CN112462281A - 一种基于气液动力学模型带参数修正的soc估计方法及系统 - Google Patents

一种基于气液动力学模型带参数修正的soc估计方法及系统 Download PDF

Info

Publication number
CN112462281A
CN112462281A CN202011155525.4A CN202011155525A CN112462281A CN 112462281 A CN112462281 A CN 112462281A CN 202011155525 A CN202011155525 A CN 202011155525A CN 112462281 A CN112462281 A CN 112462281A
Authority
CN
China
Prior art keywords
soc
model
battery
gas
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011155525.4A
Other languages
English (en)
Inventor
栗欢欢
曲智伟
陈彪
王亚平
孙化阳
袁朝春
陈龙
江浩斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202011155525.4A priority Critical patent/CN112462281A/zh
Publication of CN112462281A publication Critical patent/CN112462281A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Abstract

本发明提供一种基于气液动力学模型带参数修正的SOC估计方法及系统,包括以下步骤:对锂离子电池进行HPPC实验,记录电池数据,用于估算模型参数和获取OCV‑SOC关系式;辨识气液动力学模型参数;对步骤一所获得的开路电压数据与SOC进行拟合,得到OCV‑SOC关系曲线;搭建气液动力学模型,通过气液动力学模型获得电池开路电压,再通过开路电压OCV与电池荷电状态SOC的关系曲线得到SOC的估计值;搭建安时积分法模型;SOC的真实值与SOC的估计值构成控制偏差,偏差通过PID模块按比例、积分、微分通过线性组合构成控制量,输出模型参数k3的修正系数;将不同SOC下得到的修正系数加到参数k3上再输入气液动力学模型,对模型进行修正,得到修正后的SOC值,提高了估算SOC的精度。

Description

一种基于气液动力学模型带参数修正的SOC估计方法及系统
技术领域
本发明属于电池技术领域,尤其涉及一种基于气液动力学模型带参数修正的SOC估计方法及系统。
背景技术
为了解决全球性的石油资源紧缺与气候环境不断恶化的问题,寻求社会、经济与资源、环境相互促进与协调发展,电动汽车以其独特的节能环保优势成为未来交通工具的首选。而动力电池作为电动汽车的关键技术,对荷电状态进行准确的估计和监测,从电池安全性和电池使用效率来看都至关重要。
准确估算电池SOC,一方面来源于电动汽车的要求,从充分发挥电池能力和提高安全性两个角度对电池进行高效管理;另一方面,电动汽车电池在使用过程中表现的高度非线性,使准确估计SOC具有很大难度。两方面的结合,使得电动汽车电池SOC估算方法的选择尤为重要,传统方法种类之多,新方法层出不穷,不断更新改进。
在前人的研究中已经有很多估计锂离子电池SOC的方法。比如采用安时计数法(库仑计数法或电流积分法),计算简单,易于实现,但是它对初始SOC准确度要求较高,并且存在噪声和测量误差的累积。开路电压(OCV)法具有很高的精度,但它需要电池进行长时间静置来估计SOC,因此不能实时应用。也有将电池作为黑盒系统的人工神经网络,模糊逻辑等智能算法,它具有强大的近似非线性函数的能力,这些方法通常可以很好地估计SOC,然而,这些智能算法计算过程较复杂,实现在线应用较困难。在提高参数辨识的精度方面,大多需要在特定SOC值点或不同倍率下分别辨识出多组参数值,建立离散参数空间或是通过数据拟合方法得到若干函数关系式,这些方法能够提高估算的精度,但会增加很多工作量。
发明内容
针对上述现有技术的缺点与不足,本发明提供一种利用Simulink仿真平台提供一种基于气液动力学模型带参数修正的SOC估计方法及系统。因为基于气液动力学模型只用辨识一组参数,能够大大减少计算量。为了在减少计算量的同时保证模型精度,加入了PID模块对模型重要参数实时修正。
本发明通过以下技术方案实现:
一种基于气液动力学模型带参数修正的SOC估计方法,包括以下步骤:
步骤一:对锂离子电池进行HPPC实验,记录电池开路电压、温度、电流和端电压数据,用于估算模型参数和获取OCV-SOC关系式;
步骤二:辨识气液动力学模型参数k1、k2、k3、k4
步骤三:对步骤一所获得的开路电压数据与SOC进行拟合,得到OCV-SOC关系曲线;
步骤四:搭建气液动力学模型,通过气液动力学模型获得电池开路电压,再通过开路电压OCV与电池荷电状态SOC的关系曲线得到SOC的估计值;
步骤五:搭建安时积分法模型,用来输出参考SOC;
步骤六:SOC的真实值与SOC的估计值构成控制偏差,偏差通过PID模块按比例、积分、微分通过线性组合构成控制量,输出模型参数k3的修正系数;
步骤七:将不同SOC下得到的修正系数加到参数k3上再输入气液动力学模型,对模型进行修正,使每一个SOC下的模型参数达到最优,得到修正后的SOC值。
上述方案中,所述步骤二:通过MATLAB遗传算法工具箱辨识气液动力学模型参数。
上述方案中,所述步骤三:通过MATLAB对步骤一所获开路电压数据与SOC进行拟合,得到OCV-SOC关系曲线。
上述方案中,所述步骤四:在Simulink中搭建气液动力学模型。
上述方案中,所述气液动力学模型为无温度输入的气液动力学电池模型、单温度输入的气液动力学电池模型和双温度输入或迭代的气液动力学电池模型中的一个或多个的组合。
进一步的,所述气液动力学模型为单温度输入的气液动力学电池模型。
进一步的,所述单温度输入的气液动力学电池模型,如公式一和公式二所示:
P2=U0-k3I-k4I|I|,充电:I>0,放电:I<0 公式一
Figure BDA0002742653280000021
其中,k1、k2、k3、k4为模型参数,U0为端电压、I为电流温度、P2为中间瞬态电压、
Figure BDA0002742653280000023
为估算的开路电压、UOCV为前采样时刻开路电压。
上述方案中,所述步骤五:根据公式三在Simulink中搭建安时积分法模型,用来输出参考SOC;
Figure BDA0002742653280000022
其中,SOC0为当前估算的初始SOC基准值,I为实时电流,CN为电池标称容量,公式五的含义为:SOC(t)为任一时刻t的SOC值等于初始SOC值减去电流积分与容量的比值,其中3600为时与秒的转换系数。
一种实现所述基于气液动力学模型带参数修正的SOC估计方法的系统,包括信号采集模块、SOC估算模块和显示模块;
所述信号采集模块包括电流传感器、温度传感器和电压传感器,用于采集电池的电流、温度和电压,其与SOC估算模块连接,并将采集的电流、温度和电压信号传送到SOC估算模块;
所述SOC估算模块对锂离子电池进行HPPC实验,记录电池开路电压、温度、电流和端电压数据,用于估算模型参数和获取OCV-SOC关系式;辨识气液动力学模型参数k1、k2、k3、k4;所获得的开路电压数据与SOC进行拟合,得到OCV-SOC关系曲线;搭建气液动力学模型,通过气液动力学模型获得电池开路电压,再通过开路电压OCV与电池荷电状态SOC的关系曲线得到SOC的估计值;搭建安时积分法模型,用来输出参考SOC;SOC的真实值与SOC的估计值构成控制偏差,偏差通过PID模块按比例、积分、微分通过线性组合构成控制量,输出模型参数k3的修正系数;将不同SOC下得到的修正系数加到参数k3上再输入气液动力学模型,对模型进行修正,得到修正后的SOC值;
所述SOC估算模块与显示模块连接,将电池数据和SOC值发送给显示模块显示。
与现有技术相比,本发明的有益效果是:本发明通过确定电池OCV-SOC关系;辨识气液动力学模型参数;Simulink中搭建气液动力学模型输出SOC估算值;Simulink中搭建安时积分模型输出SOC参考值;SOC真实值与参考值通过PID模块输出修正系数,对模型重要参数k3进行修正,是每一个SOC下的模型参数达到最优。本发明通过对一系列SOC下真实值与估算值的差值反馈,得到相应的参数修正系数,对模型中重要参数进行实时修正,进一步提高了根据气液动力学模型估算SOC的精度。
附图说明
图1为本发明估算流程图。
图2为本发明离线参数辨识流程图。
图3为本发明辨识OCV—SOC曲线。
图4为本发明搭建Simulink模型。
图5为本发明测试设备连接方案。
图6为本发明在298.15K下DST工况SOC估算结果。
图7为本发明在298.15K下DST工况估算误差结果。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
图1所示为本发明所述一种基于气液动力学模型带参数修正的SOC估计方法的一种实施方式,包括如下步骤:
步骤一:对锂离子电池进行HPPC实验,记录电池开路电压、温度、电流和端电压数据,用于估算模型参数和获取OCV-SOC关系式。
在步骤一中OCV-SOC关系获取根据《FreedomCAR电池测试手册》提供的车用锂离子电池开路电压测试方法,进行混合脉冲功率测试实验(HPPC),以充放电截至电压为3V至4.2V的某一锂离子电池为例,首先进行容量标定,然后进行电池测试。第一步,电池采用1/3C恒流充电至4.2V,再以4.2V恒压充电至截止电流1/20C的方法将电池充满(SOC=100%),静置1h后记录电池端电压;以1C恒流放电六分钟(SOC下降10%)后停止并静置1h,记录端电压,如此循环直至达到规定的放电截止电压3.0V或其他放电终止条件;第二步,电池静置1h之后记录端电压,再以2/3C恒流充电九分钟(SOC增加10%)后停止并静置1h,记录端电压,如此循环直至达到规定的充电截止电压4.2V;在充/放电过程中由于欧姆极化、电化学极化和浓差极化的影响使得开路电压滞后于端电压,静置1h后端电压近似等于开路电压,充电和放电的滞后现象是相反的,对分开采集的充电与放电端电压数据在相同SOC点求平均值可以得到更为准确的开路电压数据。
步骤二:辨识气液动力学模型参数k1、k2、k3、k4
本实施例中选用遗传算法来辨识模型参数,具体过程如图2所示,
①初始化,读取端电压U0、电流I、温度T和与之对应的开路电压OCV数据;
②定义,向UOCV赋初值,即UOCV=OCV(1),设置S=0,n=N,k=1;
③约束条件,k1、k2、k3、k4≥0;
④赋值,U0=U(k),T=T(k),I=I(k);
⑤估算开路电压
Figure BDA0002742653280000041
⑥更新,UOCV与k,
Figure BDA0002742653280000042
k=k+1;
⑦目标函数,计算总误差
Figure BDA0002742653280000043
⑧判断1,k≤n,若“是”跳转至第④步,若“否”下一步;
⑨遗传算法通过调整模型四个参数方法判断终止条件,若“否”跳转至第③步,若“是”下一步;
⑩输出最优参数的值k1、k2、k3、k4,并结束。
辨识结果为k1=100、k2=1、k3=0.0032949、k4=0.00025;
步骤三:本实施例中通过MATLAB曲线拟合工具箱对步骤一所获开路电压数据与SOC进行拟合,得到OCV-SOC关系曲线,如图3所示。
步骤四:在Simulink中搭建单温度输入的气液动力学电池模型,通过气液动力学模型获得电池开路电压,再通过开路电压(OCV)与电池荷电状态(SOC)的关系曲线得到SOC的估计值。
在步骤四中,所述单温度输入的气液动力学电池模型是用气液储能系统来模拟电池系统,实现利用气液动力学方程求解电池的状态参数。气压等价于电压、气流等价于电流、管道综合阻力系数等价于欧姆内阻、气体溶解于液体或从液体中析出等价于电池的极化效应等。气液动力学电池模型包括无温度输入的气液动力学电池模型、单温度输入的气液动力学电池模型和双温度输入(或迭代)的气液动力学电池模型中的一个或多个;因单温度输入的气液动力学电池模型具有相对高的精度,本专利选用单温度输入的气液动力学电池模型,如公式一和公式二所示。
P2=U0-k3I-k4I|I|,充电:I>0,放电:I<0 公式一
Figure BDA0002742653280000051
其中,k1、k2、k3、k4为模型参数,U0为端电压、I为电流温度,P2为中间瞬态电压,
Figure BDA0002742653280000053
为估算的开路电压、UOCV为前采样时刻开路电压。
步骤五:根据公式三在Simulink中搭建安时积分法模型,用来输出参考SOC。
Figure BDA0002742653280000052
其中,SOC0为当前估算的初始SOC基准值,I为实时电流,CN为电池标称容量(单位:Ah)。公式五的含义为:SOC(t)为任一时刻t(单位:s)的SOC值等于初始SOC值减去电流积分与容量的比值,其中3600为时与秒的转换系数。
步骤六:SOC的真实值与估计值构成控制偏差,偏差通过PID模块按比例、积分、微分通过线性组合构成控制量,即输出模型重要参数k3的修正系数。
步骤七:将不同SOC下得到的修正系数加到模型k3上对模型进行修正。整体Simulink模型如图4所示。
本实施例中,部分采样点数据如表1所示,整体估算结果如图6、图7所示,从最大100%SOC到0%SOC,误差基本在2%以内,结果表明跟随性好,SOC估计偏差小。
表格1采样估算结果
数据点 端电压U<sub>0</sub>/V 电流I/A 温度T/K 参考SOC/% 估算SOC/% 误差/%
... ... ... ... ... ... ...
2315 3.915 -3.563 298.15 76.1542 75.8327 0.3215
2316 3.915 -3.563 298.15 76.1423 75.821 0.3213
2317 3.914 -3.563 298.15 76.1411 75.8201 0.321
2318 3.914 -3.563 298.15 76.1378 75.8173 0.3205
2319 3.913 -3.563 298.15 76.1265 75.8055 0.321
2320 3.913 -3.563 298.15 76.1153 75.7932 0.3221
2321 3.913 -3.563 298.15 76.1085 75.7847 0.3238
2322 3.912 -3.563 298.15 76.0687 75.6811 0.3876
... ... ... ... ... ... ...
一种实现所述基于气液动力学模型带参数修正的SOC估计方法的系统,包括信号采集模块、SOC估算模块和显示模块;所述信号采集模块包括电流传感器、温度传感器和电压传感器,用于采集电池的电流、温度和电压,其与SOC估算模块连接,并将采集的电流、温度和电压信号传送到SOC估算模块;所述SOC估算模块对锂离子电池进行HPPC实验,记录电池开路电压、温度、电流和端电压数据,用于估算模型参数和获取OCV-SOC关系式;辨识气液动力学模型参数k1、k2、k3、k4;所获得的开路电压数据与SOC进行拟合,得到OCV-SOC关系曲线;搭建气液动力学模型,通过气液动力学模型获得电池开路电压,再通过开路电压OCV与电池荷电状态SOC的关系曲线得到SOC的估计值;搭建安时积分法模型,用来输出参考SOC;SOC的真实值与SOC的估计值构成控制偏差,偏差通过PID模块按比例、积分、微分通过线性组合构成控制量,输出模型参数k3的修正系数;将不同SOC下得到的修正系数加到参数k3上再输入气液动力学模型,对模型进行修正,得到修正后的SOC值;所述SOC估算模块与显示模块连接,将电池数据和SOC值发送给显示模块显示。
根据本实施例,具体的测试设备连接方案,如图5所示,电池测试工作台包括电池循环器宁波拜特电池测试系统、计算机和MicroAutoBox。电池测试系统负责对电池按照设定的程序进行充放电,电流传感器测量电池的电流,由计算机通过MATLAB/Simulink控制MicroAutoBox,获取电池的数据。在MATLAB/Simulink中编写基于气液动力学模型的SOC闭环估算算法,下载算法到MicroAutoBox中运行,计算基于气液动力学模型的电池SOC。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于气液动力学模型带参数修正的SOC估计方法,其特征在于,包括以下步骤:
步骤一:对锂离子电池进行HPPC实验,记录电池开路电压、温度、电流和端电压数据,用于估算模型参数和获取OCV-SOC关系式;
步骤二:辨识气液动力学模型参数k1、k2、k3、k4
步骤三:对步骤一所获得的开路电压数据与SOC进行拟合,得到OCV-SOC关系曲线;
步骤四:搭建气液动力学模型,通过气液动力学模型获得电池开路电压,再通过开路电压OCV与电池荷电状态SOC的关系曲线得到SOC的估计值;
步骤五:搭建安时积分法模型,用来输出参考SOC;
步骤六:SOC的真实值与SOC的估计值构成控制偏差,偏差通过PID模块按比例、积分、微分通过线性组合构成控制量,输出模型参数k3的修正系数;
步骤七:将不同SOC下得到的修正系数加到参数k3上再输入气液动力学模型,对模型进行修正,得到修正后的SOC值。
2.根据权利要求1所述的基于气液动力学模型带参数修正的SOC估计方法,其特征在于,所述步骤二:通过MATLAB遗传算法工具箱辨识气液动力学模型参数。
3.根据权利要求1所述的基于气液动力学模型带参数修正的SOC估计方法,其特征在于,所述步骤三:通过MATLAB对步骤一所获开路电压数据与SOC进行拟合,得到OCV-SOC关系曲线。
4.根据权利要求1所述的基于气液动力学模型带参数修正的SOC估计方法,其特征在于,所述步骤四:在Simulink中搭建气液动力学模型。
5.根据权利要求1所述的基于气液动力学模型带参数修正的SOC估计方法,其特征在于,所述气液动力学模型为无温度输入的气液动力学电池模型、单温度输入的气液动力学电池模型和双温度输入或迭代的气液动力学电池模型中的一个或多个的组合。
6.根据权利要求5所述的基于气液动力学模型带参数修正的SOC估计方法,其特征在于,所述气液动力学模型为单温度输入的气液动力学电池模型。
7.根据权利要求6所述的基于气液动力学模型带参数修正的SOC估计方法,其特征在于,
所述单温度输入的气液动力学电池模型,如公式一和公式二所示:
P2=U0-k3I-k4I|I|,充电:I>0,放电:I<0 公式一
Figure FDA0002742653270000011
其中,k1、k2、k3、k4为模型参数,U0为端电压、I为电流温度,P2为中间瞬态电压,
Figure FDA0002742653270000012
为估算的开路电压、UOCV为前采样时刻开路电压。
8.根据权利要求1所述的基于气液动力学模型带参数修正的SOC估计方法,其特征在于,所述步骤五:根据公式三在Simulink中搭建安时积分法模型,用来输出参考SOC;
Figure FDA0002742653270000021
其中,SOC0为当前估算的初始SOC基准值,I为实时电流,CN为电池标称容量,公式五的含义为:SOC(t)为任一时刻t的SOC值等于初始SOC值减去电流积分与容量的比值,其中3600为时与秒的转换系数。
9.一种实现权利要求1-8任意一项所述基于气液动力学模型带参数修正的SOC估计方法的系统,其特征在于,包括信号采集模块、SOC估算模块和显示模块;
所述信号采集模块包括电流传感器、温度传感器和电压传感器,用于采集电池的电流、温度和电压,其与SOC估算模块连接,并将采集的电流、温度和电压信号传送到SOC估算模块;
所述SOC估算模块对锂离子电池进行HPPC实验,记录电池开路电压、温度、电流和端电压数据,用于估算模型参数和获取OCV-SOC关系式;辨识气液动力学模型参数k1、k2、k3、k4;所获得的开路电压数据与SOC进行拟合,得到OCV-SOC关系曲线;搭建气液动力学模型,通过气液动力学模型获得电池开路电压,再通过开路电压OCV与电池荷电状态SOC的关系曲线得到SOC的估计值;搭建安时积分法模型,用来输出参考SOC;SOC的真实值与SOC的估计值构成控制偏差,偏差通过PID模块按比例、积分、微分通过线性组合构成控制量,输出模型参数k3的修正系数;将不同SOC下得到的修正系数加到参数k3上再输入气液动力学模型,对模型进行修正,得到修正后的SOC值;
所述SOC估算模块与显示模块连接,将电池数据和SOC值发送给显示模块显示。
CN202011155525.4A 2020-10-26 2020-10-26 一种基于气液动力学模型带参数修正的soc估计方法及系统 Pending CN112462281A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011155525.4A CN112462281A (zh) 2020-10-26 2020-10-26 一种基于气液动力学模型带参数修正的soc估计方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011155525.4A CN112462281A (zh) 2020-10-26 2020-10-26 一种基于气液动力学模型带参数修正的soc估计方法及系统

Publications (1)

Publication Number Publication Date
CN112462281A true CN112462281A (zh) 2021-03-09

Family

ID=74835221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011155525.4A Pending CN112462281A (zh) 2020-10-26 2020-10-26 一种基于气液动力学模型带参数修正的soc估计方法及系统

Country Status (1)

Country Link
CN (1) CN112462281A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820603A (zh) * 2021-08-29 2021-12-21 西北工业大学 一种预测锂电池组可输出能量的方法
CN116087808A (zh) * 2023-02-03 2023-05-09 上海玫克生储能科技有限公司 一种电化学模型参数辨识过程的电流修正方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884528A (zh) * 2019-02-25 2019-06-14 江苏大学 一种带温度输入的锂离子电池开路电压估算方法及系统
CN110045286A (zh) * 2019-03-21 2019-07-23 江苏大学 一种基于气液动力学模型的电池开路电压估算方法及装置
CN111077452A (zh) * 2019-12-31 2020-04-28 江苏大学 一种基于气液动力学电池模型在线估算开路电压的方法及系统
CN111693877A (zh) * 2020-05-15 2020-09-22 江苏大学 一种锂离子电池的soc在线估测方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884528A (zh) * 2019-02-25 2019-06-14 江苏大学 一种带温度输入的锂离子电池开路电压估算方法及系统
CN110045286A (zh) * 2019-03-21 2019-07-23 江苏大学 一种基于气液动力学模型的电池开路电压估算方法及装置
CN111077452A (zh) * 2019-12-31 2020-04-28 江苏大学 一种基于气液动力学电池模型在线估算开路电压的方法及系统
CN111693877A (zh) * 2020-05-15 2020-09-22 江苏大学 一种锂离子电池的soc在线估测方法和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘畅 等: "一种基于Simulink模型的动力锂离子电池闭环状态观测器", 《第17届中国系统仿真技术及其应用学术年会论文集(17TH CCSSTA 2016)》 *
陈彪: "基于气液动力学模型的锂离子电池SOC估算研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820603A (zh) * 2021-08-29 2021-12-21 西北工业大学 一种预测锂电池组可输出能量的方法
CN116087808A (zh) * 2023-02-03 2023-05-09 上海玫克生储能科技有限公司 一种电化学模型参数辨识过程的电流修正方法及系统
CN116087808B (zh) * 2023-02-03 2023-09-29 上海玫克生储能科技有限公司 一种电化学模型参数辨识过程的电流修正方法及系统

Similar Documents

Publication Publication Date Title
CN105116343B (zh) 最小二乘支持向量机的动力电池电荷状态估计方法及系统
Ouyang et al. Improved parameters identification and state of charge estimation for lithium-ion battery with real-time optimal forgetting factor
CN111142036A (zh) 基于容量增量分析的锂离子电池在线快速容量估计方法
CN107589379A (zh) 一种在线估计锂电池soc和阻抗的方法
CN105974327A (zh) 一种基于神经网络和ukf的锂电池组soc预测方法
CN110824363B (zh) 一种基于改进ckf的锂电池soc和soe联合估算方法
Li et al. A novel state estimation approach based on adaptive unscented Kalman filter for electric vehicles
CN112098849B (zh) 基于求积分卡尔曼滤波的锂电池剩余电量估计方法
CN111693881A (zh) 基于“标准化温度”的宽温度范围下电池健康状态在线估测方法
CN105223512A (zh) 基于电池特性的动态矫正剩余电量的方法
CN106597288A (zh) 一种电源soc估算方法
Qiuting et al. State of health estimation for lithium-ion battery based on D-UKF
CN112858916A (zh) 一种基于模型与数据驱动融合的电池包荷电状态估计方法
CN112163372A (zh) 一种动力电池的soc估算方法
CN103983920A (zh) 一种建立电动车辆的动力电池的模型的方法
CN114660464A (zh) 一种锂离子电池荷电状态估算方法
CN106154168A (zh) 数据驱动的动力电池荷电状态估计方法
CN112269133B (zh) 一种基于预充电路模型参数识别的soc估计方法
CN112462281A (zh) 一种基于气液动力学模型带参数修正的soc估计方法及系统
CN114781176B (zh) 一种锂离子电池储能系统集总参数的等效电路参数辨识方法
CN115389936A (zh) 一种数模混合驱动的锂电池持续峰值功率能力的在线预测方法
CN114217234B (zh) 一种基于ide-asrckf的锂离子电池参数辨识与soc估计方法
Xu et al. State estimation of lithium batteries for energy storage based on dual extended kalman filter
CN106126798A (zh) 磷酸铁锂蓄电池soc算法
CN113420444A (zh) 一种基于参数在线辨识的锂离子电池soc估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210309