CN111701594A - 一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法 - Google Patents

一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法 Download PDF

Info

Publication number
CN111701594A
CN111701594A CN202010518571.XA CN202010518571A CN111701594A CN 111701594 A CN111701594 A CN 111701594A CN 202010518571 A CN202010518571 A CN 202010518571A CN 111701594 A CN111701594 A CN 111701594A
Authority
CN
China
Prior art keywords
preparation
modified
micro
heat treatment
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010518571.XA
Other languages
English (en)
Inventor
康毅进
陈杨
饶袁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010518571.XA priority Critical patent/CN111701594A/zh
Publication of CN111701594A publication Critical patent/CN111701594A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法。所述的材料是将镍盐与钒盐分散于超纯水中,随后放入基底材料,进行水热反应,最后经过热处理制备得到。本发明利用金属离子间还原能力和离子迁移能力的差异,非模板法制备相分离的三维多孔杂化结构。按照本发明所制备的材料结构稳定、纳米孔多、界面丰富、比表面积大、导电性好、物质传输和气体泡脱附快,表现出优异的电催化析氢和析氧活性以及稳定性。同时,本发明方法原料简单、操作性强、条件易控、适用性广,且具有工业应用潜力。

Description

一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的 制备方法
【技术领域】
本发明属于能源转换与存储领域,具体涉及一种单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法。
【背景技术】
煤、石油和天然气等化石能源的日益匮乏及其使用过程中伴随的污染物和碳排放,迫切需要开发和利用清洁能源,因此,能源转换与存储成为当今一大研究热点。因晶体结构多变,室温下呈金属性,以及具有强电子-电子相互作用,V2O3在锂离子电池、超级电容器、燃料电池等新能源领域引起广泛关注。但受制于电子结构,单组分V2O3的电化学性能并非理想,进而限制了其应用。随着纳米技术的发展,组分调控和微纳米结构调控被认为是进一步提升V2O3电化学活性和稳定性行之有效的方法,特别是其电催化性能。其中,负载型三维多孔杂化结构因其突出的物理化学优势,拥有更广阔的电化学应用前景。一方面,从其物理结构来看,其比表面积大、孔道丰富、结构稳定、结合牢固,可充分暴露反应活性物质、有效缩短物质传输路径、降低反应内阻和减少材料脱落,保障反应的快速平稳进行;另一方面,从其电子结构来看,物质间的相互作用可协同改善单一组分的本征活性和电化学稳定性,甚至催生新的电化学活性,为材料提供无限的应用可能。因此,非模板法制备具有三维多孔结构的V2O3基复合材料对进一步扩宽和提升V2O3电化学性能具有重要意义。
本发明巧妙利用多金属氧化物中离子的迁移和扩散能力不同,制备出未曾报道的单分散Ni纳米颗粒修饰的三维多孔V2O3微米花,且表现出稳定高效的电催化析氢和析氧活性。此外,基于其优异的物理化学性质,在其他电化学领域均有潜在的应用前景。
【发明内容】
本发明的目的在于提供了一种负载型单分散Ni纳米颗粒修饰的多孔V2O3微米花的制备方法。
为此,本发明采用如下技术方案实现上述目的:
负载型单分散Ni纳米颗粒修饰的多孔V2O3微米花的制备:
A.水热制备前驱体
将镍盐与钒盐分散于超纯水中,放入基底材料,转移至反应釜,通过水热反应制备前驱体;
B.热处理反应
将上述步骤所得前驱体进行热处理,即可得到负载型单分散Ni纳米颗粒修饰的多孔V2O3微米花。
可选地,步骤A中镍盐为含结晶水或不含结晶水的镍,浓度为0.001~1mmol/L。
可选地,步骤A中钒盐为偏钒酸盐,浓度为0.001~1mmol/L。
可选地,步骤A中镍盐和钒盐摩尔比为1:10~10:1。
可选地,步骤A中基底材料包括但不仅限于泡沫镍、泡沫铜和碳布。
可选地,步骤A中水热反应温度为60~180℃,反应时间为1~24h,物料填充比为20%~80%。
可选地,步骤B中所述热处理的温度为200~800℃,时间为0.5~6h,升温速率为0.5~20℃/min。
可选地,步骤B中所述热处理在还原性气氛下进行,之前可以经过或不经过惰性氛围下的退火处理,其中,还原性气氛包括但不仅限于氢气和氢氩混合气,惰性气氛包括但不仅限于氮气和氩气。
本发明的有益效果在于:
1.原料简单,合成成本低。
2.涉及使用的设备少,操作性强,材料使用方便,且具有一定柔性,实用价值较高。
3.所制备的负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花,导电性好、结构稳定、纳米孔多、界面丰富、比表面积大、物质传输和气体脱附快,具有广阔的应用前景。
4.所制备的负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花表现出优异的电催化析氢和析氧活性以及稳定性,具有工业应用潜力。
【附图说明】
图1为实施例1所制备的负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的XRD图谱。
图2为实施例1所制备的负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的SEM图。
图3为实施例1所制备的负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的TEM图。
图4为实施例1-2所制备负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花以及基底材料的电催化析氢活性测试结果。
图5为以实施例1-2所制备的负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花以及基底材料的电催化析氧活性测试结果。
图6为以实施例1所制备的负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的电催化析氢和析氧稳定性测试结果。
【具体实施方式】
下面结合附图和具体的实施例来进一步阐述本发明,但不应以此限制本发明的保护范围。
实施例1:
将1mmol六水合氯化镍、1mmol偏钒酸铵均匀分散于30mL超纯水中,转移至50mL反应釜,放入泡沫镍(2cm*3cm),将水热釜盖严拧紧,于烘箱中160℃恒温反应6h。待水热釜自然冷却至室温后,取出泡沫镍,用超纯水和无水乙醇冲洗,干燥,于管式炉中,以2℃/min的升温速率,先在高纯氮气中400℃恒温反应2h,管式炉冷却至室温后,再在氢气/氩气混合气中500℃恒温反应2h,即得到泡沫镍负载的单分散Ni纳米颗粒修饰的三维多孔V2O3微米花。
实施例2:
将1mmol六水合氯化镍、1mmol偏钒酸铵均匀分散于30mL超纯水中,转移至50mL反应釜,放入泡沫镍(2cm*3cm),将水热釜盖严拧紧,于烘箱中160℃恒温反应6h。待水热釜自然冷却至室温后,取出泡沫镍,用超纯水和无水乙醇冲洗,干燥,于管式炉中,以2℃/min的升温速率,在氢气/氩气混合气中500℃恒温反应2h,即得到负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花。
以上所述仅为本发明的优选实施例,并不用于限制本发明,凡依本发明申请专利范围所做的等同替换和修改皆属于本发明的保护范围内。

Claims (8)

1.一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法,其特征在于包括如下步骤:
A.水热制备前驱体
将镍盐与钒盐分散于超纯水中,放入基底材料,转移至反应釜,通过水热反应制备前驱体。
B.热处理反应
将上述步骤所得前驱体进行热处理,即可得到负载型单分散Ni纳米颗粒修饰的多孔V2O3微米花。
2.根据权利要求1所述的制备方法,其特征在于,步骤A中镍盐为含结晶水或不含结晶水的镍,浓度为0.001~1mmol/L。
3.根据权利要求1所述的制备方法,其特征在于,步骤A中钒盐为偏钒酸盐,浓度为0.001~1mmol/L。
4.根据权利要求2所述的制备方法,其特征在于,步骤A中镍盐和钒盐摩尔比为1:10~10:1。
5.根据权利要求2所述的制备方法,其特征在于,步骤A中基底材料包括但不仅限于泡沫镍、泡沫铜、碳布。
6.根据权利要求2所述的制备方法,其特征在于,步骤A中水热反应温度为60~180℃,反应时间为1~24h,物料填充比为20%~80%。
7.根据权利要求1所述的制备方法,其特征在于,步骤B中所述热处理的温度为200~800℃,时间为0.5~6h,升温速率为0.5~20℃/min。
8.根据权利要求1所述的制备方法,其特征在于,步骤B中所述热处理在还原性气氛下进行,之前可以经过或不经过惰性氛围下的退火处理,其中,还原性气氛包括但不仅限于氢气和氢氩混合气,惰性气氛包括但不仅限于氮气和氩气。
CN202010518571.XA 2020-06-09 2020-06-09 一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法 Pending CN111701594A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010518571.XA CN111701594A (zh) 2020-06-09 2020-06-09 一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010518571.XA CN111701594A (zh) 2020-06-09 2020-06-09 一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法

Publications (1)

Publication Number Publication Date
CN111701594A true CN111701594A (zh) 2020-09-25

Family

ID=72539223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010518571.XA Pending CN111701594A (zh) 2020-06-09 2020-06-09 一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法

Country Status (1)

Country Link
CN (1) CN111701594A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112609100A (zh) * 2020-11-27 2021-04-06 西南科技大学 泡沫铜及其制备方法和应用
CN114635154A (zh) * 2020-12-15 2022-06-17 陕西科技大学 一种氮化钒/三氧化二钒复合电催化材料及制备方法与其在水裂解产氢方面的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170104426A1 (en) * 2003-09-05 2017-04-13 Brilliant Light Power, Inc Electrical power generation systems and methods regarding same
WO2018223091A2 (en) * 2017-06-02 2018-12-06 California Institute Of Technology High capacity corrosion resistant v-based metal hydride electrodes for rechargeable metal hydride batteries
CN109273275A (zh) * 2018-10-11 2019-01-25 闽南师范大学 三氧化二钒负载纳米镍、制备方法及其制备的电极材料和超级电容器
CN110424023A (zh) * 2019-07-05 2019-11-08 山东大学 一种镍/氧化钒析氢电极及制备方法、应用
CN110433816A (zh) * 2019-09-05 2019-11-12 电子科技大学 一种负载型钴掺杂的二氧化铈纳米片的制备方法
CN110560078A (zh) * 2019-09-30 2019-12-13 陕西科技大学 一种V2O3@Ni双功能复合电催化剂的制备方法
CN110699701A (zh) * 2019-09-06 2020-01-17 华东理工大学 一种负载金属镍和三氧化二钒复合物的泡沫镍及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170104426A1 (en) * 2003-09-05 2017-04-13 Brilliant Light Power, Inc Electrical power generation systems and methods regarding same
WO2018223091A2 (en) * 2017-06-02 2018-12-06 California Institute Of Technology High capacity corrosion resistant v-based metal hydride electrodes for rechargeable metal hydride batteries
CN109273275A (zh) * 2018-10-11 2019-01-25 闽南师范大学 三氧化二钒负载纳米镍、制备方法及其制备的电极材料和超级电容器
CN110424023A (zh) * 2019-07-05 2019-11-08 山东大学 一种镍/氧化钒析氢电极及制备方法、应用
CN110433816A (zh) * 2019-09-05 2019-11-12 电子科技大学 一种负载型钴掺杂的二氧化铈纳米片的制备方法
CN110699701A (zh) * 2019-09-06 2020-01-17 华东理工大学 一种负载金属镍和三氧化二钒复合物的泡沫镍及其制备方法和应用
CN110560078A (zh) * 2019-09-30 2019-12-13 陕西科技大学 一种V2O3@Ni双功能复合电催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PENG ZHOU ET AL.: "Enhanced electrocatalytic HER performance of non-noble metal nickel by introduction of divanadium trioxide", 《ELECTROCHINICA ACTA》》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112609100A (zh) * 2020-11-27 2021-04-06 西南科技大学 泡沫铜及其制备方法和应用
CN114635154A (zh) * 2020-12-15 2022-06-17 陕西科技大学 一种氮化钒/三氧化二钒复合电催化材料及制备方法与其在水裂解产氢方面的应用
CN114635154B (zh) * 2020-12-15 2023-12-19 陕西科技大学 一种氮化钒/三氧化二钒复合电催化材料及制备方法与其在水裂解产氢方面的应用

Similar Documents

Publication Publication Date Title
CN109841854B (zh) 一种氮掺杂碳载单原子氧还原催化剂及其制备方法
CN107159297B (zh) 一种双功能氧催化剂钴/四氧化三钴/氮碳复合材料及其制备方法
CN110444776B (zh) 一种非贵金属氮掺杂mof双效电催化剂及其制备方法
CN111697239B (zh) 一种钴铁合金、氮共掺杂炭氧气还原催化剂及其制备方法和应用
Zou et al. Carbon-based electrocatalysts for rechargeable Zn-air batteries: design concepts, recent progress and future perspectives
Li et al. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor
CN112058293B (zh) 氮磷共掺杂的泡沫状碳纳米片负载NiCo纳米粒子复合材料的制备方法及其产品和应用
CN113611881B (zh) 一种原子级分散Fe/氮掺杂介孔碳球及其制备方法和应用
CN111715259B (zh) 一种还原氧化石墨烯负载铁基纳米颗粒复合电催化材料的制备方法
CN111701594A (zh) 一种负载型单分散Ni纳米颗粒修饰的三维多孔V2O3微米花的制备方法
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
CN111326745B (zh) 一种二维锌单原子/碳氮复合材料及其制备方法和应用
CN108110261B (zh) 一种燃料电池用金属粒子-液态金属催化剂及制备方法
Huang et al. Electrostatic spun hierarchically porous carbon matrix with cose2/co heterostructure as bifunctional electrocatalysts for zinc-air batteries
CN115475641A (zh) 一种金属原子锚定的硼氮共掺杂碳材料及其制备方法
CN113690452B (zh) 通过聚合物-金属配合物辅助碳化mof技术制备催化剂的方法及所得催化剂
Wang et al. Vertically aligned ZnCo 2 O 4 nanoplates on Ti 3 C 2 for high-efficiency hybrid supercapacitors
Li et al. Size-controlled Co/CoO heterogeneous nanoparticles confined in N-doped mesoporous carbon for efficient oxygen reduction in zinc-air batteries
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
CN112072094A (zh) 一种微球结构钼掺杂磷化镍/碳负极材料及其制备方法
CN114843529B (zh) 一种基于水系zif衍生的多孔碳球及其制备方法和应用
Yang et al. Low platinum loading electrocatalyst supported on a carrier derived from carbon dots doped ZIF-67 for the ORR and zinc–air batteries
CN114792815B (zh) 一种用于电催化氧还原到水的单原子铁催化剂及其制备方法和应用
CN115108545A (zh) 一种氮掺杂多孔碳负载单原子钼材料及其制备方法与应用
CN113584513A (zh) 一种制备RuNC-T复合纳米材料的方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200925

WD01 Invention patent application deemed withdrawn after publication