CN111817412A - 一种基于串联数字化稳压器的中高压充电系统控制方法 - Google Patents

一种基于串联数字化稳压器的中高压充电系统控制方法 Download PDF

Info

Publication number
CN111817412A
CN111817412A CN202010771612.6A CN202010771612A CN111817412A CN 111817412 A CN111817412 A CN 111817412A CN 202010771612 A CN202010771612 A CN 202010771612A CN 111817412 A CN111817412 A CN 111817412A
Authority
CN
China
Prior art keywords
voltage
modulation
module
stabilizer
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010771612.6A
Other languages
English (en)
Other versions
CN111817412B (zh
Inventor
王建华
范建华
徐鹏飞
李健勋
李鸿儒
王庆园
张建
李伟
吴雪梅
卢峰
林志超
程艳艳
叶齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Dingxin Communication Power Engineering Co ltd
Qingdao Topscomm Communication Co Ltd
Original Assignee
Shenyang Keyuan State Grid Power Engineering Survey And Design Co ltd
Qingdao Topscomm Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Keyuan State Grid Power Engineering Survey And Design Co ltd, Qingdao Topscomm Communication Co Ltd filed Critical Shenyang Keyuan State Grid Power Engineering Survey And Design Co ltd
Publication of CN111817412A publication Critical patent/CN111817412A/zh
Application granted granted Critical
Publication of CN111817412B publication Critical patent/CN111817412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提出一种基于串联数字化稳压器的中高压充电系统控制方法,属于中高压电动汽车充电站领域。本发明通过控制串联数字化稳压器的输出电压与高压级联H桥模组配合形成多电平交流调制电压,降低了高压级联H桥模组的开关频率,同时有效降低了网侧滤波电感体积与电感损耗,配合数字串联数字化稳压器后级DC/DC隔离级的稳压控制,保证了系统各个模组的电压稳定与均衡,使系统稳定运行同时提高了系统运行效率。

Description

一种基于串联数字化稳压器的中高压充电系统控制方法
技术领域
本发明涉及中高压充电系统领域,尤其涉及一种基于串联数字化稳压器的中高压充电系统控制方法。
背景技术
中高压充电系统采用输入串联输出并联型拓扑方案,降低了交流侧单个模块的开关频率和器件耐压等级,使得交流侧可直接并入中高压电网;通过后级DC/DC级输出并联得到低压直流母线提供充电负载使用,避免了传统工频变压器的使用,增加了系统的可控性,降低了系统体积,有效提高了系统的功率密度,是作为低压充电系统的有利拓扑;但由于载传统的载波移相调制方法下,交流侧需要通过级联多个模组单元才能合成满足要求的多电平的中高压交流电压,尤其在少模组、低开关频率条件下,为了满足并网标准,更需要较大的网侧滤波电感来达到条件,这对整个系统的体积、成本及效率带来了不利影响。
发明内容
为解决上述问题,本发明提出了一种基于串联数字化稳压器的中高压充电系统控制方法,本发明的技术方案为:一种基于串联数字化稳压器的中高压充电系统控制方法包括如下步骤:
步骤1:高压侧AC/DC级通过给定低压直流母线给定值Udc_Lv *与低压直流母线电压反馈值做差后将差值输入到电压环PI控制生成并网电流有功轴电流给定值Id *,Id *与电网有功电流Id做差后将差值输入到有功电流环PI控制器输出有功轴电压调整量Ud *,Ud *与电网电压前馈量Ud叠加后生成有功轴调制电压Vd;无功电流给定值0与交流并网电流无功反馈值Iq做差后,将结果输入到无功电流环PI控输出无功轴电压调整量Uq *,Uq *与电网电压前馈量Uq叠加后生成有功轴调制电压Vq
步骤2:Vd与Vq经过帕克反变换生成三相调制电压Vn(n=a,b,c);
步骤3:三相调制电压Vn(n=a,b,c)输入到调制策略模块以后,根据调制电压Vn确定调制区域,根据调制区域大小与调制电压方向来确定高压输出电平状态,得到高压模组总调制电压UH
步骤4:调制电压Vn与UH做差得到串联数字化稳压器的输入调制电压UL并与联数字化稳压器模组母线电压的不重复组合得到的总母线电压进行对比,得到串联数字化稳压器中各H桥的输出电压状态;
步骤5:将调制电压Vn减去高压模组与串联数字化稳压器生成的电压后得到电压UM,利用串联数字化稳压器中母线电压最低的模块对UM进行SPWM调制;
步骤6:根据调制电压形成各个H桥功率器件驱动信号,由高压级联模组与串联数字化稳压器共同合成多电平交流调制电压,实现交流侧并网电流有功无功分量控制;
步骤7:DC/DC级输出50%占空比信号同步驱动原副边功率开关管实现直流变压器特性,保证输出输入输出电压比为变压器变比,产生稳定的低压直流母线提供充电负载使用;
其中,中高压充电站交流侧采用N个直流母线电压为Udc的H桥高压模组级联结构与串联数字化稳压器串联后直接并入中、高压交流电网,实现AC/DC变换;串联数字化稳压器有M个H桥串联而成,H桥的直流母线电压依次为U1、U2…UM,每个H桥结构后连接一个串联谐振型双有源H桥隔离变换器实现DC/DC变换与隔离作用,3N+3M个DC/DC变换器输出并联构成低压直流母线供充电负载使用。
优选地,串联数字化稳压器的直流母线电压Un=Udc/2n,其中n=1、2、3…M。
优选地,调制策略模块使用的调制控制方法为,取调制电压的绝对值|Vn|除以Udc并向下取整得到高压模组调制区域k;判断如果Vn≥0,选择k个高压模组输出电压Udc剩余N-k个模组输出电压0;如果Vn<0,选择k个高压模组输出电压-Udc,剩余N-k个模组输出电压0,被选择的模组每过周期Tn后进行轮转更新重新选择来保证周期Tn内高压模组功率均衡;高压模组级联生成的电压为UH;将Vn与UH做差得到串联数字化稳压器的输入调制电压UL,将串联数字化稳压器的前M-1个H桥模组直流母线电压进行不重复组合,保证每个组合中的模组不完全相同,并将组合中H桥的直流母线电压进行加和得到总电压UPn(n=1,2,3…),将每一组的UPn与|UL|进行比较,如果有|UPn-|UL||≤Udc/2M则选择该组合进行调制,如果UL≥0,被选中的组合中的H桥模组输出正母线电压的电平,前M-1中剩余的H桥模组输出0电平;如果UL<0,被选中的组合中的H桥模组输出负母线电压电平,前M-1中剩余的H桥模组输出0电平;前M-1个H桥模组合成的电压为UD,将UL与UD做差得到串联数字化稳压器中第M个模组的调制电压UM,将UM进行正弦脉宽调制产生调制电压UMpwm从而由高压单元模组与串联数字化稳压器串联合成电压Vnpwm=UH+UD+UMpwm;如果不存在组合满足|UP-|UL||≤Udc/2M则将调制电压UL直接作为串联数字化稳压器中第M个模组的调制电压UM进行正弦脉宽调制产生调制电压UMpwm,前M-1个模组输出电压为0,从而得到总调制电压Vnpwm=UH+UMpwm
优选地,由高压级联模组与串联数字化稳压器共同合成多电平交流调制电压最多电平数量为:
B=[(N+1)×2M-1]×2+1。
优选地,所述的DC/DC级控制方式为,高压模组单元所对应的DC/DC级原边H桥输出50%占空比方波电压信号,副边为自然整流模式;串联数字化稳压器所对应的DC/DC级原边与副边H桥同步输出50%占空比方波电压信号,实现能量双向流动保证串联数字化稳压器中各模组母线电压稳定。
与现有技术相比,本发明的优点和积极效果在于:本发明方案可以在减少高压模组单元数量时仍然保证产生足够电平数量的电压;利用利用合理的调制方式实现串联数字化稳压器与高压模组单元的配合,在降低高压模组单元开关频率的同时提高了电压电平数量、降低了电压变化率,所以降低了网侧电感需求量以及电感损耗。改进了针对高压模组单元与串联数字化稳压器后级DC/DC的控制方式,在保证了串联数字化稳压器母线电压的稳定。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定
图1为基于串联数字化稳压器的中高压充电系统拓扑图;
图2为本发明串联数字化稳压器拓扑图;
图3为本发明AC/DC级有/无功控制框图;
图4为本发明控制方法流程图;
图5为本发明AC/DC级调制控制方法流程图;
图6为本发明交流侧调制电压波形;
图7传统载波移相式级联H桥交流侧调制电压波形;
图8为本发明交流侧高压模组调制电压波形;
图9传统载波移相式级联H桥交流侧高压模组调制电压波形;
图10为本发明高压模组的DC/DC级驱动信号控制方式示意图;
图11为串联数字化稳压器的DC/DC级驱动信号控制方式示意图。
具体实施方式
以下,结合附图对本发明的具体实施方式进行进一步的描述。
本发明应用的基于串联数字化稳压器的中高压充电系统拓扑图如图1所示,系统交流侧采用N个直流母线电压为Udc的H桥高压模组级联结构与串联数字化稳压器串联后直接并入中、高压交流电网,实现AC/DC变换;串联数字化稳压器拓扑如图2所示,由M个H桥串联而成,H桥的直流母线电压Un=Udc/2n,其中n=1、2、3…M;
每个H桥结构后连接一个串联谐振型双有源H桥隔离变换器实现DC/DC变换与隔离作用,3N+3M个DC/DC变换器输出并联构成低压直流母线供充电负载使用;
其高压模组级联串联数字化稳压器的AC/DC级控制框图如图3所示,通过给定低压直流母线给定值Udc_Lv *与低压直流母线电压反馈值做差后将结果输入到电压环PI控制进行控制并产生并网电流有功轴电流给定值与电网有功电流Id做差后将结果输入到有功电流环PI控输出与电网电压前馈量Ud叠加后生成有功轴调制电压Vd;通过无功电流给定值0与交流并网电流无功反馈值Iq做差后将结果输入到无功电流环PI控输出与电网电压前馈量Uq叠加后生成有功轴调制电压Vq经过帕克反变换生成三相调制电压Vn(n=a,b,c);
调制控制策略模块流程图如图4所示,三相调制电压Vn(n=a,b,c)输入到调制策略模块,然后取调制电压的绝对值|Vn|除以高压模组电压Udc并向下取整得到高压模组调制区域k;然后判断如果Vn≥0,选择k个高压模组输出电压Udc,剩余N-k个模组输出电压0;如果Vn<0,选择k个高压模组输出电压-Udc,剩余N-k个模组输出电压0,被选择的模组每过周期Tn后进行轮转更新重新选择来保证周期Tn内高压模组功率均衡;高压模组级联生成的电压为UH;将Vn与UH做差得到串联数字化稳压器的输入调制电压UL,将串联数字化稳压器的前M-1个H桥模组直流母线电压进行不重复组合,保证每个组合中的模组不完全相同,并将组合中H桥的直流母线电压进行加和得到总电压UPn(n=1,2,3…),将每一组的UPn与|UL|进行比较,如果有|UPn-|UL||≤Udc/2M则选择该组合进行调制,如果UL≥0,被选中的组合中的H桥模组输出正母线电压的电平,前M-1中剩余的H桥模组输出0电平;如果UL<0,被选中的组合中的H桥模组输出负母线电压电平,前M-1中剩余的H桥模组输出0电平;前M-1个H桥模组合成的电压为UD,将UL与UD做差得到串联数字化稳压器中第M个模组的调制电压UM,将UM进行正弦脉宽调制产生调制电压UMpwm从而由高压单元模组与串联数字化稳压器串联合成电压Vnpwm=UH+UD+UMpwm;如果不存在组合满足|UP-|UL||≤Udc/2M则将调制电压UL直接作为串联数字化稳压器中第M个模组的调制电压UM进行正弦脉宽调制产生调制电压UMpwm,前M-1个模组输出电压为0,从而得到总调制电压Vnpwm=UH+UMpwm,实现交流侧并网电流有功无功分量控制;
本发明提出的拓扑与调制策略下的调制电压波形与传统载波移相式级联H桥交流侧调制电压波形对比如图6与7所示,其中图6中高压单元数量N=9,辅助模组数量M=4,图7级联H桥高压单元模组数量为N=12,对比可知本发明调制出的电压电平数量更多,更加趋近于正弦信号,本发明交流侧合成多电平交流调制电压最多电平数量为:
B=[(N+1)×2M-1]×2+1;
传统载波移相级联H桥拓扑结构能够产生的最多电平数量为:
B=2N+1
图8与图9,分别展示了基于串联数字化稳压器的能量路由器拓扑在本发明所提的调制方法下的其中一个高压模组单元的端口调制电压与传统载波移相方法下的级联H桥拓扑结构的高压模组单元端口调制电压,图8高压H桥轮转周期Tn取100ms,图9载波频率为500Hz,对比可以知本方案的高压模组单元端口电压变化频率更低,即开关频率更低;
高压模组与串联数字化稳压器的DC/DC级驱动信号控制方式如图10与11所示;高压模组单元所对应的DC/DC级原边H桥输出50%占空比方波电压信号,副边为自然整流模式;串联数字化稳压器所对应的DC/DC级原边与副边H桥同步输出50%占空比方波电压信号,实现能量双向流动保证串联数字化稳压器中各模组母线电压稳定。
综上所述,一种基于串联数字化稳压器的中高压充电系统控制方法,通过控制串联数字化稳压器的输出电压与高压级联H桥模组配合形成多电平交流调制电压,在相同或更少的高压模组单元数量下,能够调制生成更多电平数量、更低电压变化率的电压,降低了高压级联H桥模组的开关频率,同时能够保证降低网侧滤波电感体积与电感损耗,配合数字串联数字化稳压器后级DC/DC隔离级的稳压控制,保证了系统各个模组的电压稳定与均衡,使系统稳定运行的同时提高了系统效率。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于串联数字化稳压器的中高压充电系统控制方法,其特征在于,所述的方法包括如下步骤:
步骤1:高压侧AC/DC级通过给定低压直流母线给定值Udc_Lv *与低压直流母线电压反馈值做差后将差值输入到电压环PI控制生成并网电流有功轴电流给定值Id *,Id *与电网有功电流Id做差后将差值输入到有功电流环PI控制器输出有功轴电压调整量Ud *,Ud *与电网电压前馈量Ud叠加后生成有功轴调制电压Vd;无功电流给定值0与交流并网电流无功反馈值Iq做差后,将结果输入到无功电流环PI控输出无功轴电压调整量Uq *,Uq *与电网电压前馈量Uq叠加后生成有功轴调制电压Vq
步骤2:Vd与Vq经过帕克反变换生成三相调制电压Vn(n=a,b,c);
步骤3:三相调制电压Vn(n=a,b,c)输入到调制策略模块以后,根据调制电压Vn确定调制区域,根据调制区域大小与调制电压方向来确定高压输出电平状态,得到高压模组总调制电压UH;
步骤4:调制电压Vn与UH做差得到串联数字化稳压器的输入调制电压UL并与联数字化稳压器模组母线电压的不重复组合得到的总母线电压进行对比,得到串联数字化稳压器中各H桥的输出电压状态;
步骤5:将调制电压Vn减去高压模组与串联数字化稳压器生成的电压后得到电压UM,利用串联数字化稳压器中母线电压最低的模块对UM进行SPWM调制;
步骤6:根据调制电压形成各个H桥功率器件驱动信号,由高压级联模组与串联数字化稳压器共同合成多电平交流调制电压,实现交流侧并网电流有功无功分量控制;
步骤7:DC/DC级输出50%占空比信号同步驱动原副边功率开关管实现直流变压器特性,保证输出输入输出电压比为变压器变比,产生稳定的低压直流母线提供充电负载使用;
其中,中高压充电站交流侧采用N个直流母线电压为Udc的H桥高压模组级联结构与串联数字化稳压器串联后直接并入中、高压交流电网,实现AC/DC变换;串联数字化稳压器有M个H桥串联而成,H桥的直流母线电压依次为U1、U2…UM,每个H桥结构后连接一个串联谐振型双有源H桥隔离变换器实现DC/DC变换与隔离作用,3N+3M个DC/DC变换器输出并联构成低压直流母线供充电负载使用。
2.根据权利要求1所述的一种基于串联数字化稳压器的中高压充电系统控制方法,其特征在于,所述的串联数字化稳压器的直流母线电压Un=Udc/2n,其中n=1、2、3…M。
3.根据权利要求1所述的一种基于串联数字化稳压器的中高压充电系统控制方法,其特征在于,所述调制策略模块使用的调制控制方法为,取调制电压的绝对值|Vn|除以Udc并向下取整得到高压模组调制区域k;判断如果Vn≥0,选择k个高压模组输出电压Udc剩余N-k个模组输出电压0;如果Vn<0,选择k个高压模组输出电压-Udc,剩余N-k个模组输出电压0,被选择的模组每过周期Tn后进行轮转更新重新选择来保证周期Tn内高压模组功率均衡;高压模组级联生成的电压为UH;将Vn与UH做差得到串联数字化稳压器的输入调制电压UL,将串联数字化稳压器的前M-1个H桥模组直流母线电压进行不重复组合,保证每个组合中的模组不完全相同,并将组合中H桥的直流母线电压进行加和得到总电压UPn(n=1,2,3…),将每一组的UPn与|UL|进行比较,如果有|UPn-|UL||≤Udc/2M则选择该组合进行调制,如果UL≥0,被选中的组合中的H桥模组输出正母线电压的电平,前M-1中剩余的H桥模组输出0电平;如果UL<0,被选中的组合中的H桥模组输出负母线电压电平,前M-1中剩余的H桥模组输出0电平;前M-1个H桥模组合成的电压为UD,将UL与UD做差得到串联数字化稳压器中第M个模组的调制电压UM,将UM进行正弦脉宽调制产生调制电压UMpwm从而由高压单元模组与串联数字化稳压器串联合成电压Vnpwm=UH+UD+UMpwm;如果不存在组合满足|UP-|UL||≤Udc/2M则将调制电压UL直接作为串联数字化稳压器中第M个模组的调制电压UM进行正弦脉宽调制产生调制电压UMpwm,前M-1个模组输出电压为0,从而得到总调制电压Vnpwm=UH+UMpwm
4.根据权利要求1所述的一种基于串联数字化稳压器的中高压充电系统控制方法,其特征在于,由高压级联模组与串联数字化稳压器共同合成多电平交流调制电压最多电平数量为:
B=[(N+1)×2M-1]×2+1。
5.根据权利要求1所述的一种基于串联数字化稳压器的中高压充电系统控制方法,其特征在于,所述的DC/DC级控制方式为,高压模组单元所对应的DC/DC级原边H桥输出50%占空比方波电压信号,副边为自然整流模式;串联数字化稳压器所对应的DC/DC级原边与副边H桥同步输出50%占空比方波电压信号,实现能量双向流动保证串联数字化稳压器中各模组母线电压稳定。
CN202010771612.6A 2020-05-23 2020-08-04 一种基于串联数字化稳压器的中高压充电系统控制方法 Active CN111817412B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020104448652 2020-05-23
CN202010444865 2020-05-23

Publications (2)

Publication Number Publication Date
CN111817412A true CN111817412A (zh) 2020-10-23
CN111817412B CN111817412B (zh) 2023-08-08

Family

ID=72863577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010771612.6A Active CN111817412B (zh) 2020-05-23 2020-08-04 一种基于串联数字化稳压器的中高压充电系统控制方法

Country Status (1)

Country Link
CN (1) CN111817412B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310973A (zh) * 2020-12-29 2021-02-02 中国电力科学研究院有限公司 一种电压稳定的控制方法、系统、充电桩及充电站
CN113489333A (zh) * 2021-07-08 2021-10-08 国网辽宁省电力有限公司营口供电公司 一种基于串联数字化稳压器的电能路由器交流侧调制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442275C1 (ru) * 2010-06-25 2012-02-10 Государственное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Способ управления трехфазным статическим преобразователем при несимметричной нагрузке
CN107070357A (zh) * 2017-04-28 2017-08-18 荣信汇科电气技术有限责任公司 一种基于iegt可实现工变频切换的大功率变频装置及方法
CN107612407A (zh) * 2017-09-12 2018-01-19 东南大学 高功率密度电力电子变压器拓扑结构及其控制方法
CN108306517A (zh) * 2018-01-16 2018-07-20 东南大学 两级式多端口电力电子变压器的拓扑结构及其控制方法
US20190305560A1 (en) * 2018-04-03 2019-10-03 Sungrow Power Supply Co., Ltd. Medium And High Voltage Energy Conversion System
CN110690731A (zh) * 2019-08-20 2020-01-14 东南大学 一种适用于混合微电网的电力电子变压器及其协调控制和模式切换方法
CN110707939A (zh) * 2019-10-21 2020-01-17 华中科技大学 基于隔离式半桥anpc三电平和h桥的dc-dc变换器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442275C1 (ru) * 2010-06-25 2012-02-10 Государственное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Способ управления трехфазным статическим преобразователем при несимметричной нагрузке
CN107070357A (zh) * 2017-04-28 2017-08-18 荣信汇科电气技术有限责任公司 一种基于iegt可实现工变频切换的大功率变频装置及方法
CN107612407A (zh) * 2017-09-12 2018-01-19 东南大学 高功率密度电力电子变压器拓扑结构及其控制方法
CN108306517A (zh) * 2018-01-16 2018-07-20 东南大学 两级式多端口电力电子变压器的拓扑结构及其控制方法
US20190305560A1 (en) * 2018-04-03 2019-10-03 Sungrow Power Supply Co., Ltd. Medium And High Voltage Energy Conversion System
CN110690731A (zh) * 2019-08-20 2020-01-14 东南大学 一种适用于混合微电网的电力电子变压器及其协调控制和模式切换方法
CN110707939A (zh) * 2019-10-21 2020-01-17 华中科技大学 基于隔离式半桥anpc三电平和h桥的dc-dc变换器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310973A (zh) * 2020-12-29 2021-02-02 中国电力科学研究院有限公司 一种电压稳定的控制方法、系统、充电桩及充电站
CN112310973B (zh) * 2020-12-29 2021-04-20 中国电力科学研究院有限公司 一种电压稳定的控制方法、系统、充电桩及充电站
CN113489333A (zh) * 2021-07-08 2021-10-08 国网辽宁省电力有限公司营口供电公司 一种基于串联数字化稳压器的电能路由器交流侧调制方法

Also Published As

Publication number Publication date
CN111817412B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US8228699B2 (en) Power converting apparatus including half-bridge inverters connected between positive and negative terminals of a DC power supply
CN109004866B (zh) 六边形结构的能馈型三端口级联变换器拓扑及控制方法
CN108964476B (zh) 基于双有源桥的隔离型双向ac/dc变换器的控制方法
CN111817412B (zh) 一种基于串联数字化稳压器的中高压充电系统控制方法
CN111277157A (zh) 一种模块化大功率电机驱动变换器系统及控制方法
CN110829872A (zh) 一种永磁牵引系统用混合多电平逆变器及其控制方法
CN113346764A (zh) 一种基于高频磁耦合模块的中压变流器拓扑结构
Sujitha et al. A new hybrid cascaded h-bridge multilevel inverter-performance analysis
CN116488224A (zh) 多端口交直流混合变流装置及多端交直流混合系统
WO2021213676A1 (en) Bridgeless single-phase pfc multi-level totem-pole power converter
CN113437879B (zh) 一种直流变换器及其控制方法
Qiu et al. Active and Reactive Power Distribution for Cascaded-H-Bridge Microinverters under Island Microgrid
CN114257097A (zh) 一种多模式切换的宽输出直流变换器及其切换控制
CN113078829A (zh) 一种上下桥臂子模块高频链互联的mmc拓扑及控制方法
CN112865550A (zh) 一种输入并联输出串联的双有源桥变换器及其控制方法
CN113938038B (zh) 一种基于mmc的高频交流母线电能路由结构及控制策略
Liu et al. A vector control strategy for a multi-port bidirectional dc/ac converter with emphasis on power distribution between dc sources
CN112953276B (zh) 一种模块化多电平谐振变换器输出电压调控方法
CN111614277B (zh) 一种基于串联数字化稳压器的中高压一体化汽车充电系统
CN110518793B (zh) 一种基于Boost原理的非隔离型桥臂交替式直流变压器
CN111865120A (zh) 一种基于串联数字化稳压器的能量路由器交流侧调制方法
Kumar et al. Comparative evaluation of SPS and EPS based dual active bridge converter based on transistor-clamped H-bridge inverter
Chiang et al. Consideration of Integrated Power Converter for Renewable Energy-Grid-BES Interactive Applications
US11996789B2 (en) Bridgeless single-phase PFC multi-level totem-pole power converter
CN114944779B (zh) 基于电流应力优化的隔离型并网三相变换器控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240111

Address after: 266000 12th floor, 4b building, 858 Huaguan Road, high tech Zone, Qingdao City, Shandong Province

Patentee after: QINGDAO TOPSCOMM COMMUNICATION Co.,Ltd.

Patentee after: Qingdao Dingxin Communication Power Engineering Co.,Ltd.

Address before: 266000 12th floor, 4b building, 858 Huaguan Road, high tech Zone, Qingdao City, Shandong Province

Patentee before: QINGDAO TOPSCOMM COMMUNICATION Co.,Ltd.

Patentee before: Shenyang Keyuan State Grid Power Engineering Survey and Design Co.,Ltd.