CN111709066A - 一种基于影响矩阵的钢桁桥预拱度设置方法 - Google Patents

一种基于影响矩阵的钢桁桥预拱度设置方法 Download PDF

Info

Publication number
CN111709066A
CN111709066A CN202010398677.0A CN202010398677A CN111709066A CN 111709066 A CN111709066 A CN 111709066A CN 202010398677 A CN202010398677 A CN 202010398677A CN 111709066 A CN111709066 A CN 111709066A
Authority
CN
China
Prior art keywords
steel truss
camber
truss bridge
influence matrix
upper chords
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010398677.0A
Other languages
English (en)
Other versions
CN111709066B (zh
Inventor
杨光武
何浩
郑亚鹏
万田保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Major Bridge Reconnaissance and Design Institute Co Ltd
Original Assignee
China Railway Major Bridge Reconnaissance and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Major Bridge Reconnaissance and Design Institute Co Ltd filed Critical China Railway Major Bridge Reconnaissance and Design Institute Co Ltd
Priority to CN202010398677.0A priority Critical patent/CN111709066B/zh
Publication of CN111709066A publication Critical patent/CN111709066A/zh
Application granted granted Critical
Publication of CN111709066B publication Critical patent/CN111709066B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Business, Economics & Management (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Computational Mathematics (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明涉及一种基于影响矩阵的钢桁桥预拱度设置方法,包括以下步骤:确定成桥状态m个控制节点预拱度的目标值,记为:{B}={b1 b2…bi…bm}T;选定n根上弦杆的伸缩量组成未知函数记为:{X}={x1 x2…xi…xn}T;逐次调整n根上弦杆的伸缩量,得到钢桁桥m个控制节点竖向位移影响矩阵;确定n根上弦杆容许最大伸缩量{D}={d1 d2…dn}T,m个控制节点距离目标值的容许偏差量{E}={e1 e2…em}T;根据控制节点预拱度的目标值、m个控制节点竖向位移影响矩阵、上弦杆的容许最大伸缩量、m个控制节点的容许偏差量建立约束条件,利用非线性规划求解出n根上弦杆的伸缩量。本发明基于影响矩阵及非线性规划方法,能够在只调整部分上弦杆伸缩量的情况下快速方便地设置钢桁桥预拱度。

Description

一种基于影响矩阵的钢桁桥预拱度设置方法
技术领域
本发明涉及桥梁工程技术领域,特别涉及一种基于影响矩阵的钢 桁桥预拱度设置方法。
背景技术
目前,在桥梁施工过程中,桥梁的预拱度仍是一个重要的指标,预 拱度为抵消梁、拱、桁架等结构在荷载作用下产生的挠度,而在施工或 制造时所预留的与位移方向相反的校正量。
相关技术中,一种用于大跨度钢桁梁桥预拱度的设置方法,其主要 包括以下步骤:对全桥进行结构分析,按照设计要求,采用大型有限元 软件,计算分析全桥的理论预拱度;建立空间闭合计算模型,推导单元 刚度矩阵,然后建立物理平衡方程;通过上弦杆伸缩来实现的条件,转 换成上弦杆单元刚度相对下弦杆和斜腹杆单元刚度高阶无穷小形式,推导出实现预拱度的上弦杆伸缩表达式;将实现预拱度的上弦杆伸缩 表达式编译成MATLAB程序,然后将上述通过计算分析的理论预拱度作 为基础参数,即初步获得全桥上弦杆伸缩量。
但是,由于通过这种方法计算出来的是全桥上弦杆的伸缩量,为达 到预拱度的设计要求,需要对全桥的上弦杆按照计算出来的伸缩量一 一进行调整,不能仅选择部分容易施工的上弦杆来调整其预拱度,导致 桥梁施工的工程量较大,有些难以施工的上弦杆也必须要调整其伸缩 量,使施工难度增加。
发明内容
本发明实施例的目的在于提供一种基于影响矩阵的钢桁桥预拱度 设置方法,以解决相关技术中调整全桥上弦杆的伸缩量的工程量大,且 施工难度大的问题。
为实现上述目的,本发明实施例提供了一种基于影响矩阵的钢桁 桥预拱度设置方法,包括以下步骤:确定成桥状态m个控制节点预拱 度的目标值,记为:{B}={b1 b2 …bi … bm}T,其中bi表示第i个所述 控制节点预拱度的目标值,T表示转置,将行向量转换为列向量;选定 n根上弦杆的伸缩量组成未知函数记为:{X}={x1 x2 … xi … xn}T, 其中xi表示第i个所述上弦杆的伸缩量,T表示转置,将行向量转换为 列向量;逐次调整n根所述上弦杆的伸缩量,得到钢桁桥m个所述控 制节点竖向位移影响矩阵;确定n根所述上弦杆容许最大伸缩量{D}= {d1 d2 … dn}T,m个所述控制节点距离目标值的容许偏差量{E}= {e1e2 … em}T,其中T表示转置;根据所述控制节点预拱度的目标 值、m个所述控制节点竖向位移影响矩阵、所述上弦杆的容许最大伸缩 量、m个所述控制节点的容许偏差量建立约束条件,利用非线性规划求 解出n根所述上弦杆的伸缩量。
一些实施例中,在确定各所述控制节点预拱度的目标值时,所述目 标值为钢桁桥自身结构的自重标准值与1/2车道荷载频遇值共同产生 的挠度值的相反数。
一些实施例中,所述目标值还包括所述钢桁桥设置的竖曲线的竖 直高度值。
一些实施例中,逐次调整n根所述上弦杆的伸缩量,具体指:依次 将n根所述上弦杆伸缩单位长度。
一些实施例中,第j根所述上弦杆伸缩单位长度,引起m个所述控 制节点的竖向位移变化量记为:{A}j={a1j … aij … amj}T,其中,j是 所述上弦杆的序号,且j介于1到n,i是所述控制节点的序号,且i 介于1到m,T表示转置,逐次调整n根所述上弦杆,依次排列形成所 述影响矩阵,记为:
Figure BDA0002488512200000031
一些实施例中,通过计算软件计算得到第j根所述上弦杆伸缩单 位长度引起m个所述控制节点的竖向位移变化量:{A}j= {a1j … aij … amj}T
一些实施例中,在利用非线性规划求解n根所述上弦杆的伸缩量 时,对m个所述控制节点的竖向位移建立约束条件: {B}-{E}≤[A]{X}≤{B}+{E}。
一些实施例中,在利用非线性规划求解n根所述上弦杆的伸缩量 时,对所述未知函数建立约束条件:{-D}≤{X}≤{D}。
一些实施例中,将约束条件{B}-{E}≤[A]{X}≤{B}+{E}和 {-D}≤{X}≤{D}合并为:
Figure BDA0002488512200000032
其中,[I]为单位矩阵,并利用非线性规 划函数求解出n根所述上弦杆的伸缩量{X}。
一些实施例中,在逐次调整n根所述上弦杆的伸缩量时,下弦杆 保持实际长度不变。
本发明提供的技术方案带来的有益效果包括:
本发明实施例提供了一种基于影响矩阵的钢桁桥预拱度设置方法, 由于逐次调整n根所述上弦杆的伸缩量,可以得到钢桁桥m个所述控 制节点竖向位移影响矩阵,然后再根据所述上弦杆容许最大伸缩量以 及所述控制节点的容许偏差量建立约束条件,利用非线性规划可以求 解出n根所述上弦杆的伸缩量,在对钢桁桥整体的预拱度进行设计调 整时,可以根据实际施工情况选择较方便施工的部分所述上弦杆,并对 此部分所述上弦杆进行设计计算,求解出此部分所述上弦杆的伸缩量, 通过仅对选定出的部分所述上弦杆进行伸缩调整,可以实现全钢桁桥 的预拱度设置,不需对钢桁桥全部的所述上弦杆进行调整,因此,大大 减少了施工的工程量和施工难度,也加快了施工进程。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例 描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附 图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种基于影响矩阵的钢桁桥预拱度设 置方法的各控制节点目标值的示意图;
图2为本发明实施例提供的一种基于影响矩阵的钢桁桥预拱度设 置方法的理论预拱度值与实际预拱度值的示意图;
图3为本发明实施例提供的钢桁桥预拱度实施效果的结构示意图;
图4为本发明实施例提供的主桁上弦节间伸缩示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合 本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整 地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部 的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种基于影响矩阵的钢桁桥预拱度设置方法, 其能解决相关技术中调整全桥上弦杆的伸缩量的工程量大,且施工难 度大的问题。
参见图1所示,本发明实施例提供的一种基于影响矩阵的钢桁桥 预拱度设置方法,包括以下步骤:
步骤1:确定成桥状态m个控制节点预拱度的目标值,记为: {B}={b1 b2 … bi …bm}T,其中bi表示第i个所述控制节点预拱度的目 标值,T表示转置,将行向量转换为列向量,便于计算。
参见图1所示,在一些实施例中,于步骤1中,在确定各所述控 制节点预拱度的目标值时,所述目标值为钢桁桥自身结构的自重标准 值与1/2车道荷载频遇值共同产生的挠度值的相反数;其中,钢桁桥 自身结构的自重标准值即为图1中的恒载挠度值,单位为mm,1/2车 道荷载频遇值即为图1中的活载挠度值,单位为mm;本实施例中,通 过受力分析得到,第1个所述控制节点处产生的所述恒载挠度值为 1.3mm,第1个所述控制节点处产生的所述活载挠度值为0.0mm,所以, 第1个所述控制节点处的所述目标值为b1=-1.3mm。
参见图1所示,在一些可选的实施例中,于步骤1中,所述目标 值还可以叠加上所述钢桁桥设置的桥梁竖曲线的竖直高度值,即所述 目标值为所述钢桁桥自身结构的自重标准值与1/2车道荷载频遇值共 同产生的挠度值的相反数再加上所述竖曲线的竖直高度值;所述竖曲 线的设置一般是为了所述钢桁桥桥面的排水或者是为了改善行车的视 线诱导和舒适感,本实施例中,参见图1所示,第1个所述控制节点 处的桥梁竖曲线值为-2415.5mm,所述目标值叠加了所述竖曲线的竖直 高度值后,得到b1=-1.3+(-2415.5)=-2416.8mm,参见图2中所示出 的桥梁理论预拱度的目标值,可以看到第1个所述控制节点处的所述 目标值是叠加了桥梁的所述竖曲线得到的值为-2416.8mm。
步骤2:选定n根上弦杆的伸缩量组成未知函数记为: {X}={x1 x2 … xi … xn}T,其中xi表示第i个所述上弦杆的伸缩量,T 表示转置,将行向量转换为列向量。
参见图1所示,在一些实施例中,于步骤2中,在选择需要调整 伸缩量的所述上弦杆时,可以优先选择方便施工的部分所述上弦杆,可 以不调整较难施工的部分所述上弦杆,本实施例中,参见图1所示,仅 示出了沿纵桥向方向的对称中心线一侧的所述钢桁桥,此部分的所述 钢桁桥优选调整0号、1号、2号、7号、8号、9号、10号、11号、 12号、13号、17号、18号、19号、20号、21号共计15根所述上弦 杆的伸缩量,而其余所述上弦杆不进行调整,而对称中心线另一侧的所 述钢桁桥上弦杆的伸缩量对应此部分进行调整;将选定的15根所述上 弦杆的伸缩量组成未知函数记为:{X}={x1 x2 … x15}T,其中,X是最 终需要求得的15根所述上弦杆的伸缩量,即n=15,且m>n。
步骤3:逐次调整n根所述上弦杆的伸缩量,得到钢桁桥m个所述 控制节点竖向位移影响矩阵。
在一些可选的实施例中,于步骤3中,逐次调整n根所述上弦杆 的伸缩量,可以具体指:依次将n根所述上弦杆伸缩单位长度;本实施 例中,优选将15根所述上弦杆均伸长单位长度1mm。
在一些实施例中,于步骤3中,在逐次调整n根所述上弦杆的伸 缩量时,可以保持所述钢桁桥下弦杆的实际长度不变。
在一些实施例中,于步骤3中,在将第j根所述上弦杆伸缩单位长 度后,通过计算软件计算得到第j根所述上弦杆伸缩单位长度引起m个 所述控制节点的竖向位移变化量为:{A}j={a1j … aij … amj}T,其中, j是所述上弦杆的序号,且j介于1到n,i是所述控制节点的序号,且 i介于1到m,T表示转置,逐次调整n根所述上弦杆,依次排列形成 所述影响矩阵,记为:
Figure BDA0002488512200000061
本实施例中, n=15,j介于1到15。
步骤4:确定n根所述上弦杆容许最大伸缩量{D}= {d1 d2 … dn}T,m个所述控制节点距离目标值的容许偏差量{E}= {e1 e2 … em}T,其中T表示转置。
在一些实施例中,于步骤4中,在确定所述上弦杆容许最大伸缩 量D时,容许最大伸缩量D的数值太大可能会导致施工不便,所以工程 师可以根据工程施工的方便程度来确定其数值。
在一些可选的实施例中,于步骤4中,所述容许偏差量可以根据 工程需要进行设定,比如所述容许偏差量可以设置为1mm。
步骤5:根据所述控制节点预拱度的目标值、m个所述控制节点竖 向位移影响矩阵、所述上弦杆的容许最大伸缩量、m个所述控制节点的 容许偏差量建立约束条件,利用非线性规划求解出n根所述上弦杆的 伸缩量。
在一些实施例中,于步骤5中,在利用非线性规划求解n根所述 上弦杆的伸缩量时,对m个所述控制节点的竖向位移建立约束条件: {B}-{E}≤[A]{X}≤{B}+{E}。
在一些可选的实施例中,于步骤5中,在利用非线性规划求解n根 所述上弦杆的伸缩量时,对所述未知函数建立约束条件: {-D}≤{X}≤{D}。
在一些实施例中,于步骤5中,将上述约束条件 {B}-{E}≤[A]{X}≤{B}+{E}和{-D}≤{X}≤{D}合并为:
Figure BDA0002488512200000071
其中,[I]为单位矩阵,
Figure BDA0002488512200000072
并利用非线性规划函数通过MATLAB求 解出n根所述上弦杆的伸缩量{X},然后根据计算出的所述上弦杆的伸 缩量{X}的值来调整选定出的n根所述上弦杆得到图3中示出的实施效 果,调整完之后测量各所述控制节点处的竖向位移即为图2中所示出 的厂设拱度值,各所述控制节点处的厂设拱度值与各所述控制节点的 目标值越接近表明调整的效果越好;并且工程师可以根据需要设计所 述上弦杆的伸缩量{X}的精度,可以达到1mm级别精度。
本发明实施例提供的一种基于影响矩阵的钢桁桥预拱度设置方法 的原理为:
由于逐次调整n根所述上弦杆的伸缩量,可以得到钢桁桥m个所 述控制节点竖向位移影响矩阵,然后再根据所述上弦杆容许最大伸缩 量以及所述控制节点的容许偏差量建立约束条件,利用非线性规划可 以求解出n根所述上弦杆的伸缩量,在对钢桁桥整体的预拱度进行设 计调整时,可以根据实际施工情况选择较方便施工的部分所述上弦杆, 并对此部分所述上弦杆进行设计计算,求解出此部分所述上弦杆的伸 缩量,通过仅对选定出的部分所述上弦杆进行伸缩调整,可以实现全钢 桁桥的预拱度设置,不需对钢桁桥全部的所述上弦杆进行调整,因此, 大大减少了施工的工程量和施工难度,也减少了设计工作量,加快了施 工进程;此预拱度设置方法可以适用于任何等高或变高钢桁梁(包括缆 索体系钢桁梁),以及任何腹杆布置形式。
在本发明的描述中,需要说明的是,术语“上”、“下”等指示的 方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描 述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有 特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限 制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接” 应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体 地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以 通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普 通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体 含义。
需要说明的是,在本发明中,诸如“第一”和“第二”等之类的关 系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来, 而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系 或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵 盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者 设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是 还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限 制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所 述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理 解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说 将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精 神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制 于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特 点相一致的最宽的范围。

Claims (10)

1.一种基于影响矩阵的钢桁桥预拱度设置方法,其特征在于,包括以下步骤:
确定成桥状态m个控制节点预拱度的目标值,记为:{B}={b1 b2…bi…bm}T,其中bi表示第i个所述控制节点预拱度的目标值,T表示转置,将行向量转换为列向量;
选定n根上弦杆的伸缩量组成未知函数记为:{X}={x1 x2…xi…xn}T,其中xi表示第i个所述上弦杆的伸缩量,T表示转置,将行向量转换为列向量;
逐次调整n根所述上弦杆的伸缩量,得到钢桁桥m个所述控制节点竖向位移影响矩阵;
确定n根所述上弦杆容许最大伸缩量{D}={d1 d2…dn}T,m个所述控制节点距离目标值的容许偏差量{E}={e1 e2…em}T,其中T表示转置;
根据所述控制节点预拱度的目标值、m个所述控制节点竖向位移影响矩阵、所述上弦杆的容许最大伸缩量、m个所述控制节点的容许偏差量建立约束条件,利用非线性规划求解出n根所述上弦杆的伸缩量。
2.如权利要求1所述的基于影响矩阵的钢桁桥预拱度设置方法,其特征在于:
在确定各所述控制节点预拱度的目标值时,所述目标值为钢桁桥自身结构的自重标准值与1/2车道荷载频遇值共同产生的挠度值的相反数。
3.如权利要求2所述的基于影响矩阵的钢桁桥预拱度设置方法,其特征在于:
所述目标值还可包括所述钢桁桥设置的竖曲线的竖直高度值。
4.如权利要求1所述的基于影响矩阵的钢桁桥预拱度设置方法,其特征在于:
逐次调整n根所述上弦杆的伸缩量,具体指:依次将n根所述上弦杆伸缩单位长度。
5.如权利要求4所述的基于影响矩阵的钢桁桥预拱度设置方法,其特征在于:
第j根所述上弦杆伸缩单位长度,引起m个所述控制节点的竖向位移变化量记为:{A}j={a1j…aij…amj}T,其中,j是所述上弦杆的序号,且j介于1到n,i是所述控制节点的序号,且i介于1到m,T表示转置,逐次调整n根所述上弦杆,依次排列形成所述影响矩阵,记为:
Figure FDA0002488512190000021
6.如权利要求5所述的基于影响矩阵的钢桁桥预拱度设置方法,其特征在于:通过计算软件计算得到第j根所述上弦杆伸缩单位长度引起m个所述控制节点的竖向位移变化量:{A}j={a1j…aij…amj}T
7.如权利要求5所述的基于影响矩阵的钢桁桥预拱度设置方法,其特征在于:
在利用非线性规划求解n根所述上弦杆的伸缩量时,对m个所述控制节点的竖向位移建立约束条件:{B}-{E}≤[A]{X}≤{B}+{E}。
8.如权利要求7所述的基于影响矩阵的钢桁桥预拱度设置方法,其特征在于:
在利用非线性规划求解n根所述上弦杆的伸缩量时,对所述未知函数建立约束条件:{-D}≤{X}≤{D}。
9.如权利要求8所述的基于影响矩阵的钢桁桥预拱度设置方法,其特征在于:
将约束条件{B}-{E}≤[A]{X}≤{B}+{E}和{-D}≤{X}≤{D}合并为:
Figure FDA0002488512190000031
其中,[I]为单位矩阵,并利用非线性规划函数求解出n根所述上弦杆的伸缩量{X}。
10.如权利要求1所述的基于影响矩阵的钢桁桥预拱度设置方法,其特征在于:
在逐次调整n根所述上弦杆的伸缩量时,下弦杆保持实际长度不变。
CN202010398677.0A 2020-05-12 2020-05-12 一种基于影响矩阵的钢桁桥预拱度设置方法 Active CN111709066B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010398677.0A CN111709066B (zh) 2020-05-12 2020-05-12 一种基于影响矩阵的钢桁桥预拱度设置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010398677.0A CN111709066B (zh) 2020-05-12 2020-05-12 一种基于影响矩阵的钢桁桥预拱度设置方法

Publications (2)

Publication Number Publication Date
CN111709066A true CN111709066A (zh) 2020-09-25
CN111709066B CN111709066B (zh) 2023-10-17

Family

ID=72537453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010398677.0A Active CN111709066B (zh) 2020-05-12 2020-05-12 一种基于影响矩阵的钢桁桥预拱度设置方法

Country Status (1)

Country Link
CN (1) CN111709066B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114741925A (zh) * 2022-04-15 2022-07-12 中铁大桥勘测设计院集团有限公司 杆件伸缩量的计算方法、装置、设备及可读存储介质
CN116226972A (zh) * 2023-01-04 2023-06-06 中铁大桥勘测设计院集团有限公司 一种连续钢桁梁预拱度设置方法及连续钢桁梁

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950001040A (ko) * 1993-06-07 1995-01-03 박기석 장스판 건축물의 시공방법
US20120247055A1 (en) * 2009-12-14 2012-10-04 Illinois Tool Works Inc. Structural unit comprising a truss and fibrous cementitious slab building element connected together
CN109583119A (zh) * 2018-12-11 2019-04-05 佛山科学技术学院 一种用于大跨度下承式钢桁梁桥厂制预拱度的设置方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950001040A (ko) * 1993-06-07 1995-01-03 박기석 장스판 건축물의 시공방법
US20120247055A1 (en) * 2009-12-14 2012-10-04 Illinois Tool Works Inc. Structural unit comprising a truss and fibrous cementitious slab building element connected together
CN109583119A (zh) * 2018-12-11 2019-04-05 佛山科学技术学院 一种用于大跨度下承式钢桁梁桥厂制预拱度的设置方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
冯沛: "大跨度铁路连续钢桁梁桥预拱度设置研究", 《铁道标准设计》 *
冯沛: "大跨度铁路连续钢桁梁桥预拱度设置研究", 《铁道标准设计》, vol. 60, no. 4, 30 April 2016 (2016-04-30), pages 62 - 63 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114741925A (zh) * 2022-04-15 2022-07-12 中铁大桥勘测设计院集团有限公司 杆件伸缩量的计算方法、装置、设备及可读存储介质
CN114741925B (zh) * 2022-04-15 2023-12-29 中铁大桥勘测设计院集团有限公司 杆件伸缩量的计算方法、装置、设备及可读存储介质
CN116226972A (zh) * 2023-01-04 2023-06-06 中铁大桥勘测设计院集团有限公司 一种连续钢桁梁预拱度设置方法及连续钢桁梁
CN116226972B (zh) * 2023-01-04 2024-04-19 中铁大桥勘测设计院集团有限公司 一种连续钢桁梁预拱度设置方法及连续钢桁梁

Also Published As

Publication number Publication date
CN111709066B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
CN111523172B (zh) 一种空间异形索面悬索桥主缆成桥线形分析方法
CN111709066A (zh) 一种基于影响矩阵的钢桁桥预拱度设置方法
CN108460229B (zh) 连续桥面结构桥梁拉索内力的调整方法
CN111931400B (zh) 一种协作体系桥交叉吊索数量确定方法
CN111428296B (zh) 一种连续钢桁梁预拱度设计方法
Cluley et al. Analysis of concrete cable-stayed bridges for creep, shrinkage and relaxation effects
CN111353246A (zh) 一种混凝土构件设计的静动力多目标拓扑演化方法
CN114329697A (zh) 横向分布活载作用下悬索桥结构变形和内力的确定方法
CN117271949B (zh) 考虑弹性边界和大垂度影响的悬索自振分析方法及系统
CN110362872B (zh) 一种用于吊挂看台的三向定位高精度控制方法
CN115357965B (zh) 自锚式悬索桥及其成桥线形确定方法
CN109252441B (zh) 一种变截面箱梁剪力滞效应的分析方法
CN115983077A (zh) Y型拱桥斜拉扣挂法扣索索力获取方法、设备及介质
CN113468632B (zh) 一种偏心活载作用下的悬索桥全桥响应的确定方法
CN113255029B (zh) 一种活载作用下悬索桥结构变形及内力的确定方法
CN112048988B (zh) 一种斜拉桥斜拉索优化方法和系统
CN111737805B (zh) 索结构形态分析中弹性边界的一种处理方法
CN114197316A (zh) 斜拉桥拉索张拉控制方法和装置
CN114896844B (zh) 一种拱桥扣背索索力数据处理方法、系统和存储介质
CN110472376B (zh) 一种异形塔固结系统支撑件刚度识别的方法
CN113722794B (zh) 一种正交异性钢桥面系板桁组合结构有限元模拟方法
CN113011059A (zh) 一种预应力小箱梁桥的预应力钢束拓扑优化设计方法
Wang A new type of self-stressed equilibrium cable-strut system made of reciprocal prisms
Bohnhoff Estimating frame stiffness and eave loads for diaphragm analysis of post-frame buildings
Hohol et al. Structural efficiency of steel combined trusses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant