CN111693881A - 基于“标准化温度”的宽温度范围下电池健康状态在线估测方法 - Google Patents

基于“标准化温度”的宽温度范围下电池健康状态在线估测方法 Download PDF

Info

Publication number
CN111693881A
CN111693881A CN202010468280.4A CN202010468280A CN111693881A CN 111693881 A CN111693881 A CN 111693881A CN 202010468280 A CN202010468280 A CN 202010468280A CN 111693881 A CN111693881 A CN 111693881A
Authority
CN
China
Prior art keywords
temperature
battery
curve
characteristic point
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010468280.4A
Other languages
English (en)
Other versions
CN111693881B (zh
Inventor
王丽梅
陆东
赵秀亮
乔思秉
徐莹
盘朝奉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010468280.4A priority Critical patent/CN111693881B/zh
Publication of CN111693881A publication Critical patent/CN111693881A/zh
Priority to PCT/CN2021/070228 priority patent/WO2021238228A1/zh
Priority to US17/603,599 priority patent/US11442113B2/en
Priority to GB2218907.0A priority patent/GB2610366B/en
Application granted granted Critical
Publication of CN111693881B publication Critical patent/CN111693881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Abstract

本发明公开了基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,主要包括求取电池IC曲线,建立标准电池温度敏感特征点与温度定量关系,不同温度下IC曲线标准化变换,建立基于BOX‑COX变换的容量敏感特征点与容量关系;其中,标准电池温度敏感特征点与温度定量关系主要由其他温度特征点电压值与标准温度下特征点电压值作差,并采用阿伦尼乌兹函数得到温度与特征点电压偏移对应关系;其中,容量敏感特征点与容量关系建立基于BOX‑COX变换,
Figure DDA0002513419190000011
中的参数λ采用最大似然函数计算得到,进而得到变换后特征点高度y,再将电池SOH与变换后特征点高度y进行线性拟合得到拟合曲线,进而求出电池SOH。

Description

基于“标准化温度”的宽温度范围下电池健康状态在线估测 方法
技术领域
本发明属于电动汽车技术领域,具体涉及电池健康状态估算
背景技术
电池健康状态(State of Health,SOH)的准确估测对于延长电池使用寿命,提高电池充放电安全性等有着重要意义。但是由于在电池车载使用中工况较为复杂,影响因素较多,准确且有效地在线估算电池SOH难度较大。
电池SOH一般采用电池可用最大容量或内阻等方法衡量,目前大部分研究主要通过建立电池模型求取当前健康状态。常见的电池模型主要有电化学模型、经验模型和等效电路模型。电化学模型计算结果极为精确,但模型参数较多、计算复杂;经验模型需要有大量实验与测试数据支撑,耗费时间长,且通用性较差;等效电路模型将电池等效为电阻电容串并联结构,虽然可以实时监控SOH,但是计算精度不高、通常还需多种算法优化。
电池容量增量曲线(Incremental Capacity,IC)通过对电池充电曲线求导得到,可直观反映出电池充电中多段嵌锂过程,是一种非破坏性探知电池内部老化机理方法。近年来,许多研究者通过研究标准温度下容量微分曲线特征点变化与电池健康状态的对应关系,从而提出基于电池IC曲线的健康状态估测方法。但是由于温度会直接影响到电池内部化学反应,在不同温度下,电池许多基本性能参数如容量和内阻等都会发生变化,电池IC曲线也会有不同程度偏移,最终导致IC曲线求解SOH在不同温度下准确度相差较大。因此,宽温度范围下电池SOH的估测方法有待探索。
发明内容
针对上述问题,本发明提出了一种基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,主要包括求取电池IC曲线,建立标准电池温度敏感特征点与温度定量关系,不同温度下IC曲线标准化变换,建立基于BOX-COX的容量敏感特征点与容量关系。
上述电池IC曲线可以通过常规数值微分得到,可以通过先拟合多项式再求导得到,也可参考发明专利(CN 109632138A)中方法进行求解。本发明仅给出示例,不对具体求解方法进行限定。
上述建立标准电池温度敏感特征点与温度定量关系的方法如下:
当电池温度降低时,电池内阻增加,动力学损失增加,主要体现在IC曲线整体向右偏移,IC曲线驻点电压值增加,如附图1所示。因此本发明选取驻点特征最为明显的IC第二驻点作为温度敏感特征点,研究特征点电压与温度关系。首先选取两节未老化标准电池,将电池分别在固定环境温度(-5℃,0℃,5℃,10℃,15℃,20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃)充分静置2小时,以保证电池内外温度一致。以0.1C对电池进行充放电循环,得到不同温度下充电曲线并求取IC曲线,提取不同温度下特征点电压值。为了定量描述特征点偏移与温度关系,以标准温度(25℃)为基准,将其他温度特征点电压值与标准温度下特征点电压值作差,得到温度与特征点电压偏移对应关系,并采用阿伦尼乌兹函数拟合得到特征点电压与温度的关系。
Figure BDA0002513419170000021
其中a,b,c为拟合参数,T为温度,y为特征点电压偏移值。
上述不同温度下IC曲线标准化变换:
为了能够在宽温度范围进行SOH估测,需要将不同温度下IC曲线进行标准化温度处理。根据阿伦尼乌兹拟合结果得到温度敏感特征点(驻点电压)随温度变化定量关系,将高温(>30℃)下充电Q-V曲线电压进行对应程度(将温度带入拟合方程)偏移,得到标准化温度后的Q-V曲线,然后参考求解电池IC曲线的方法得到标准化温度处理后的电池IC曲线。
建立基于BOX-COX的容量敏感特征点与容量关系的方法如下:
随着电池不断老化,电池正负极活性材料和可循环锂离子逐渐损失,在IC曲线上主要表现为驻点高度逐渐降低,如附图1所示,因此本发明中采用IC曲线第二驻点高度作为容量敏感特征点。
本方法中Box-Cox变换用来增加特征点高度与电池SOH的线性度,线性回归方程表示为:
Y=Xβ+ε (2)
其中,Y为因变量,X为自变量,β是系数矩阵,ε是误差。
Box-Cox变换表示为:
Figure BDA0002513419170000031
其中,等式右边,y为原变量,y对应的下标k表示第k个变量,λ是需要计算的转换参数,左边
Figure BDA0002513419170000032
表示转换后第k个变量。
根据上式,y逆转换表示为:
Figure BDA0002513419170000033
采用最大似然函数计算最佳λ,假设ε是独立且服从正态分布,且y符合y~(Xβ,σ2I),X为自变量矩阵,β为系数矩阵,σ2为方差,I为单位矩阵,n为样本数,则最大似然函数表示为:
Figure BDA0002513419170000034
上式(5),Y(λ)表示转换后因变量,则待测参数β和σ2可以表示为:
Figure BDA0002513419170000035
将式(6)带入(5)中,取对数形式可得到:
Figure BDA0002513419170000036
求(7)式最大值可得到最佳λ。
根据线性拟合公式(2),将变换后的特征点高度与电池SOH拟合,建立SOH与特征点高度的固定线性表达式。
本发明的有益效果:
1.本发明通过“标准化温度”变换拓宽了IC曲线求解电池SOH的温度范围,从而解决了IC曲线求解电池SOH在宽温度范围内的精度不高的问题。
2.本发明引入“BOX-COX”变换,减小了不可观测的误差对估测结果的影响,使得变换后的特征高度与SOH具有线性关系,提高了IC曲线估测SOH的稳定性。
附图说明
图1为电池容量及温度敏感IC曲线特征点示意图
图2为本方法所提出的SOH估算总流程
图3为不同温度IC曲线特征点电压差拟合曲线
图4-9分别为标准化温度后30℃,35℃,40℃,45℃,50℃,55℃电池IC曲线
图10为SOH与转换后特征点高度线性拟合结果
具体实施方式
下面结合附图对本发明作进一步说明。
附图1为不同温度与老化电池的IC曲线,温度降低时IC曲线向右偏移,电池老化后特征点高度降低。但IC特征点高度(dQ/dV)受电压影响,因此间接会受到因温度造成的电压偏移影响,所以在通过特征点高度估算SOH中需要排除温度干扰,进行标准化温度处理。
附图2为本发明对电池SOH在线估算流程图,主要包括两大部分,离线标定和在线估测。
本发明选用的5节电池健康状态如表1所示。
表1
1号电池 2号电池 3号电池 4号电池 5号电池
健康状态 0.98 0.88 0.82 0.70 0.56
在离线标定阶段,将未老化标准电池分别在固定环境温度(-5℃,0℃,5℃,10℃,15℃,20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃)充分静置2小时,保证电池内外温度一致。以0.1C对电池进行充放电循环,得到电池不同温度下充电曲线;实验完成后通过数值计算得到电池容量增量曲线。为减少温度对特征点偏移影响,将不同温度曲线特征点电压位置与25℃特征点电压值作差,得到温度-特征点电压偏移关系并通过阿伦尼乌兹函数拟合,拟合结果如图3所示,其中参数a=3.66328E-12,b=6300.19841,c=-0.00621。
根据图3所示的拟合曲线,将各温度值带入得到不同温度对应偏移值,将对应温度下充电Q-V曲线电压进行对应程度偏移,得到标准化温度后的Q-V曲线,然后再次数值微分求取或先拟合多项式再求导或参考发明专利(CN 109632138 A)中方法进行求解标准化温度的容量增量曲线,如附4-9所示,分别为标准化温度后30℃,35℃,40℃,45℃,50℃,55℃电池IC曲线。
提取标准化温度后特征点高度,采取Box-Cox变换特征点高度。
Box-Cox变换表示为:
Figure BDA0002513419170000051
其中,等式右边,y为原变量,y对应的下标k表示第k个变量,λ是需要计算的转换参数,左边
Figure BDA0002513419170000052
表示转换后第k个变量。
根据上式,y逆转换表示为:
Figure BDA0002513419170000053
采用最大似然函数计算最佳λ,计算方法如下:
假设ε是独立且服从正太分布,且y服从y~(Xβ,σ2I),X为自变量矩阵,β为系数矩阵,σ2为方差,I为单位矩阵,则最大似然函数表示为:
Figure BDA0002513419170000054
上式中n为总样本数,待测参数β和σ2可以表示为:
Figure BDA0002513419170000055
将式(11)带入(10)中,取对数形式可得到:
Figure BDA0002513419170000056
取其最大值得到λ为3.3,将其带入(8)得到变换后特征点高度。
将电池SOH与变换后特征点高度进行线性拟合得到拟合曲线,如附图10,得到系数矩阵β=[0.52055,1.24712E-14]T
在线估测阶段首先在电池充电时提取充电电压,电流和温度数据,然后求取容量增量曲线,当到达特征点时,根据离线标定的温度标准化方程得到标准化温度特征曲线。接着对标准化温度特征点高度进行Box-Cox变换,变换参数λ为离线标定最佳参数。最后将变换后数据带入离线标定线性方程中,得到电池健康状态SOH。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技术所创的等效方式或变更均应包含在本发明的保护范围之内。

Claims (8)

1.基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,包括如下步骤:
S1,求取电池IC曲线;
S2,建立标准电池温度敏感特征点电压与温度定量关系;
S3,不同温度下IC曲线标准化变换;
S4,建立基于BOX-COX的容量敏感特征点与容量关系。
2.根据权利要求1所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述步骤S2的实现包括选择温度敏感特征点:
当电池温度降低时,电池内阻增加,动力学损失增加,主要体现在IC曲线整体向右偏移,IC曲线驻点电压值增加,此时选取驻点特征最为明显的IC第二驻点作为温度敏感特征点,建立特征点电压与温度关系。
3.根据权利要求2所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,基于权利要求2所选择的温度敏感特征点,步骤S2中建立温度敏感特征点电压与温度定量关系的具体方法如下:
首先选取两节未老化标准电池,将电池分别在固定环境温度(-5℃,0℃,5℃,10℃,15℃,20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃)充分静置2小时,以保证电池内外温度一致;以0.1C对电池进行充放电循环,得到不同温度下充电曲线并求取IC曲线,提取不同温度下特征点电压值,为了定量描述特征点偏移与温度关系,以标准温度(25℃)为基准,将其他温度特征点电压值与标准温度下特征点电压值作差,得到温度与特征点电压偏移值对应关系,并采用阿伦尼乌兹函数拟合得到特征点电压与温度关系:
Figure FDA0002513419160000011
其中a,b,c为拟合参数,T为温度,y为特征点电压偏移值。
4.根据权利要求3所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述步骤S3不同温度下IC曲线标准化变换的方法包括如下:
根据阿伦尼乌兹拟合结果得到温度敏感特征点电压(即驻点电压)随温度变化定量关系,将高温下充电Q-V曲线电压进行对应程度偏移,得到标准化温度后的Q-V曲线,然后再次通过数值方法得到标准化温度处理后的IC曲线。
5.根据权利要求4所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述高温下充电Q-V曲线是指温度大于30℃的充电Q-V曲线;所述将充电Q-V曲线电压进行对应程度偏移是通过将温度带入拟合方程实现。
6.根据权利要求1所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述步骤S4的实现包括容量敏感特征点的选择:
随着电池不断老化,电池正负极活性材料和可循环锂离子逐渐损失,在IC曲线上主要表现为驻点高度逐渐降低,选择IC曲线第二驻点高度作为容量敏感特征点。
7.根据权利要求6所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,基于权利要求6选择的容量敏感特征点,所述步骤4的具体实现方法包括:
利用Box-Cox变换用来增加特征点高度与电池SOH的线性度;
所述线性度采用线性回归方程表示:
Y=Xβ+ε (2)
其中,Y为因变量,X为自变量,β是系数矩阵,ε是误差;
所述Box-Cox变换表示为:
Figure FDA0002513419160000021
其中,等式右边,y为原变量,y对应的下标k表示第k个变量,λ是需要计算的转换参数,左边
Figure FDA0002513419160000022
表示转换后第k个变量。
8.根据权利要求7所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述步骤4的具体实现方法还包括:
将y逆转换表示为:
Figure FDA0002513419160000031
采用最大似然函数计算最佳λ,假设ε是独立且服从正态分布,且y符合y~(Xβ,σ2I),X为自变量矩阵,β为系数矩阵,σ2为方差,I为单位矩阵,n为样本数,则最大似然函数表示为:
Figure FDA0002513419160000032
式(5)中,Y(λ)表示转换后因变量,待测参数β和σ2可以表示为:
Figure FDA0002513419160000033
将式(6)带入(5)中,取对数形式可得到:
Figure FDA0002513419160000034
求(7)式最大值可得到最佳λ。
再根据线性拟合公式(2),将变换后的特征点高度与电池SOH拟合,建立SOH与特征点高度的固定线性表达式。
CN202010468280.4A 2020-05-28 2020-05-28 基于“标准化温度”的宽温度范围下电池健康状态在线估测方法 Active CN111693881B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010468280.4A CN111693881B (zh) 2020-05-28 2020-05-28 基于“标准化温度”的宽温度范围下电池健康状态在线估测方法
PCT/CN2021/070228 WO2021238228A1 (zh) 2020-05-28 2021-01-05 基于"标准化温度"的宽温度范围下电池健康状态在线估测方法
US17/603,599 US11442113B2 (en) 2020-05-28 2021-01-05 On-line estimation method of battery state of health in wide temperature range based on “standardized temperature”
GB2218907.0A GB2610366B (en) 2020-05-28 2021-01-05 On-line estimation method of battery state of health in wide temperature range based on standardized temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010468280.4A CN111693881B (zh) 2020-05-28 2020-05-28 基于“标准化温度”的宽温度范围下电池健康状态在线估测方法

Publications (2)

Publication Number Publication Date
CN111693881A true CN111693881A (zh) 2020-09-22
CN111693881B CN111693881B (zh) 2021-09-10

Family

ID=72478482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010468280.4A Active CN111693881B (zh) 2020-05-28 2020-05-28 基于“标准化温度”的宽温度范围下电池健康状态在线估测方法

Country Status (4)

Country Link
US (1) US11442113B2 (zh)
CN (1) CN111693881B (zh)
GB (1) GB2610366B (zh)
WO (1) WO2021238228A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462288A (zh) * 2020-10-22 2021-03-09 江苏大学 一种基于电池表面温度变化值的锂离子电池健康状态估算方法
CN112462283A (zh) * 2020-10-19 2021-03-09 江苏大学 基于差分温度曲线的锂离子电池内阻及容量估算方法
CN112485693A (zh) * 2020-11-19 2021-03-12 上海电力大学 一种基于温度概率密度函数的电池健康状态快速评估方法
CN112698217A (zh) * 2020-12-25 2021-04-23 江苏省特种设备安全监督检验研究院 基于粒子群优化算法的电池单体容量估计方法
CN112881931A (zh) * 2021-01-20 2021-06-01 同济大学 一种基于容量增量曲线的电池安全性诊断方法
CN112904218A (zh) * 2021-01-26 2021-06-04 江苏大学 基于标准样本及双重-嵌入解耦的电池健康状态估计方法
CN113466704A (zh) * 2021-06-30 2021-10-01 国网北京市电力公司 电池故障判断方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116011998B (zh) * 2023-03-23 2023-06-30 深圳市杰成镍钴新能源科技有限公司 一种退役电池回收分类处理方法及装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698714A (zh) * 2014-01-02 2014-04-02 清华大学 电池容量衰减机理辨识方法及系统
US20150025823A1 (en) * 2013-07-16 2015-01-22 Stmicroelectronics International N.V. Temperature-compensated state of charge estimation for rechargeable batteries
CN105158698A (zh) * 2015-08-28 2015-12-16 江苏大学 基于充电电压曲线的电池组健康状态在线估算方法
CN106997028A (zh) * 2017-05-19 2017-08-01 江苏大学 一种电池差分电压及容量增量曲线高效求解方法
CN108896913A (zh) * 2018-05-10 2018-11-27 燕山大学 一种锂离子电池健康状态的估算方法
CN109374672A (zh) * 2018-09-14 2019-02-22 天津力神电池股份有限公司 一种锂电池内部电解液含量的原位检测方法
CN109632138A (zh) * 2018-11-08 2019-04-16 江苏大学 基于充电电压曲线的电池内部温度在线预估方法
US20190115606A1 (en) * 2016-04-27 2019-04-18 Hyundai Motor Company Pinhole determination method and system for fuel cell
JP2019138673A (ja) * 2018-02-06 2019-08-22 古河電気工業株式会社 充電可能電池状態検出装置および充電可能電池状態検出方法
CN110515009A (zh) * 2019-07-19 2019-11-29 江苏大学 电池全寿命周期内电化学阻抗谱特征量对温度敏感频带标定方法
CN110579716A (zh) * 2019-10-22 2019-12-17 东软睿驰汽车技术(沈阳)有限公司 一种电池检测方法及装置
CN110927591A (zh) * 2019-12-11 2020-03-27 北京理工大学 一种电池容量估计方法、计算机可读介质及车辆
CN111142036A (zh) * 2019-12-18 2020-05-12 同济大学 基于容量增量分析的锂离子电池在线快速容量估计方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230953B (zh) * 2011-06-20 2013-10-30 江南大学 蓄电池剩余容量及健康状况预测方法
CN107015155B (zh) * 2017-03-24 2019-09-17 汉宇集团股份有限公司 一种电动车电池soh的测算方法及装置
CN108037460B (zh) * 2017-12-05 2020-04-14 上海空间电源研究所 一种批产锂离子电池容量实时评估方法
CN108169680A (zh) 2017-12-08 2018-06-15 北京普莱德新能源电池科技有限公司 动力电池健康状态评估方法、系统及电动车辆
CN108169800B (zh) * 2017-12-27 2019-10-11 江苏省有色金属华东地质勘查局地球化学勘查与海洋地质调查研究院 可控源音频大地电磁法视电阻率近场校正方法
CN110927586A (zh) * 2018-09-04 2020-03-27 湖南中车时代电动汽车股份有限公司 一种电池健康度计算方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150025823A1 (en) * 2013-07-16 2015-01-22 Stmicroelectronics International N.V. Temperature-compensated state of charge estimation for rechargeable batteries
CN103698714A (zh) * 2014-01-02 2014-04-02 清华大学 电池容量衰减机理辨识方法及系统
CN105158698A (zh) * 2015-08-28 2015-12-16 江苏大学 基于充电电压曲线的电池组健康状态在线估算方法
US20190115606A1 (en) * 2016-04-27 2019-04-18 Hyundai Motor Company Pinhole determination method and system for fuel cell
CN106997028A (zh) * 2017-05-19 2017-08-01 江苏大学 一种电池差分电压及容量增量曲线高效求解方法
JP2019138673A (ja) * 2018-02-06 2019-08-22 古河電気工業株式会社 充電可能電池状態検出装置および充電可能電池状態検出方法
CN108896913A (zh) * 2018-05-10 2018-11-27 燕山大学 一种锂离子电池健康状态的估算方法
CN109374672A (zh) * 2018-09-14 2019-02-22 天津力神电池股份有限公司 一种锂电池内部电解液含量的原位检测方法
CN109632138A (zh) * 2018-11-08 2019-04-16 江苏大学 基于充电电压曲线的电池内部温度在线预估方法
CN110515009A (zh) * 2019-07-19 2019-11-29 江苏大学 电池全寿命周期内电化学阻抗谱特征量对温度敏感频带标定方法
CN110579716A (zh) * 2019-10-22 2019-12-17 东软睿驰汽车技术(沈阳)有限公司 一种电池检测方法及装置
CN110927591A (zh) * 2019-12-11 2020-03-27 北京理工大学 一种电池容量估计方法、计算机可读介质及车辆
CN111142036A (zh) * 2019-12-18 2020-05-12 同济大学 基于容量增量分析的锂离子电池在线快速容量估计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
孙培坤: "电动汽车动力电池健康状态估计方法研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *
张昊: "基于IC曲线特征参数的锂离子电池SOH估计及DSP实现", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *
易桂平等: "分布式电源接入电网的电能质量问题研究综述", 《电网与清洁能源》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462283A (zh) * 2020-10-19 2021-03-09 江苏大学 基于差分温度曲线的锂离子电池内阻及容量估算方法
CN112462288A (zh) * 2020-10-22 2021-03-09 江苏大学 一种基于电池表面温度变化值的锂离子电池健康状态估算方法
CN112485693A (zh) * 2020-11-19 2021-03-12 上海电力大学 一种基于温度概率密度函数的电池健康状态快速评估方法
CN112698217A (zh) * 2020-12-25 2021-04-23 江苏省特种设备安全监督检验研究院 基于粒子群优化算法的电池单体容量估计方法
CN112698217B (zh) * 2020-12-25 2023-11-03 江苏省特种设备安全监督检验研究院 基于粒子群优化算法的电池单体容量估计方法
CN112881931A (zh) * 2021-01-20 2021-06-01 同济大学 一种基于容量增量曲线的电池安全性诊断方法
CN112904218A (zh) * 2021-01-26 2021-06-04 江苏大学 基于标准样本及双重-嵌入解耦的电池健康状态估计方法
CN112904218B (zh) * 2021-01-26 2021-12-21 江苏大学 基于标准样本及双重-嵌入解耦的电池健康状态估计方法
WO2022160147A1 (zh) * 2021-01-26 2022-08-04 江苏大学 基于标准样本及双重-嵌入解耦的电池健康状态估计方法
CN113466704A (zh) * 2021-06-30 2021-10-01 国网北京市电力公司 电池故障判断方法

Also Published As

Publication number Publication date
CN111693881B (zh) 2021-09-10
US11442113B2 (en) 2022-09-13
GB202218907D0 (en) 2023-01-25
US20220146591A1 (en) 2022-05-12
GB2610366B (en) 2023-08-23
WO2021238228A1 (zh) 2021-12-02
GB2610366A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
CN111693881B (zh) 基于“标准化温度”的宽温度范围下电池健康状态在线估测方法
CN111142036B (zh) 基于容量增量分析的锂离子电池在线快速容量估计方法
CN106716158B (zh) 电池荷电状态估算方法和装置
CN108535661B (zh) 一种基于模型误差谱的动力电池健康状态在线估计方法
CN109143097B (zh) 一种计及温度和循环次数的锂离子电池soc估计方法
CN108445422B (zh) 基于极化电压恢复特性的电池荷电状态估算方法
CN115902647B (zh) 一种电池状态智能监测方法
Xu et al. Hierarchical estimation model of state-of-charge and state-of-health for power batteries considering current rate
CN111766530B (zh) 锂离子蓄电池单体寿命检测方法
CN111044924A (zh) 一种全工况电池剩余容量确定方法及系统
CN113495214B (zh) 一种基于温度变化模型的超级电容荷电状态估计方法
CN113296010B (zh) 一种基于差分电压分析的电池健康状态在线评估方法
CN112462281A (zh) 一种基于气液动力学模型带参数修正的soc估计方法及系统
CN113420444A (zh) 一种基于参数在线辨识的锂离子电池soc估计方法
Wang et al. State of health estimation of lithium-ion battery in wide temperature range via temperature-aging coupling mechanism analysis
CN113125969B (zh) 基于aukf的电池数据处理方法、设备和介质
CN114865117B (zh) 锂离子电池电极嵌锂量检测方法、装置及电池管理系统
CN116482539A (zh) 基于多维数据驱动的电池荷电状态估计方法、系统、设备及介质
CN113109726B (zh) 一种基于误差补偿的多因素动态内阻模型估算锂离子电池内阻方法
CN113884883B (zh) 锂离子电池循环中直流内阻的校正方法及装置
CN112881918B (zh) 一种铅酸电池soc估计方法
CN113109722B (zh) 一种融合充电倍率的多因素电池充电内阻建模方法
CN115331743A (zh) 基于实验类比法的高倍率工况电化学模型建模方法
CN115616434A (zh) 一种基于退化模型校准的锂电池soc和soh实时估算方法
CN114545266A (zh) 基于改进型模型预测控制的锂电池剩余电量计量方法、系统及电量计

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200922

Assignee: JIANGSU OLITER ENERGY TECHNOLOGY Co.,Ltd.

Assignor: JIANGSU University

Contract record no.: X2022980002200

Denomination of invention: On line estimation method of battery health state in wide temperature range based on "standardized temperature

Granted publication date: 20210910

License type: Exclusive License

Record date: 20220307