CN111756264B - 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法 - Google Patents

一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法 Download PDF

Info

Publication number
CN111756264B
CN111756264B CN202010627528.7A CN202010627528A CN111756264B CN 111756264 B CN111756264 B CN 111756264B CN 202010627528 A CN202010627528 A CN 202010627528A CN 111756264 B CN111756264 B CN 111756264B
Authority
CN
China
Prior art keywords
voltage
bridge arm
wave
pwm
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010627528.7A
Other languages
English (en)
Other versions
CN111756264A (zh
Inventor
王琛
许同
王毅
陶建业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202010627528.7A priority Critical patent/CN111756264B/zh
Publication of CN111756264A publication Critical patent/CN111756264A/zh
Application granted granted Critical
Publication of CN111756264B publication Critical patent/CN111756264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/501Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by the combination of several pulse-voltages having different amplitude and width
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种适用于中压MMC的最近半电平PWM混合调制方法(NHL‑PWM)。当中压MMC采用NHL‑PWM调制策略时,上下桥臂采用不同方式逼近参考波,改善交流侧输出电压的波形质量,NHL‑PWM沿用NLM调制方式的电容电压均衡策略,有利于简化控制策略,改善交流侧输出电压的波形质量。

Description

一种适用于中压三相MMC的最近半电平逼近PWM混合调制方法
专利领域
本发明涉及一种能够改善中压MMC输出波形质量的调制策略,尤其涉及一种适用于中压MMC的PWM混合调制方法,属于电力电子技术领域。
背景技术
基于模块化多电平换流器(modular multilevel converter,MMC)的直流配电网凭借传输损耗小、模块化设计、灵活控制和易于接纳新能源等优点而在未来智能配电网中发挥重要作用。基于中压MMC的直流配电网的电压等级一般较低,MMC子模块数目一般较少,若沿用柔性高压直流输电中采用阶梯波逼近调制策略,会造成输出波形谐波含量高,相间存在较大循环电流等问题。
MMC的调制策略大致分为两类:阶梯波逼近调制和脉冲宽度调制。阶梯波逼近调制主要包括空间矢量调制(Space vector modulation,SVM)、最近电平逼近调制(NearestLevel modulation,NLM)和选择谐波消除(Selective Harmonics elimination,SHE),这三种调制方式均采用阶梯波逼近正弦参考波,当子模块数目较少时,输出电压的谐波含量较高,难以扩展到中压MMC。通过异步调制可将NLM调制算法的输出电平数扩展到2N+1电平,但谐波含量和相间环流较高。脉冲宽度调制根据载波的布置情况可分为载波重叠(Carrierdisposition-PWM,CD-PWM)和载波移相(Carrier phase shift-PWM,CPS-PWM),但CD-PWM所采用载波频率为CPS-PWM的N倍,因此开关管的开关频率更高。CPS-PWM策略中各子模块的载波信号相互独立,在中压MMC中应用较多,但CPS-PWM需要额外的均压控制,增加了控制的复杂度,且开关损耗较高。上述调制方式均采用单一调制方式改善交流侧输出电压质量,未结合两种调制方式的优点。
发明的目的
本发明的目的是为了应对现有技术中单一调制方式的缺陷,采用最近半电平逼近PWM(Nearest Half Level-PWM,NHL-PWM)混合调制算法,提高中压MMC交流侧输出电压质量。
发明的有益效果
本发明的调制方法结合了NLM调制和CPS-PWM调制的优点,可同时抑制输出电压中的高低次谐波,易于控制电容电压均衡,且运行损耗较小。相比于传统NLM策略,应用NHL-PWM策略的中压MMC交流侧输出电压的谐波含量大大降低。
发明内容
本发明公开了一种适用于中压三相MMC的最近电平逼近PWM混合调制方法,所述MMC的每个桥臂由N个子模块和桥臂电感L串联组成,所述混合调制方法包括以下步骤:
步骤1:对于上桥臂参考电压标幺值Upa_ref/Uc采用round取整,取最接近的整数电平,上桥臂阶梯波电压输出N+1电平;对于下桥臂参考电压标幺值Una_ref/Uc采用floor取整,取不大于最大整数电平,下桥臂阶梯波电压的输出电平数为N;
步骤2:将交流侧输出阶梯波电压设为上、下桥臂电压差的一半,将交流侧输出阶梯波电压与参考波之间的偏差表示为Δva,将下桥臂阶梯波电压采用向下取整,则任意时刻至少存在一个子模块未参与输出阶梯波电压,针对该子模块采用调制波为2Δva的PWM调制,将PWM脉冲与阶梯波叠加,得到下桥臂和交流侧的输出电压;
步骤3:对上桥臂子模块投切控制,当上桥臂电流i sm>0时,选择电容电压低的Npa_step个子模块充电,而当上桥臂电流i sm<0,则选择电容电压高的Npa_step个子模块放电,其中Npa_step是上桥臂输出阶梯波电平数;
步骤4:对下桥臂子模块投切控制,当下桥臂电流i sm>0时,选择电容电压低的Nna_step+1个子模块充电,下桥臂子模块的工作方式分为阶梯波和PWM调制两种,阶梯波调制选择电容电压低的Nna_step个子模块,PWM调制选择电容电压第Nna_step+1低的子模块;当下桥臂电流i sm<0时,选择电容电压高的Nna_step+1个子模块放电,选择电容电压高的Nna_step个子模块输出阶梯波,第Nna_step+1子模块输出PWM波,且仅在输出电平数发生变化时重新投入子模块,其中Nna_step是下桥臂输出阶梯波电平数。
附图说明
图1是典型三相MMC拓扑结构。
图2是上下桥臂输出阶梯波电压。
图3是A相PWM脉冲、下桥臂和交流侧输出电压。
图4是上桥臂子模块投切流程图。
图5是下桥臂子模块投切流程图。
图6是NLM调制方式下交流线电压、相电流及其谐波频谱。
图7是CPS-PWM调制方式下交流线电压、相电流及其谐波频谱。
图8是NHL-PWM调制方式下交流线电压、相电流及其谐波频谱。
具体实施方式
以下结合附图详细说明本发明所述的适用于中压三相MMC的最近半电平逼近PWM混合调制方法。
图1是是本发明所适用的典型三相MMC拓扑结构图,当中压MMC采用NHL-PWM调制方式时,以A相为例,上下桥臂的运行方式分析如下:
如图1所示,每个桥臂由N个子模块和桥臂电感L串联组成,直流母线的电压分别为+Udc/2和-Udc/2,图1中的p、n和o分别为直流母线的正负极和假想的中性点,电容电压为Uc,当电压调制系数为M时,上、下桥臂参考电压Upa_ref和Una_ref如式(1)所示
Figure BDA0002567085520000031
式中,ω为电压调制信号的频率,
Figure BDA0002567085520000032
为电压调制信号的相位角。
对于上桥臂参考电压标幺值Upa_ref/Uc采用round取整,即取最接近Upa_ref/Uc的整数,上桥臂阶梯波电压输出N+1电平。下桥臂参考电压标幺值Una_ref/Uc采用floor取整,即取不大于Una_ref/Uc的最大整数电平,下桥臂阶梯波电压的输出电平数为N。上、下桥臂输出阶梯波电平数Npa_step和Nna_step分别如图2(a)和(b)中的实线所示,计算公式表示如式(2)所示:
Figure BDA0002567085520000041
交流侧输出阶梯波电压为上下桥臂电压差的一半,交流侧输出阶梯波电压与参考波之间的偏差Δva表示为如式(3)所示:
Figure BDA0002567085520000042
式中,
Figure BDA0002567085520000043
是参考波电压。
4、下桥臂阶梯波电压采用向下取整,因此任意时刻至少存在一个子模块未参与输出阶梯波电压,针对该子模块采用调制波为2Δva的PWM调制,用以弥补阶梯波与正弦波之间的偏差。PWM调制波和所调制出的PWM脉冲序列如图6(a)所示。将PWM脉冲与阶梯波叠加,可得下桥臂和交流侧的输出电压分别如图6(b)和(c)中的实线所示。
5、当上桥臂电流正向(ism>0)时,选择电容电压低的Npa_step个子模块充电,而当上桥臂电流反向时(ism<0),则选择电容电压高的Npa_step个子模块放电。仅在输出电平数发生变化时重新投入子模块,有助于减小开关次数,上桥臂子模块投切流程图如图4所示
6、当下桥臂电流正向(ism>0)时,选择电容电压低的Nna_step+1个子模块充电,而子模块的工作方式分为阶梯波和PWM两种,阶梯波调制选择电容电压低的Nna_step个子模块,PWM调制则选择电容电压第Nna_step+1低的子模块,而当上桥臂电流反向时(ism<0),选择电容电压高的Nna_step+1个子模块放电,选择电容电压高的Nna_step个子模块输出阶梯波,第Nna_step+1子模块输出PWM波,且仅在输出电平数发生变化时重新投入子模块,有助于减小开关次数,下桥臂子模块投切流程图如图5所示。
为了验证本发明所述调制方法的的调制效果,基于MATLAB/Simulink仿真平台,搭建了±3kV的中压MMC仿真模型,分别采用NLM、CPS-PWM和NHL-PWM(本发明)三种调制方式,对它们的交流侧输出波形质量进行了对比。
图6-8分别为中压MMC采用NLM、CPS-PWM和NHL-PWM调制方式时A相交流侧线电压、相电流波形及对应谐波频谱。
由图6所示,采用NLM调制方式时交流侧输出波形的含有较高成分的低次谐波,说明NLM调制方式难以适用于中压MMC。
由图7所示,当CPS-PWM调制方式所采用载波的频率很高时,交流侧输出波形的谐波含量才能显著降低,且输出波形中含有较高成分的高次谐波,说明CPS-PWM调制方式同样难以适用于中压MMC。
由图8所示,当采用NHL-PWM调制方式时,交流侧输出波形中高低次谐波被抑制,因此输出波形的谐波含量显著降低,说明NHL-PWM调制方式适用于中压MMC。
表1列出了采用不同调制方式时的输出波形谐波含量:
表1不同调制方式时输出波形谐波含量
Figure BDA0002567085520000051
由表1可知,采用本发明所述的NHL-PWM混合调制方法,能够显著抑制交流侧输出波形中高低次谐波,适用于中压MMC。
本发明的主要创新点如下:
提出了适用于中压MMC的最近半电平PWM调制策略(NHL-PWM)。当中压MMC采用NHL-PWM调制策略时上下桥臂采用不同方式逼近参考波,改善交流侧输出电压的波形质量,NHL-PWM沿用NLM调制方式的电容电压均衡策略,有利于简化控制策略。

Claims (4)

1.一种适用于中压三相MMC的最近半电平逼近PWM混合调制方法,所述MMC的每个桥臂由N个子模块和桥臂电感L串联组成,其特征在于,所述混合调制方法包括以下步骤:
步骤1:对于上桥臂参考电压标幺值Upa_ref/Uc采用round取整,取最接近的整数电平,上桥臂阶梯波电压输出N+1电平;对于下桥臂参考电压标幺值Una_ref/Uc采用floor取整,取不大于最大整数电平,下桥臂阶梯波电压的输出电平数为N;
步骤2:将交流侧输出阶梯波电压设为上、下桥臂电压差的一半,将交流侧输出阶梯波电压与参考波之间的偏差表示为Δva,将下桥臂阶梯波电压采用向下取整,则任意时刻至少存在一个子模块未参与输出阶梯波电压,针对该子模块采用调制波为2Δva的PWM调制,将PWM脉冲与阶梯波叠加,得到下桥臂和交流侧的输出电压;
步骤3:对上桥臂子模块投切控制,先计算上桥臂中投入的子模块个数Npa_step,判断Npa_step是否变化,当Npa_step没有变化时,继续保持上一次投放的子模块数量,不投放子模块;
当Npa_step发生变化时,则判断上桥臂电流i sm是否大于0,若i sm>0,则选择电容电压低的Npa_step个子模块充电,若上桥臂电流i sm<0,则选择电容电压高的Npa_step个子模块放电,其中Npa_step是上桥臂输出阶梯波电平数;
步骤4:对下桥臂子模块投切控制,先计算下桥臂中投入的子模块个数Nna_step,判断Nna_step+1是否变化,当Nna_step+1没有变化时,继续保持上一次投放的子模块数量,不投放子模块;
当下桥臂电流i sm>0时,选择电容电压低的Nna_step+1个子模块充电,下桥臂子模块的工作方式分为阶梯波和PWM调制两种,阶梯波调制选择电容电压低的Nna_step个子模块,PWM调制选择电容电压第Nna_step+1低的子模块;当下桥臂电流i sm<0时,选择电容电压高的Nna_step+1个子模块放电,选择电容电压高的Nna_step个子模块输出阶梯波,第Nna_step+1子模块输出PWM波,且仅在输出电平数发生变化时重新投入子模块,其中Nna_step是下桥臂输出阶梯波电平数。
2.如权利要求1所述的混合调制方法,其特征在于:在所述MMC中,直流母线的电压分别为+Udc/2和-Udc/2,设电容电压为Uc,当电压调制系数为M时,上、下桥臂参考电压Upa_ref和Una_ref的计算如式(1)所示:
Figure FDA0002567085510000021
式中,ω为电压调制信号的频率,
Figure FDA0002567085510000022
为电压调制信号的相位角。
3.如权利要求2所述的混合调制方法,其特征在于:所述上、下桥臂输出阶梯波电平数Npa_step和Nna_step的计算公式如式(2)所示:
Figure FDA0002567085510000023
4.如权利要求3所述的混合调制方法,其特征在于:所述交流侧输出阶梯波电压与参考波之间的偏差Δva表示为如式(3)所示:
Figure FDA0002567085510000024
式中,
Figure FDA0002567085510000025
是参考波电压。/>
CN202010627528.7A 2020-07-02 2020-07-02 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法 Active CN111756264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010627528.7A CN111756264B (zh) 2020-07-02 2020-07-02 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010627528.7A CN111756264B (zh) 2020-07-02 2020-07-02 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法

Publications (2)

Publication Number Publication Date
CN111756264A CN111756264A (zh) 2020-10-09
CN111756264B true CN111756264B (zh) 2023-06-06

Family

ID=72678687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010627528.7A Active CN111756264B (zh) 2020-07-02 2020-07-02 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法

Country Status (1)

Country Link
CN (1) CN111756264B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138550A1 (ja) * 2018-01-12 2019-07-18 三菱電機株式会社 電力変換装置
CN113972850B (zh) * 2021-10-11 2024-03-19 中国华能集团清洁能源技术研究院有限公司 一种基于nl-spwm的mmc双桥臂互补式混合调制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917406A (zh) * 2015-05-27 2015-09-16 浙江大学 一种适用于mmc的基于共模注入的最近电平逼近调制方法
CN106452142A (zh) * 2016-10-13 2017-02-22 国网江西省电力公司电力科学研究院 一种适用于模块化多电平变换器的改进调制策略
CN107070258A (zh) * 2017-05-22 2017-08-18 上海交通大学 一种单相多电平电流源变流器及变流器的控制方法
CN107294412A (zh) * 2017-06-26 2017-10-24 西安交通大学 提高半桥型模块化多电平变换器输出电平数的调制方法
CN107317497A (zh) * 2017-06-26 2017-11-03 西安交通大学 提高全桥型模块化多电平变换器输出电平数的调制方法
CN107846153A (zh) * 2017-11-08 2018-03-27 华北电力大学(保定) Mmc换流器的混合调制算法
CN111030496A (zh) * 2019-04-04 2020-04-17 沈阳工业大学 一种适用于模块化多电平变流器的变载波混合调制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013026824B1 (pt) * 2011-04-20 2021-06-29 Magglobal Llc Dispositivo e sistema de separação magnética de alta intensidade
US10554142B2 (en) * 2016-08-18 2020-02-04 Abb Schweiz Ag Modulation of AC/AC MMC
WO2018131384A1 (ja) * 2017-01-11 2018-07-19 株式会社村田製作所 電力変換器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917406A (zh) * 2015-05-27 2015-09-16 浙江大学 一种适用于mmc的基于共模注入的最近电平逼近调制方法
CN106452142A (zh) * 2016-10-13 2017-02-22 国网江西省电力公司电力科学研究院 一种适用于模块化多电平变换器的改进调制策略
CN107070258A (zh) * 2017-05-22 2017-08-18 上海交通大学 一种单相多电平电流源变流器及变流器的控制方法
CN107294412A (zh) * 2017-06-26 2017-10-24 西安交通大学 提高半桥型模块化多电平变换器输出电平数的调制方法
CN107317497A (zh) * 2017-06-26 2017-11-03 西安交通大学 提高全桥型模块化多电平变换器输出电平数的调制方法
CN107846153A (zh) * 2017-11-08 2018-03-27 华北电力大学(保定) Mmc换流器的混合调制算法
CN111030496A (zh) * 2019-04-04 2020-04-17 沈阳工业大学 一种适用于模块化多电平变流器的变载波混合调制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A Nearest Level PWM Method for the MMC in DC Distribution Grids;Yi Wang等;《 IEEE Transactions on Power Electronics ( Volume: 33, Issue: 11, November 2018) 》;第9209 - 9218页 *

Also Published As

Publication number Publication date
CN111756264A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
EP2827490B1 (en) System and method for unified common mode voltage injection
CN108768196A (zh) 一种新型三电平npc变流器的调制及中点电位控制策略
CN112671001B (zh) 一种级联h桥型储能statcom的soc均衡控制方法
CN111756264B (zh) 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法
CN111416540B (zh) 一种多电平变换器中点电位快速平衡控制系统及方法
CN105703650B (zh) 一种采用shepwm的多台t型三电平逆变器并联控制方法
Sujitha et al. A new hybrid cascaded h-bridge multilevel inverter-performance analysis
Cortes et al. Predictive control of a grid-connected cascaded H-bridge multilevel converter
JP2002058257A (ja) 多重電力変換器の制御装置
CN111817412A (zh) 一种基于串联数字化稳压器的中高压充电系统控制方法
CN116722762A (zh) 一种基于模型预测控制的飞跨电容并网逆变器控制方法
CN115842484A (zh) 一种单相四桥臂模块化多电平变换器及其调控方法
CN115133798A (zh) 离散空间矢量调制的三电平逆变器低共模预测控制方法
Jin et al. Neutral points voltage balancing control of a four-level π-type converter
CN113037110B (zh) 一种五电平逆变器中点电压控制方法
CN113098306B (zh) 五电平及多电平层叠式多单元变换器调制控制方法
Aihsan et al. Harmonic Analysis of Three-Phase Asymmetrical Multilevel Inverter with Reduced Number of Switches
Surasmi et al. Hybrid Multilevel Inverter Control for Harmonic Mitigation
CN113972850B (zh) 一种基于nl-spwm的mmc双桥臂互补式混合调制方法
Pires et al. Three-phase multilevel inverter based on LeBlanc transformer
CN114337345B (zh) 一种多端口中低压交直流混合微电网的能量分层控制方法
Sangsuwan et al. New Switching Patterns Based on Current Space-Vector Diagram Viewpoint to Reduce Input Current Ripple for Three-Level Inverters
Peng et al. A Neutral Point Voltage Control Strategy for NPC Three-level Converter Based on Reference Voltage Decomposition Method
Yang et al. A Carrier-Based Modulation Method Providing Coordinated Control of Circulating Current Suppression and Neutral-Point Potential Balance in Parallel Three-Level Converters
CN115037138A (zh) 适用于低频工况的星形桥臂相间耦合型mmc的模型预测控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant