CN108964476B - 基于双有源桥的隔离型双向ac/dc变换器的控制方法 - Google Patents

基于双有源桥的隔离型双向ac/dc变换器的控制方法 Download PDF

Info

Publication number
CN108964476B
CN108964476B CN201811054289.XA CN201811054289A CN108964476B CN 108964476 B CN108964476 B CN 108964476B CN 201811054289 A CN201811054289 A CN 201811054289A CN 108964476 B CN108964476 B CN 108964476B
Authority
CN
China
Prior art keywords
converter
voltage
current
switching
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811054289.XA
Other languages
English (en)
Other versions
CN108964476A (zh
Inventor
秦文萍
周一雄
王祺
王磊
任春光
贾燕冰
韩肖清
王鹏
李峰
刘龙峰
张佰富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201811054289.XA priority Critical patent/CN108964476B/zh
Publication of CN108964476A publication Critical patent/CN108964476A/zh
Application granted granted Critical
Publication of CN108964476B publication Critical patent/CN108964476B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及隔离型双向AC/DC变换器,具体是基于双有源桥的隔离型双向AC/DC变换器的控制方法,是在隔离型双向AC/DC变换器的直流侧设置用于调节直流侧电压的电压控制器,电压控制器的输出信号为交流侧输出电流参考值I g *;对交流侧输出电流参考值I g *进行计算得到主控制信号α′,由主控制信号α′计算得出双有源桥的内移相比D 1、外移相比D 2以及构成双有源桥的开关管的实际开关频率f s ,通过D 1D 2f s 控制双有源桥的所有开关管的驱动信号;再通过变换器交流侧电压v ac 的正负对构成同步整流桥的所有开关管进行控制;本发明将双移相和变频控制结合,实现交流侧输出电流线性化控制,简化了控制方法,同时实现了变换器单级式功率变换,提高了功率转换效率。

Description

基于双有源桥的隔离型双向AC/DC变换器的控制方法
技术领域
本发明属于电力电子领域开关电源方向,涉及一种隔离型双向AC/DC变换器,具体为基于双有源桥的隔离型双向AC/DC变换器的控制方法。
背景技术
随着分布式能源及微网的发展,兼具交直流微网优点的混合微网受到学者们广泛关注。作为联接交直流微网的关键设备,双向AC/DC变换器成为研究热点。根据是否具有电气隔离功能,双向AC/DC变换器可分为非隔离型和隔离型。而非隔离型双向AC/DC变换器的直流侧和交流侧共模干扰严重,所以对隔离型双向AC/DC变换器的研究很有必要。
在非隔离型双向AC/DC变换器的交流侧引入工频变压器便可实现隔离,但工频变压器体积大,造价高。相对工频变压器,高频变压器(High Frequency Transformer,HF)具有高效率、高功率密度等优点,使其在隔离型变换器中的应用越来越多。含隔离型双向AC/DC结构的AC/DC变换器是隔离型双向AC/DC变换器的一大类。而在隔离型双向AC/DC变换器拓扑中,基于双有源桥(Dual Active Bridge,DAB)结构的双向AC/DC变换器因其具有功率密度高、模块化、结构对称且控制相对简单等优点成为研究热点。
基于DAB结构,2011年在中国电机工程学报上发表的“用于电池储能系统并网的双向可拓展变流器及其分布式控制策略”一文,提出一种用于电池储能系统的双向隔离型变流器拓扑及控制策略。该变流器拓扑由DAB和一个全桥构成。然而,其两级式的功率转换降低了变换器效率,同时中间电容的稳压要求比较高,使变换器体积较大。2014年在IEEETransactions on Power Electronics【电力电子期刊】上发表的“Optimal ZVSmodulation of single-phase single-stage bidirectional DAB AC-DC converters”,在上述拓扑结构基础上提出一种结合移相控制、占空比调节和开关频率调节的混合调制方式,可实现单级功率变换,减少了功率转换环节。然而,该控制方法比较复杂,对元件参数依赖性强,控制参数要通过查表获得,且增加了无功元件。
综上所述,现有的基于DAB结构的隔离型双向AC/DC变换器控制方法无法兼顾变换器效率和控制复杂度。
本发明中,如图1所示,基于DAB结构的隔离型双向AC/DC变换器由一个DAB和一个同步整流桥(Synchronous Rectifier,SR)串联构成,DAB的一次侧与二次侧共有八个开关管,分别是开关管S11、开关管S12、开关管S13、开关管S14、开关管S21、开关管S22、开关管S23和开关管S24,其中串联的开关管S11和开关管S12与串联的开关管S13和开关管S14并联,串联的开关管S21和开关管S22与串联的开关管S23和开关管S24并联;SR由四个开关管构成,分别是开关管Q1、开关管Q2、开关管Q3和开关管Q4,其中串联的开关管Q1和开关管Q2与串联的开关管Q3和开关管Q4并联。且构成双有源桥的所有开关管的驱动信号都是占空比为50%的方波信号,其中开关管S11与开关管S12的驱动信号互补、开关管S13与开关管S14的驱动信号互补、开关管S21与开关管S22的驱动信号互补、开关管S23与开关管S24的驱动信号互补,且开关管S21与开关管S24的驱动信号相同,图中i2为双有源桥输出电流,Llk为高频变压器漏感或外加电感;iL为通过电感Llk的电流;n为高频变压器变比;Vdc为直流侧电压实际值;vac为变换器交流侧电压;ig为变换器交流侧输出电流。
发明内容
本发明的目的在于解决上述现有的隔离型双向AC/DC变换器控制方法无法兼顾变换器效率和控制复杂度的问题,提供了基于双有源桥的隔离型双向AC/DC变换器的控制方法,该方法可以兼顾变换器效率并且降低控制的复杂程度。
本发明解决其技术问题的技术方案是:
基于双有源型的隔离型双向AC/DC变换器的控制方法,具体步骤如下:
i.对构成双有源桥的所有开关管的具体控制步骤如下:
①在隔离型双向AC/DC变换器的直流侧设置电压控制器,所述电压控制器的输入信号为直流侧电压参考值
Figure GDA0002356509240000031
和直流侧电压实际值Vdc,通过电压控制器使直流侧电压实际值Vdc稳定在直流侧电压参考值
Figure GDA0002356509240000032
所述电压控制器的输出信号为交流侧输出电流参考值
Figure GDA0002356509240000033
所述直流侧电压参考值
Figure GDA0002356509240000034
是根据应用场合设计的;
②将交流侧输出电流参考值
Figure GDA0002356509240000035
代入公式
Figure GDA0002356509240000036
计算得到主控制信号α′,式中fvar为构成双有源桥的所有开关管的设定开关频率,θ为所述变换器交流侧电压vac的电压相角;其中fvar是根据高频变压器HF的工作频率和开关器件的工作频率综合考虑决定的;其中所述变换器交流侧电压vac经过单相锁相环,得到变换器交流侧电压vac的电压相角θ;
③通过主控制信号α′调节双有源桥的内移相比D1、外移相比D2和所有开关管的实际开关频率fs,所述内移相比D1、外移相比D2和实际开关频率fs通过下述公式计算获得:
Figure GDA0002356509240000037
④内移相比D1、外移相比D2以及实际开关频率fs三者对双有源桥的所有开关管的驱动信号的控制关系如下:当
Figure GDA0002356509240000038
时,电流由所述变换器的直流侧流向交流侧,此时,构成双有源桥的所有开关管的实际开关频率为fs,开关管S11驱动信号超前开关管S14驱动信号的相角由内移相比D1控制,开关管S11驱动信号超前开关管S21驱动信号的相角由外移相比D2控制;当
Figure GDA0002356509240000039
时,电流由所述变换器的交流侧流向直流侧,此时,构成双有源桥的所有开关管的实际开关频率为fs,开关管S11驱动信号超前开关管S14驱动信号的相角由内移相比D1控制,开关管S11驱动信号超前S22驱动信号的相角由外移相比D2控制;最终实现了对双有源桥所有开关管的控制;这实现了双有源桥输出电流i2与变换器交流侧电压vac同步整流后的电压同相位;上述步骤将双移相和变频控制结合,实现了对交流侧输出电流的线性化控制;
ii.对于构成同步整流桥的所有开关管的控制如下:
①当变换器交流侧电压vac为正时,同步整流桥的开关管Q1和开关管Q4打开,开关管Q2和开关管Q3关闭;当变换器交流侧电压vac为负时,同步整流桥的开关管Q2和开关管Q3打开,开关管Q1和开关管Q4关闭,最终实现了对同步整流桥的所有开关管的控制。这一步骤实现了对双有源桥输出电流i2的逆变,使所述变换器交流侧输出电流ig和所述变换器交流侧电压vac同相位;构成同步整流桥的所有开关管工作在低频模式下,降低了开关损耗,有利于提高功率传输效率。
优选的,所述电压控制器将直流侧电压参考值
Figure GDA0002356509240000041
与直流侧电压实际值Vdc作差再通过比例积分控制后输出交流侧输出电流参考值
Figure GDA0002356509240000042
所述直流侧电压参考值
Figure GDA0002356509240000043
是相关工作人员通过应用场合设计的。
优选的,所述电压控制器之后还设置有电流控制器,通过电流控制器实现对变换器交流侧输出电流ig的闭环控制,所述电流控制器的输出信号为副控制信号Δα;先将主控制信号α′和副控制信号Δα进行相加,得到控制信号α,其中,α=α′+Δα,再将主控制信号α′替换为控制信号α,计算得出双有源桥的内移相比D1、外移相比D2、实际开关频率fs。设置电流控制器是为了能够更精确地追踪变换器交流侧输出电流ig
进一步优选的,所述电流控制器的输入信号为交流侧输出电流参考值
Figure GDA0002356509240000044
与变换器交流侧输出电流ig,将变换器交流侧输出电流ig相移90°后构造出正交电流分量,然后通过Park变换得到直流电流量id和iq,其中id是无功电流,iq是有功电流,Park变换所需相角θ为所述变换器交流侧电压vac的电压相角,将无功电流id设置为0,只对有功电流iq进行调节,再将有功电流iq和交流侧输出电流参考值
Figure GDA0002356509240000045
作和求出电流误差,所述电流误差经过PI控制后再通过Park反变换得到副控制信号Δα。由于变换器交流侧输出电流ig为正弦量,无法直接进行PI控制,故需先进行坐标变换。将无功电流id设置为0,是为了实现变换器单位功率因数运行。
优选的,所述变换器交流侧电压vac经过单相锁相环,得到变换器交流侧电压vac的电压相角θ,而vac的电压相角θ即为Park变换所需相角θ。
因为移相比的最大有效范围就是开关周期Ts的一半,故优选的所述双有源桥的内移相比D1的取值范围为[0,0.5];由公式D1=0.5-2α′和公式D2=0.5-α′可得,主控制信号α′的取值范围为[0,0.25];所述双有源桥的外移相比D2的取值范围为[0.25,0.5]。
与现有技术相比,本发明的有益效果是:(1)本发明所述的基于双有源型的隔离型双向AC/DC变换器的控制方法将双移相和变频控制结合,实现了对变换器交流侧输出电流ig的线性化控制;(2)可实现单级式功率变换,且构成同步整流桥的所有开关管工作在低频模式下,降低了开关损耗,有利于提高功率传输效率;故本发明所述控制方法既可以提高变换器效率又可以降低控制的复杂程度。
附图说明
图1为本发明所述的基于双有源型的隔离型双向AC/DC变换器电路拓扑结构。
图2为本发明所述的基于双有源型的隔离型双向AC/DC变换器的控制框图。
图3为图2增加了电流控制器后的控制框图。
图4为本发明所述控制方法中电流由直流侧流向交流侧时双有源桥的驱动信号波形。
图5为本发明所述控制方法中电流由交流侧流向直流侧时双有源桥的驱动信号波形。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其他实施方式,都属于本发明所保护的范围。
参见附图1、2、3、4,现对本发明提供的基于双有源型的隔离型双向AC/DC变换器的控制方法进行说明。
实施例一:
基于双有源型的隔离型双向AC/DC变换器的控制方法,如图2所示,具体步骤如下:
i.对构成双有源桥的所有开关管的具体控制步骤如下:
①在隔离型双向AC/DC变换器的直流侧设置电压控制器,所述电压控制器的输入信号为直流侧电压参考值
Figure GDA0002356509240000061
和直流侧电压实际值Vdc,通过电压控制器使直流侧电压实际值Vdc稳定在直流侧电压参考值
Figure GDA0002356509240000062
所述电压控制器的输出信号为交流侧输出电流参考值
Figure GDA0002356509240000063
所述直流侧电压参考值
Figure GDA0002356509240000064
是根据应用场合设计的;
②将交流侧输出电流参考值
Figure GDA0002356509240000065
代入公式
Figure GDA0002356509240000066
计算得到主控制信号α′,式中fvar为构成双有源桥的所有开关管的设定开关频率;其中fvar是根据高频变压器HF的工作频率和开关器件的工作频率综合考虑决定的;θ为所述变换器交流侧电压vac的电压相角;其中变换器交流侧电压vac经过单相锁相环,得到变换器交流侧电压vac的电压相角θ;
③通过主控制信号α′调节双有源桥的内移相比D1、外移相比D2和所有开关管的实际开关频率fs,所述内移相比D1、外移相比D2和实际开关频率fs通过下述公式计算获得:
Figure GDA0002356509240000067
④内移相比D1、外移相比D2以及实际开关频率fs三者对双有源桥的所有开关管的驱动信号的控制关系如下:当
Figure GDA0002356509240000068
时,电流由所述变换器的直流侧流向交流侧,此时,构成双有源桥的所有开关管的实际开关频率为fs,开关管S11驱动信号超前开关管S14驱动信号的相角由内移相比D1控制,开关管S11驱动信号超前开关管S21驱动信号的相角由外移相比D2控制;当
Figure GDA0002356509240000071
时,电流由所述变换器的交流侧流向直流侧,此时,构成双有源桥的所有开关管的实际开关频率为fs,开关管S11驱动信号超前开关管S14驱动信号的相角由内移相比D1控制,开关管S11驱动信号超前S22驱动信号的相角由外移相比D2控制;最终实现了对双有源桥所有开关管的控制;这实现了双有源桥输出电流i2与变换器交流侧电压vac同步整流后的电压同相位;上述步骤将双移相和变频控制结合,实现了对变换器交流侧输出电流ig的线性化控制;
ii.对于构成同步整流桥的所有开关管的控制如下:
①当变换器交流侧电压vac为正时,同步整流桥的开关管Q1和开关管Q4打开,开关管Q2和开关管Q3关闭;当变换器交流侧电压vac为负时,同步整流桥的开关管Q2和开关管Q3打开,开关管Q1和开关管Q4关闭,最终实现了对同步整流桥的所有开关管的控制。这一步步骤实现了对双有源桥输出电流i2的逆变,使所述变换器交流侧输出电流ig和所述变换器交流侧电压vac同相位;构成同步整流桥的所有开关管工作在低频模式下,降低了开关损耗,有利于提高功率传输效率。
实施例二:
基于双有源型的隔离型双向AC/DC变换器的控制方法,如图3所示,具体步骤如下:
i.对构成双有源桥的所有开关管的具体控制步骤如下:
①在隔离型双向AC/DC变换器的直流侧设置电压控制器,所述电压控制器的输入信号为直流侧电压参考值
Figure GDA0002356509240000072
和直流侧电压实际值Vdc,通过电压控制器使直流侧电压实际值Vdc稳定在直流侧电压参考值
Figure GDA0002356509240000073
所述电压控制器的输出信号为交流侧输出电流参考值
Figure GDA0002356509240000074
所述直流侧电压参考值
Figure GDA0002356509240000075
是根据应用场合设计的;
②将交流侧输出电流参考值
Figure GDA0002356509240000081
代入公式
Figure GDA0002356509240000082
计算得到主控制信号α′,式中fvar为构成双有源桥的所有开关管的设定开关频率,所述电压控制器之后还设置有电流控制器,通过电流控制器实现对变换器交流侧输出电流ig的闭环控制,所述电流控制器的输出信号为副控制信号Δα;先将主控制信号α′和副控制信号Δα进行相加,得到控制信号α,其中,α=α′+Δα,再将主控制信号α′替换为控制信号α,计算得出双有源桥的内移相比D1、外移相比D2、实际开关频率fs,具体如图2所示;θ为所述变换器交流侧电压vac的电压相角;其中fvar是根据高频变压器HF的工作频率和开关器件的工作频率综合考虑决定的;设置电流控制器是为了能够更精确地追踪交流侧输出电流ig
③通过控制信号α调节双有源桥的内移相比D1、外移相比D2和所有开关管的实际开关频率fs,所述内移相比D1、外移相比D2和实际开关频率fs通过下述公式计算获得:
Figure GDA0002356509240000083
④内移相比D1、外移相比D2以及实际开关频率fs三者对双有源桥的所有开关管的驱动信号的控制关系如下:当
Figure GDA0002356509240000084
时,电流由所述变换器的直流侧流向交流侧,此时,构成双有源桥的所有开关管的实际开关频率为fs,开关管S11驱动信号超前开关管S14驱动信号的相角由内移相比D1控制,开关管S11驱动信号超前开关管S21驱动信号的相角由外移相比D2控制;当
Figure GDA0002356509240000085
时,电流由所述变换器的交流侧流向直流侧,此时,构成双有源桥的所有开关管的实际开关频率为fs,开关管S11驱动信号超前开关管S14驱动信号的相角由内移相比D1控制,开关管S11驱动信号超前S22驱动信号的相角由外移相比D2控制,最终实现了对双有源桥所有开关管的控制。
这实现了双有源桥输出电流i2与变换器交流侧电压vac同步整流后的电压同相位;
上述步骤将双移相和变频控制结合,实现了对变换器交流侧输出电流ig的线性化控制;
ii.对于构成同步整流桥的所有开关管的控制如下:
①当变换器交流侧电压vac为正时,同步整流桥的开关管Q1和开关管Q4打开,开关管Q2和开关管Q3关闭;当变换器交流侧电压vac为负时,同步整流桥的开关管Q2和开关管Q3打开,开关管Q1和开关管Q4关闭;最终实现了对同步整流桥的所有开关管的控制。这一步骤实现了对双有源桥输出电流i2的逆变,使所述变换器交流侧输出电流ig和所述变换器交流侧电压vac同相位;且构成同步整流桥的所有开关管工作在低频模式下,降低了开关损耗,有利于提高功率传输效率。
进一步的,作为本发明所述的基于双有源桥的隔离型双向AC/DC变换器的控制方法的一种具体实施方案,如图2所示,所述电压控制器将直流侧电压参考值
Figure GDA0002356509240000091
与直流侧电压实际值Vdc作差再通过比例积分控制后输出交流侧输出电流参考值
Figure GDA0002356509240000092
所述直流侧电压参考值
Figure GDA0002356509240000093
是相关工作人员通过应用场合设计的。
进一步的,作为本发明所述的基于双有源桥的隔离型双向AC/DC变换器的控制方法的再一种具体实施方案,如图3所示,所述电流控制器的输入信号为交流侧输出电流参考值
Figure GDA0002356509240000094
与变换器交流侧输出电流ig,将变换器交流侧输出电流ig相移90°后构造出正交电流分量,然后通过Park变换得到直流电流量id和iq,其中id是无功电流,iq是有功电流,Park变换所需相角θ为所述变换器交流侧电压vac的电压相角,将无功电流id设置为0,只对有功电流iq进行调节,再将有功电流iq和交流侧输出电流参考值
Figure GDA0002356509240000095
作和求出电流误差,所述电流误差经过PI控制后再通过Park反变换得到副控制信号Δα。由于变换器交流侧输出电流ig为正弦量,无法直接进行PI控制,故需先进行坐标变换。将无功电流id设置为0,是为了实现变换器单位功率因数运行。
进一步的,作为本发明所述的基于双有源桥的隔离型双向AC/DC变换器的控制方法的再一种具体实施方案,如图3所示,所述变换器交流侧电压vac经过单相锁相环,得到变换器交流侧电压vac的电压相角θ,vac的电压相角θ即为Park变换所需相角θ,通过单向锁相环获得电压相角操作简单,进一步降低了控制的复杂程度。
因为移相比的最大有效范围就是开关周期Ts的一半,故优选的所述双有源桥的内移相比D1的取值范围为[0,0.5];由公式D1=0.5-2α′和公式D2=0.5-α′可得,主控制信号α′的取值范围为[0,0.25];所述双有源桥的外移相比D2的取值范围为[0.25,0.5]。
隔离型双向AC/DC变换器的双有源桥的驱动波形如图4、图5所示,Ts是构成DAB的所有开关管的开关周期,Ts=1/fs
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (6)

1.基于双有源桥的隔离型双向AC/DC变换器的控制方法,其特征在于,具体步骤如下:
i.对构成双有源桥的所有开关管的具体控制步骤如下:
①在隔离型双向AC/DC变换器的直流侧设置电压控制器,所述电压控制器的输入信号为直流侧电压参考值
Figure FDA0002392761140000011
和直流侧电压实际值Vdc,通过电压控制器使直流侧电压实际值Vdc稳定在直流侧电压参考值
Figure FDA0002392761140000012
所述电压控制器的输出信号为交流侧输出电流参考值
Figure FDA0002392761140000013
②将交流侧输出电流参考值
Figure FDA0002392761140000014
代入公式
Figure FDA0002392761140000015
计算得到主控制信号α′,式中fvar为构成双有源桥的所有开关管的设定开关频率,Llk为高频变压器漏感或外加电感,θ为所述变换器交流侧电压vac的电压相角,n为高频变压器变比;
③通过主控制信号α′调节双有源桥的内移相比D1、外移相比D2和所有开关管的实际开关频率fs,所述内移相比D1、外移相比D2和实际开关频率fs通过下述公式计算获得:
Figure FDA0002392761140000016
④内移相比D1、外移相比D2以及实际开关频率fs三者对双有源桥的所有开关管的驱动信号的控制关系如下:当
Figure FDA0002392761140000017
时,电流由所述变换器的直流侧流向交流侧,此时,构成双有源桥的所有开关管的实际开关频率为fs,开关管S11驱动信号超前开关管S14驱动信号的相角由内移相比D1控制,开关管S11驱动信号超前开关管S21驱动信号的相角由外移相比D2控制;当
Figure FDA0002392761140000018
时,电流由所述变换器的交流侧流向直流侧,此时,构成双有源桥的所有开关管的实际开关频率为fs,开关管S11驱动信号超前开关管S14驱动信号的相角由内移相比D1控制,开关管S11驱动信号超前S22驱动信号的相角由外移相比D2控制;最终实现了对双有源桥所有开关管的控制;
ii.对于构成同步整流桥的所有开关管的控制如下:
①当变换器交流侧电压vac为正时,同步整流桥的开关管Q1和开关管Q4打开,开关管Q2和开关管Q3关闭;当变换器交流侧电压vac为负时,同步整流桥的开关管Q2和开关管Q3打开,开关管Q1和开关管Q4关闭,最终实现了对同步整流桥的所有开关管的控制。
2.根据权利要求1所述的基于双有源桥的隔离型双向AC/DC变换器的控制方法,其特征在于,所述电压控制器将直流侧电压参考值
Figure FDA0002392761140000021
与直流侧电压实际值Vdc作差再通过比例积分控制后输出交流侧输出电流参考值
Figure FDA0002392761140000022
3.根据权利要求1或2所述的基于双有源桥的隔离型双向AC/DC变换器的控制方法,其特征在于,所述电压控制器之后还设置有电流控制器,通过电流控制器实现对变换器交流侧输出电流ig的闭环控制,所述电流控制器的输出信号为副控制信号Δα;先将主控制信号α′和副控制信号Δα进行相加,得到控制信号α,其中,α=α′+Δα,再将主控制信号α′替换为控制信号α,计算得出双有源桥的内移相比D1、外移相比D2、实际开关频率fs
4.根据权利要求3所述的基于双有源桥的隔离型双向AC/DC变换器的控制方法,其特征在于,所述电流控制器的输入信号为交流侧输出电流参考值
Figure FDA0002392761140000023
与变换器交流侧输出电流ig,将变换器交流侧输出电流ig相移90°后构造出正交电流分量,然后通过Park变换得到直流电流量id和iq,其中id是无功电流,iq是有功电流,Park变换所需相角θ为所述变换器交流侧电压vac的电压相角,将无功电流id设置为0,只对有功电流iq进行调节,再将有功电流iq和交流侧输出电流参考值
Figure FDA0002392761140000024
作和求出电流误差,所述电流误差经过PI控制后再通过Park反变换得到副控制信号Δα。
5.根据权利要求4所述的基于双有源桥的隔离型双向AC/DC变换器的控制方法,其特征在于,所述变换器交流侧电压vac经过单相锁相环,得到变换器交流侧电压vac的电压相角θ。
6.根据权利要求4或5所述的基于双有源桥的隔离型双向AC/DC变换器的控制方法,其特征在于,双有源桥的内移相比D1的取值范围为[0,0.5]。
CN201811054289.XA 2018-09-11 2018-09-11 基于双有源桥的隔离型双向ac/dc变换器的控制方法 Active CN108964476B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811054289.XA CN108964476B (zh) 2018-09-11 2018-09-11 基于双有源桥的隔离型双向ac/dc变换器的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811054289.XA CN108964476B (zh) 2018-09-11 2018-09-11 基于双有源桥的隔离型双向ac/dc变换器的控制方法

Publications (2)

Publication Number Publication Date
CN108964476A CN108964476A (zh) 2018-12-07
CN108964476B true CN108964476B (zh) 2020-04-28

Family

ID=64475231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811054289.XA Active CN108964476B (zh) 2018-09-11 2018-09-11 基于双有源桥的隔离型双向ac/dc变换器的控制方法

Country Status (1)

Country Link
CN (1) CN108964476B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11996728B2 (en) * 2020-12-31 2024-05-28 Shenzhen Yama Electronic Co., Ltd. Earphone charging case with adapter function

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021127995A1 (en) * 2019-12-24 2021-07-01 Cree, Inc. Circuits and methods for controlling bidirectional cllc converters
CN112398349B (zh) * 2020-10-19 2021-10-15 浙江大学 交直流互联隔离型双向dc-ac变换器及其双向分担控制方法
CN112910262A (zh) * 2021-01-21 2021-06-04 沈阳工业大学 一种集成dab和llc谐振电路的隔离dc-dc变换器
CN113328632B (zh) * 2021-05-08 2022-05-06 南京君海数能科技有限公司 交流链路直流偏置电流检测及抑制方法、设备和介质
CN113968152B (zh) * 2021-11-02 2022-09-27 合肥工业大学 电动汽车双向无线充电控制方法
CN116505779A (zh) * 2023-05-17 2023-07-28 江苏科曜能源科技有限公司 一种单相储能装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673719B2 (en) * 2013-10-17 2017-06-06 The Governing Council Of The University Of Toronto Dual Active Bridge with flyback mode
CN105099200B (zh) * 2015-07-11 2017-08-04 中国矿业大学(北京) 移相控制双有源桥直流变换器交流相量分析法及建模方法
CN107947585B (zh) * 2017-11-03 2019-12-20 苏州海德蓝电气科技有限公司 一种双全桥dc/dc变换器的负荷前馈控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11996728B2 (en) * 2020-12-31 2024-05-28 Shenzhen Yama Electronic Co., Ltd. Earphone charging case with adapter function

Also Published As

Publication number Publication date
CN108964476A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN108964476B (zh) 基于双有源桥的隔离型双向ac/dc变换器的控制方法
Prasanna et al. Novel bidirectional single-phase single-stage isolated AC–DC converter with PFC for charging of electric vehicles
WO2019136574A1 (zh) 外置并联分时选择开关电压型单级多输入低频环节逆变器
EP3637611B1 (en) Voltage-type single-stage multi-input high frequency link inverter having built-in parallel time-sharing selection switches
CN108880268B (zh) 电压源型半有源桥dc-dc变换器的多模式控制方法
CN106712522A (zh) 半有源桥dc‑dc变换器的pwm‑移相复合控制方法
Yazdani et al. Design of dual active bridge isolated bi-directional DC converter based on current stress optimization
Wei et al. A high efficiency single stage bi-directional battery charger with magnetic control
CN111682787A (zh) 基于隔离变换器模块的单级式三相交直流变换器及方法
WO2021068640A1 (zh) 直流升压变换电路及装置
CN114977872A (zh) 双向双有源桥型微逆变器及功率调制模式切换方法、系统
Zhang et al. A modulation scheme with full range ZVS and natural power factor correction for bridgeless single-stage isolated AC–DC converter
Xu et al. A Novel Phase-Shift Pulsewidth Modulation Method for Light-Load Bidirectional Resonant Converter
WO2023226724A1 (zh) 提高微逆变器效率的方法及双有源桥型微逆变器
Jiao et al. LLC Resonant Converter Based Single-stage Inverter with Multi-resonant Branches using Variable Frequency Modulation
Wang et al. Research on loss reduction of dual active bridge converter over wide load range for solid state transformer application
CN111817412A (zh) 一种基于串联数字化稳压器的中高压充电系统控制方法
Zhan et al. A high step-up bidirectional isolated dual-active-bridge converter with three-level voltage-doubler rectifier for energy storage applications
Takaoka et al. Isolated DC to single-phase AC converter with active power decoupling capability for battery storage system
Liu et al. The improved dual active bridge converter with a modified phase shift and variable frequency control
Zhang et al. Hybrid structure for an input-parallel output-serial dc-dc combined converter with high efficiency and high power density
TWI685169B (zh) 雙向儲能系統
Singh et al. Modelling and control of novel bidirectional single-phase single-stage isolated AC-DC converter with PFC for charging of electric vehicles
CN114312382A (zh) 一种适用于电动汽车有线无线一体化充电桩的系统拓扑
Liu et al. A flexible control scheme for single-stage DAB AC/DC converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant