时间为20~30min。
上述步骤2中,所述微波加热的功率为500~600W。
上述步骤3中,所述干燥的温度为80~100℃,干燥时间为10~15h。
上述步骤4中,优选加热的升温速率为0.5~2℃/min。
本发明的有益效果如下:
本发明制备方法简单,产率高,能够在低的煅烧温度下得到CuCr2O4,且所得CuCr2O4为高纯度的立方尖晶石型纳米片状,其厚度约为10~40nm,比表面积为90~100m2·g-1,具有比表面积大、表面活性位点多、催化效果好的优点,可以显著降低高氯酸铵热分解的高温分解峰温,并且提升高氯酸铵的表观分解热。
附图说明
图1是实施例1~3制备的立方尖晶石型纳米片状CuCr2O4的X-射线衍射图。
图2是实施例1制备的立方尖晶石型纳米片状CuCr2O4的扫描电子显微镜图。
图3是实施例2制备的立方尖晶石型纳米片状CuCr2O4的扫描电子显微镜图。
图4是实施例3制备的立方尖晶石型纳米片状CuCr2O4的扫描电子显微镜图。
图5是AP中添加5%实施例1~3制备的立方尖晶石型纳米片状CuCr2O4和纯AP的差示扫描量热分析曲线。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、将0.145g(0.6mmol)硝酸铜和0.480g(1.2mmol)硝酸铬溶解于140mL超纯水中,然后加入0.421g(3mmol)六亚甲基四胺和0.555g(3mmol)四乙基氟化铵,超声30min,得到均匀溶液。
2、将步骤1的溶液放置于微波反应器中,在搅拌状态下微波加热至90℃,加热功率为500W,然后恒温反应40min,反应完后冷却至室温,得到绿色的浑浊液。
3、将步骤2的浑浊液进行离心分离,并用无水乙醇和超纯水离心洗涤各5次,离心转速为9000r/min,每次时间为5min,所得绿色沉淀在鼓风干燥箱中80℃干燥12h后,研磨均匀,得到前驱体。
4、将步骤3的前驱体放置于管式炉中,以1℃/min的升温速率加热至400℃,恒温焙烧3h,得到黑色粉末,即立方尖晶石型纳米片状CuCr2O4,产率为87%。
实施例2
本实施例的步骤1中,用等摩尔氟化铵替换四乙基氟化铵,其他步骤与实施例1相同,得到立方尖晶石型纳米片状CuCr2O4,产率为83%,比表面积为95.4m2·g-1
实施例3
本实施例的步骤1中,用等摩尔氟化钾替换四乙基氟化铵,其他步骤与实施例1相同,得到立方尖晶石型纳米片状CuCr2O4,产率为85%。
采用X-射线衍射仪和扫描电子显微镜对实施例1~3制备的样品进行结构和形貌表征,结果见图1~4。由图1可见,实施例1~3制备的样品的2θ特征峰为18.39°、30.37°、35.59°、37.28°、43.47°、57.55°和63.20°,分别对应晶面(111)、(220)、(311)、(222)、(400)、(511)和(440),与立方相CuCr2O4的标准PDF卡片(JCPDS:26-0509)对应一致,无其它杂质峰,说明制备的CuCr2O4样品较纯。由图2~4的SEM图可以看出,实施例1~3制备的CuCr2O4的形貌均为纳米片状,厚度为15~40nm。
为了证明本发明的有益效果,发明人以AP为例,对实施例1~3制备的立方尖晶石型纳米片状CuCr2O4的催化性能进行测试,具体实验情况如下:
1、取5mgCuCr2O4、95mg粉末状的高氯酸铵,研磨混合均匀,采用差示扫描量热仪对其催化性能进行测试,实验结果见图5。
从图5中可以看出纯AP的热分解过程分为三个阶段,第一阶段是AP的晶型转变,晶体从低温的斜方晶型转变为高温的立方晶型,图中纯AP的晶型转变在244℃;第二阶段是AP的低温分解阶段,图中AP低温分解的起始温度为265℃,低温分解峰峰温为291℃,低温分解阶段是放热过程,包括解离和升华两个过程,AP的低温分解主要是气-固多相反应;第三阶段是AP的高温分解阶段,从345℃到421℃为AP的高温分解阶段,高温分解峰峰温为406℃,这是是主要的分解阶段,此阶段AP完全分解为HCl、H2O、Cl2、O2、NO、N2O和NO2等挥发性产物。从图5中可以看出,在整个过程中AP的放热并不明显。相同条件下,当在固体推进剂主组分AP中添加5%实施例1~3制备的立方尖晶石型纳米片状CuCr2O4作为催化剂后,AP高温分解阶段的峰温从406℃分别降低至327℃、334℃、342℃,分别降低了79℃、72℃和64℃,明显高于郝嘎子等人(火炸药学报.2015,38(01):26-29)的测试结果,说明实施例1~3制备的立方尖晶石型纳米片状CuCr2O4对AP热分解的促进作用更加明显;另外AP的表观分解热分别增加443J/g、344J/g和323J/g,由此可见,与纯AP在高温分解阶段相比,加入实施例1~3制备的立方尖晶石型纳米片状CuCr2O4后,AP的高温分解阶段呈现集中放热现象,AP热分解的高温分解峰温明显的降低,并且体系放出的热量较纯AP增大很多,说明本发明制备的立方尖晶石型纳米片状CuCr2O4对AP的热分解具有良好的燃烧催化作用,其中实施例1制备的立方尖晶石型纳米片状CuCr2O4对AP热分解催化效果最好。

Claims (6)

1.一种立方尖晶石型纳米片状亚铬酸铜的制备方法,其特征在于所述方法由以下步骤组成:
(1)将硝酸铜和硝酸铬完全溶解于超纯水中,然后加入六亚甲基四胺和含氟化合物,超声得到均匀溶液;其中,所述的含氟化合物为四乙基氟化铵、氟化铵、氟化钾中任意一种;
(2)将步骤(1)的溶液微波加热至80~95℃,恒温反应35~45min,反应完后得到绿色的浑浊液;
(3)将步骤(2)的浑浊液进行离心分离、洗涤,所得绿色沉淀经干燥、研磨,得到前驱体;
(4)将步骤(3)的前驱体加热至400~450℃,恒温焙烧2.5~3.5h,得到立方尖晶石型纳米片状亚铬酸铜。
2.根据权利要求1所述的立方尖晶石型纳米片状亚铬酸铜的制备方法,其特征在于:步骤(1)中,所述硝酸铜和硝酸铬、六亚甲基四胺、含氟化合物的摩尔比为1:2:4.5~6:4.5~5.5。
3.根据权利要求1所述的立方尖晶石型纳米片状亚铬酸铜的制备方法,其特征在于:步骤(1)中,所述超声的时间为20~30min。
4.根据权利要求1所述的立方尖晶石型纳米片状亚铬酸铜的制备方法,其特征在于:步骤(2)中,所述微波加热的功率为500~600W。
5.根据权利要求1所述的立方尖晶石型纳米片状亚铬酸铜的制备方法,其特征在于:步骤(3)中,所述干燥的温度为80~100℃,干燥时间为10~15h。
6.根据权利要求1所述的立方尖晶石型纳米片状亚铬酸铜的制备方法,其特征在于:步骤(4)中,加热的升温速率为0.5~2℃/min。
CN202010633234.5A 2020-06-28 2020-07-02 一种立方尖晶石型纳米片状亚铬酸铜的制备方法 Expired - Fee Related CN111777099B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020105995187 2020-06-28
CN202010599518 2020-06-28

Publications (2)

Publication Number Publication Date
CN111777099A true CN111777099A (zh) 2020-10-16
CN111777099B CN111777099B (zh) 2022-07-01

Family

ID=72759285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010633234.5A Expired - Fee Related CN111777099B (zh) 2020-06-28 2020-07-02 一种立方尖晶石型纳米片状亚铬酸铜的制备方法

Country Status (1)

Country Link
CN (1) CN111777099B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935128A (en) * 1974-12-30 1976-01-27 Dart Industries Inc. Copper chromite catalyst and the process for producing it
CN102010002A (zh) * 2009-09-04 2011-04-13 华东理工大学 超薄二氧化钛纳米片的制备方法
CN104138762A (zh) * 2014-07-23 2014-11-12 华南理工大学 一种立方结构CuCr2O4可见光光催化剂的制备方法与应用
CN105386015A (zh) * 2015-11-11 2016-03-09 江苏大学 一种基于钴酸锰分级结构纳米花薄膜的制备方法
CN105854892A (zh) * 2016-04-13 2016-08-17 沈阳大学 多孔棒状尖晶石结构催化剂的制备方法
CN106430289A (zh) * 2015-08-06 2017-02-22 中国科学院大连化学物理研究所 一种低温制备高比表面积纳米镓酸盐尖晶石的方法
CN108408777A (zh) * 2018-04-19 2018-08-17 景德镇陶瓷大学 一种铜铬黑颜料的制备方法及其制得的产品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935128A (en) * 1974-12-30 1976-01-27 Dart Industries Inc. Copper chromite catalyst and the process for producing it
CN102010002A (zh) * 2009-09-04 2011-04-13 华东理工大学 超薄二氧化钛纳米片的制备方法
CN104138762A (zh) * 2014-07-23 2014-11-12 华南理工大学 一种立方结构CuCr2O4可见光光催化剂的制备方法与应用
CN106430289A (zh) * 2015-08-06 2017-02-22 中国科学院大连化学物理研究所 一种低温制备高比表面积纳米镓酸盐尖晶石的方法
CN105386015A (zh) * 2015-11-11 2016-03-09 江苏大学 一种基于钴酸锰分级结构纳米花薄膜的制备方法
CN105854892A (zh) * 2016-04-13 2016-08-17 沈阳大学 多孔棒状尖晶石结构催化剂的制备方法
CN108408777A (zh) * 2018-04-19 2018-08-17 景德镇陶瓷大学 一种铜铬黑颜料的制备方法及其制得的产品

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUMAR YA ET AL.: "Reagents assisted ZnCo2O4 nanomaterial for supercapacitor application", 《ELECTROCHIMICA ACTA》 *
WENHUI YUAN ET AL.: "Synthesis,characterization and photocatalytic activity of cubic-like cucr2o4 for dye degradation under visible light irradiation", 《APPLIED SURFACE SCIENCE》 *
付洋: "过渡金属亚铬酸盐的制备及其催化RDX热分解研究", 《中国优秀博硕士学位论文全文数据库(硕士)》 *
郝嘎子等: "纳米CuCr_2O_4的制备及其对AP热分解性能的影响", 《火炸药学报》 *

Also Published As

Publication number Publication date
CN111777099B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN104986742B (zh) 一种类珠链状石墨化氮化碳纳米材料及其制备方法
CN108273541B (zh) 一种绿色高效制备石墨相氮化碳纳米片的方法和应用
CN106179446B (zh) 钴/掺氮多孔碳复合材料及其制法与催化硅烷氧化的方法
CN108806998B (zh) 溶剂热法合成基于ZIF-8的三元复合ZnO/ZnCo2O4/NiO的方法及其应用
Ma et al. Synthesis of nanocrystalline strontium titanate by a sol–gel assisted solid phase method and its formation mechanism and photocatalytic activity
CN110342477B (zh) 一种氧掺杂多孔氮化碳纳米片及其制备方法
CN106975489B (zh) 一种氧化镍原位包覆石墨烯纳米复合材料的制备方法
CN104707642B (zh) 一种g‑C3N4/CuO复合材料及其制备方法和应用
CN113233470A (zh) 一种二维过渡金属硼化物材料、其制备方法及应用
CN107721429A (zh) 碳化锆‑碳化硅复合粉体材料及其制备方法
CN104973615A (zh) 一种纳米氧化钆粉体的微波燃烧制备方法
CN108996557B (zh) 一种空心球结构氧化镍/氧化铜复合纳米材料及其制备方法
CN108031483B (zh) 一种碳包覆氮掺杂的TiO2的蝴蝶状纳米材料的合成方法
CN110639564B (zh) 一种多壳中空立方体异质结光催化剂及制备方法和应用
NL2030278B1 (en) N-go@co-ni12p5-ni3p/ncf composite electrode material and preparation method thereof
CN111777099B (zh) 一种立方尖晶石型纳米片状亚铬酸铜的制备方法
CN114436244A (zh) 一种石墨二炔的制备方法
CN109529842B (zh) 一种FeCo2O4材料在高氯酸铵热分解催化中的应用
CN115178277B (zh) 一种掺杂的Co3O4纳米材料及其应用
CN115947342A (zh) 一种氮掺杂碳化钼与碳复合纳米材料及其制备方法
CN101643357B (zh) 一种超细立方相钛酸钡粉体的四方相转变工艺
CN111841519B (zh) 一种复合氧化物TiO2-ZrO2催化环戊酮合成航空燃油前驱体的方法
CN114558578A (zh) 一种中心辐射状新型镍碳催化材料及其制备方法与应用
CN111774086B (zh) 一种共价有机框架材料衍生杂原子共掺杂碳纳米片非金属加氢催化剂的制备方法及应用
CN113178587A (zh) 一种固体氧化物燃料电池阳极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220701