WO2021238228A1 - 基于"标准化温度"的宽温度范围下电池健康状态在线估测方法 - Google Patents

基于"标准化温度"的宽温度范围下电池健康状态在线估测方法 Download PDF

Info

Publication number
WO2021238228A1
WO2021238228A1 PCT/CN2021/070228 CN2021070228W WO2021238228A1 WO 2021238228 A1 WO2021238228 A1 WO 2021238228A1 CN 2021070228 W CN2021070228 W CN 2021070228W WO 2021238228 A1 WO2021238228 A1 WO 2021238228A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
battery
curve
standardized
relationship
Prior art date
Application number
PCT/CN2021/070228
Other languages
English (en)
French (fr)
Inventor
王丽梅
陆东
赵秀亮
乔思秉
徐莹
盘朝奉
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2218907.0A priority Critical patent/GB2610366B/en
Priority to US17/603,599 priority patent/US11442113B2/en
Publication of WO2021238228A1 publication Critical patent/WO2021238228A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Definitions

  • the invention belongs to the technical field of electric vehicles, and specifically relates to battery health estimation
  • SOH battery state of health
  • the SOH of a battery is generally measured by methods such as the maximum available capacity or internal resistance of the battery.
  • most researches mainly use the establishment of a battery model to obtain the current health status.
  • Common battery models mainly include electrochemical model, empirical model and equivalent circuit model.
  • the calculation results of the electrochemical model are extremely accurate, but the model parameters are many and the calculations are complicated; the empirical model requires a large amount of experimental and test data to support, it takes a long time, and the versatility is poor; the equivalent circuit model equates the battery to a resistor-capacitor string
  • the parallel structure can monitor the SOH in real time, the calculation accuracy is not high, and multiple algorithm optimizations are usually required.
  • the battery capacity incremental curve (Incremental Capacity, IC) is obtained by deriving the battery charging curve, which can intuitively reflect the multi-stage lithium insertion process during battery charging, and is a non-destructive method to detect the internal aging mechanism of the battery.
  • IC Battery Capacity
  • the present invention proposes an online battery health state estimation method under a wide temperature range based on "standardized temperature", which mainly includes obtaining the battery IC curve and establishing a quantitative relationship between the temperature sensitive characteristic points of the standard battery and the temperature. Under the standardized transformation of IC curve, the relationship between capacity sensitive feature points and capacity based on BOX-COX is established.
  • the above-mentioned battery IC curve can be obtained by conventional numerical differentiation, which can be obtained by fitting a polynomial first and then deriving it. It can also be solved by referring to the method in the invention patent (CN 109632138 A).
  • the present invention only provides examples, and does not limit the specific solution method.
  • the method for establishing the quantitative relationship between the temperature sensitive feature points of the standard battery and the temperature is as follows:
  • the present invention selects the second stagnation point of the IC with the most obvious stagnation point characteristic as the temperature-sensitive characteristic point, and studies the relationship between the characteristic point voltage and temperature.
  • a, b, and c are the fitting parameters, T is the temperature, and y is the offset value of the characteristic point voltage.
  • the IC curve at different temperatures needs to be subjected to standardized temperature processing.
  • Arrhenius fitting the quantitative relationship between temperature sensitive characteristic points (stagnation point voltage) and temperature change is obtained, and the corresponding degree of the charging QV curve voltage at high temperature (>30°C) (bringing temperature into the fitting equation) is biased Shift to obtain the QV curve after the standardized temperature, and then refer to the method of solving the battery IC curve to obtain the battery IC curve after the standardized temperature.
  • the stagnation point height on the IC curve is mainly shown as the gradual decrease in the stagnation point height, as shown in Figure 1. Therefore, the second stagnation of the IC curve is adopted in the present invention.
  • the point height is used as the capacity sensitive feature point.
  • Y is the dependent variable
  • X is the independent variable
  • is the coefficient matrix
  • is the error.
  • the Box-Cox transformation is expressed as:
  • y is the original variable
  • subscript k corresponding to y represents the k-th variable
  • is the conversion parameter that needs to be calculated
  • on the left Represents the kth variable after conversion.
  • the maximum likelihood function is used to calculate the optimal ⁇ , assuming that ⁇ is independent and obeys a normal distribution, and y conforms to y ⁇ (X ⁇ , ⁇ 2 I), X is the independent variable matrix, ⁇ is the coefficient matrix, ⁇ 2 is the variance, I Is the identity matrix, n is the number of samples, the maximum likelihood function is expressed as:
  • the best ⁇ can be obtained by seeking the maximum value of (7).
  • the transformed characteristic point height is fitted to the battery SOH, and a fixed linear expression of the SOH and the characteristic point height is established.
  • the present invention broadens the temperature range of the IC curve to solve the battery SOH through the "standardized temperature” transformation, thereby solving the problem of the low accuracy of the IC curve to solve the battery SOH in a wide temperature range.
  • the present invention introduces the "BOX-COX" transformation, which reduces the influence of unobservable errors on the estimation result, makes the transformed feature height and SOH have a linear relationship, and improves the stability of the IC curve estimation SOH.
  • Figure 1 is a schematic diagram of the characteristic points of the battery capacity and temperature-sensitive IC curve
  • Figure 3 is the fitting curve of the voltage difference at the characteristic points of the IC curve at different temperatures
  • Figures 4-9 are respectively 30°C, 35°C, 40°C, 45°C, 50°C, 55°C battery IC curves after standardized temperature
  • Figure 10 shows the linear fitting result of SOH and converted feature point height
  • Figure 1 shows the IC curves of batteries with different temperatures and aging.
  • the IC curve shifts to the right, and the height of the characteristic points decreases after the battery is aged.
  • the IC feature point height (dQ/dV) is affected by voltage and therefore indirectly affected by the voltage offset caused by temperature. Therefore, in estimating the SOH by the feature point height, temperature interference needs to be eliminated and standardized temperature processing is performed.
  • Figure 2 is a flowchart of the online estimation of battery SOH according to the present invention, which mainly includes two parts, offline calibration and online estimation.
  • the health status of the five batteries selected by the present invention is shown in Table 1.
  • the off-line calibration phase put the unaged standard battery at a fixed ambient temperature (-5°C, 0°C, 5°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C) and let it stand for 2 hours to ensure the same temperature inside and outside the battery. Charge and discharge the battery at 0.1C to get the battery charging curve at different temperatures; after the experiment is completed, the battery capacity increase curve is obtained through numerical calculation.
  • each temperature value is brought into to obtain the corresponding offset value of different temperature, the corresponding degree of offset of the charging QV curve voltage at the corresponding temperature, the QV curve after the normalized temperature is obtained, and then numerically differentiated again Obtain or first fit the polynomial and then derive or refer to the method in the invention patent (CN 109632138 A) to solve the capacity increment curve at the standardized temperature. 40°C, 45°C, 50°C, 55°C battery IC curve.
  • Box-Cox After extracting the height of the characteristic point after the standardized temperature, Box-Cox transforms the height of the characteristic point.
  • the Box-Cox transformation is expressed as:
  • y is the original variable
  • subscript k corresponding to y represents the k-th variable
  • is the conversion parameter that needs to be calculated
  • on the left Represents the kth variable after conversion.
  • the maximum likelihood function is used to calculate the optimal ⁇ , and the calculation method is as follows:
  • n is the total number of samples, and the parameters ⁇ and ⁇ 2 to be tested can be expressed as:
  • the online estimation stage first extracts the charging voltage, current and temperature data when the battery is charging, and then obtains the capacity increase curve.
  • the characteristic point is reached, the standardized temperature characteristic curve is obtained according to the offline calibrated temperature normalization equation.
  • the Box-Cox transformation is performed on the height of the standardized temperature feature points, and the transformation parameter ⁇ is the best parameter for offline calibration.
  • the transformed data is brought into the offline calibration linear equation to obtain the battery health status SOH.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

基于"标准化温度"的宽温度范围下电池健康状态在线估测方法,主要包括求取电池IC曲线,建立标准电池温度敏感特征点与温度定量关系,不同温度下IC曲线标准化变换,建立基于BOX-COX变换的容量敏感特征点与容量关系;其中,标准电池温度敏感特征点与温度定量关系主要由其他温度特征点电压值与标准温度下特征点电压值作差,并采用阿伦尼乌兹函数得到温度与特征点电压偏移对应关系;其中,容量敏感特征点与容量关系建立基于BOX-COX变换,式(I)中的参数λ采用最大似然函数计算得到,进而得到变换后特征点高度y,再将电池SOH与变换后特征点高度y进行线性拟合得到拟合曲线,进而求出电池SOH。

Description

基于“标准化温度”的宽温度范围下电池健康状态在线估测方法 技术领域
本发明属于电动汽车技术领域,具体涉及电池健康状态估算
背景技术
电池健康状态(State of Health,SOH)的准确估测对于延长电池使用寿命,提高电池充放电安全性等有着重要意义。但是由于在电池车载使用中工况较为复杂,影响因素较多,准确且有效地在线估算电池SOH难度较大。
电池SOH一般采用电池可用最大容量或内阻等方法衡量,目前大部分研究主要通过建立电池模型求取当前健康状态。常见的电池模型主要有电化学模型、经验模型和等效电路模型。电化学模型计算结果极为精确,但模型参数较多、计算复杂;经验模型需要有大量实验与测试数据支撑,耗费时间长,且通用性较差;等效电路模型将电池等效为电阻电容串并联结构,虽然可以实时监控SOH,但是计算精度不高、通常还需多种算法优化。
电池容量增量曲线(Incremental Capacity,IC)通过对电池充电曲线求导得到,可直观反映出电池充电中多段嵌锂过程,是一种非破坏性探知电池内部老化机理方法。近年来,许多研究者通过研究标准温度下容量微分曲线特征点变化与电池健康状态的对应关系,从而提出基于电池IC曲线的健康状态估测方法。但是由于温度会直接影响到电池内部化学反应,在不同温度下,电池许多基本性能参数如容量和内阻等都会发生变化,电池IC曲线也会有不同程度偏移,最终导致IC曲线求解SOH在不同温度下准确度相差较大。因此,宽温度范围下电池SOH的估测方法有待探索。
发明内容
针对上述问题,本发明提出了一种基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,主要包括求取电池IC曲线,建立标准电池温度敏感特征点与温度定量关系,不同温度下IC曲线标准化变换,建立基于BOX-COX的容量敏感特征点与容量关系。
上述电池IC曲线可以通过常规数值微分得到,可以通过先拟合多项式再求导得到,也可参考发明专利(CN 109632138 A)中方法进行求解。本发明仅给出示例,不对具体求解方法进行限定。
上述建立标准电池温度敏感特征点与温度定量关系的方法如下:
当电池温度降低时,电池内阻增加,动力学损失增加,主要体现在IC曲线整体向右偏移,IC曲线驻点电压值增加,如附图1所示。因此本发明选取驻点特征最为明显的IC第二驻点作为温度敏感特征点,研究特征点电压与温度关系。首先选取两节未老化标准电池,将电池分别在固定环境温度(-5℃,0℃,5℃,10℃,15℃,20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃)充分静置2小时,以保证电池内外温度一致。以0.1C对电池进行充放电循环,得到不同温度下充电曲线并求取IC曲线,提取不同温度下特征点电压值。为了定量描述特征点偏移与温度关系,以标准温度(25℃)为基准,将其他温度特征点电压值与标准温度下特征点电压值作差,得到温度与特征点电压偏移对应关系,并采用阿伦尼乌兹函数拟合得到特征点电压与温度的关系。
Figure PCTCN2021070228-appb-000001
其中a,b,c为拟合参数,T为温度,y为特征点电压偏移值。
上述不同温度下IC曲线标准化变换:
为了能够在宽温度范围进行SOH估测,需要将不同温度下IC曲线进行标准化温度处理。根据阿伦尼乌兹拟合结果得到温度敏感特征点(驻点电压)随温度变化定量关系,将高温(>30℃)下充电Q-V曲线电压进行对应程度(将温度带入拟合方程)偏移,得到标准化温度后的Q-V曲线,然后参考求解电池IC曲线的方法得到标准化温度处理后的电池IC曲线。
建立基于BOX-COX的容量敏感特征点与容量关系的方法如下:
随着电池不断老化,电池正负极活性材料和可循环锂离子逐渐损失,在IC曲线上主要表现为驻点高度逐渐降低,如附图1所示,因此本发明中采用IC曲线第二驻点高度作为容量敏感特征点。
本方法中Box-Cox变换用来增加特征点高度与电池SOH的线性度,线性回归方程表示为:
Y=Xβ+ε   (2)
其中,Y为因变量,X为自变量,β是系数矩阵,ε是误差。
Box-Cox变换表示为:
Figure PCTCN2021070228-appb-000002
其中,等式右边,y为原变量,y对应的下标k表示第k个变量,λ是需要计算的转换参数,左边
Figure PCTCN2021070228-appb-000003
表示转换后第k个变量。
根据上式,y逆转换表示为:
Figure PCTCN2021070228-appb-000004
采用最大似然函数计算最佳λ,假设ε是独立且服从正态分布,且y符合y~(Xβ,σ 2I),X为自变量矩阵,β为系数矩阵,σ 2为方差,I为单位矩阵,n为样本数,则最大似然函数表示为:
Figure PCTCN2021070228-appb-000005
上式(5),Y (λ)表示转换后因变量,则待测参数β和σ 2可以表示为:
Figure PCTCN2021070228-appb-000006
将式(6)带入(5)中,取对数形式可得到:
Figure PCTCN2021070228-appb-000007
求(7)式最大值可得到最佳λ。
根据线性拟合公式(2),将变换后的特征点高度与电池SOH拟合,建立SOH与特征点高度的固定线性表达式。
本发明的有益效果:
1.本发明通过“标准化温度”变换拓宽了IC曲线求解电池SOH的温度范围,从而解决了IC曲线求解电池SOH在宽温度范围内的精度不高的问题。
2.本发明引入“BOX-COX”变换,减小了不可观测的误差对估测结果的影响,使得变换后的特征高度与SOH具有线性关系,提高了IC曲线估测SOH的稳定性。
附图说明
图1为电池容量及温度敏感IC曲线特征点示意图
图2为本方法所提出的SOH估算总流程
图3为不同温度IC曲线特征点电压差拟合曲线
图4-9分别为标准化温度后30℃,35℃,40℃,45℃,50℃,55℃电池IC曲线
图10为SOH与转换后特征点高度线性拟合结果
具体实施方式
下面结合附图对本发明作进一步说明。
附图1为不同温度与老化电池的IC曲线,温度降低时IC曲线向右偏移,电池老化后特征点高度降低。但IC特征点高度(dQ/dV)受电压影响,因此间接会受到因温度造成的电压偏移影响,所以在通过特征点高度估算SOH中需要排除温度干扰,进行标准化温度处理。
附图2为本发明对电池SOH在线估算流程图,主要包括两大部分,离线标定和在线估测。
本发明选用的5节电池健康状态如表1所示。
表1
  1号电池 2号电池 3号电池 4号电池 5号电池
健康状态 0.98 0.88 0.82 0.70 0.56
在离线标定阶段,将未老化标准电池分别在固定环境温度(-5℃,0℃,5℃,10℃,15℃,20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃)充分静置2小时,保证电池内外温度一致。以0.1C对电池进行充放电循环,得到电池不同温度下充电曲线;实验完成后通过数值计算得到电池容量增量曲线。为减少温度对特征点偏移影响,将不同温度曲线特征点电压位置与25℃特征点电压值作差,得到温度-特征点电压偏移关系并通过阿伦尼乌兹函数拟合,拟合结果如图3所示,其中参数a=3.66328E-12,b=6300.19841,c=-0.00621。
根据图3所示的拟合曲线,将各温度值带入得到不同温度对应偏移值,将对应温度下充电Q-V曲线电压进行对应程度偏移,得到标准化温度后的Q-V曲线,然后再次数值微分求取或先拟合多项式再求导或参考发明专利(CN 109632138 A)中方法进行求解 标准化温度的容量增量曲线,如附4-9所示,分别为标准化温度后30℃,35℃,40℃,45℃,50℃,55℃电池IC曲线。
提取标准化温度后特征点高度,采取Box-Cox变换特征点高度。
Box-Cox变换表示为:
Figure PCTCN2021070228-appb-000008
其中,等式右边,y为原变量,y对应的下标k表示第k个变量,λ是需要计算的转换参数,左边
Figure PCTCN2021070228-appb-000009
表示转换后第k个变量。
根据上式,y逆转换表示为:
Figure PCTCN2021070228-appb-000010
采用最大似然函数计算最佳λ,计算方法如下:
假设ε是独立且服从正太分布,且y服从y~(Xβ,σ 2I),X为自变量矩阵,β为系数矩阵,σ 2为方差,I为单位矩阵,则最大似然函数表示为:
Figure PCTCN2021070228-appb-000011
上式中n为总样本数,待测参数β和σ 2可以表示为:
Figure PCTCN2021070228-appb-000012
将式(11)带入(10)中,取对数形式可得到:
Figure PCTCN2021070228-appb-000013
取其最大值得到λ为3.3,将其带入(8)得到变换后特征点高度。
将电池SOH与变换后特征点高度进行线性拟合得到拟合曲线,如附图10,得到系数矩阵β=[0.52055,1.24712E-14] T
在线估测阶段首先在电池充电时提取充电电压,电流和温度数据,然后求取容量增 量曲线,当到达特征点时,根据离线标定的温度标准化方程得到标准化温度特征曲线。接着对标准化温度特征点高度进行Box-Cox变换,变换参数λ为离线标定最佳参数。最后将变换后数据带入离线标定线性方程中,得到电池健康状态SOH。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技术所创的等效方式或变更均应包含在本发明的保护范围之内。

Claims (8)

  1. 基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,包括如下步骤:
    S1,求取电池IC曲线;
    S2,建立标准电池温度敏感特征点电压与温度定量关系;
    S3,不同温度下IC曲线标准化变换;
    S4,建立基于BOX-COX的容量敏感特征点与容量关系。
  2. 根据权利要求1所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述步骤S2的实现包括选择温度敏感特征点:
    当电池温度降低时,电池内阻增加,动力学损失增加,主要体现在IC曲线整体向右偏移,IC曲线驻点电压值增加,此时选取驻点特征最为明显的IC第二驻点作为温度敏感特征点,建立特征点电压与温度关系。
  3. 根据权利要求2所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,基于权利要求2所选择的温度敏感特征点,步骤S2中建立温度敏感特征点电压与温度定量关系的具体方法如下:
    首先选取两节未老化标准电池,将电池分别在固定环境温度(-5℃,0℃,5℃,10℃,15℃,20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃)充分静置2小时,以保证电池内外温度一致;以0.1C对电池进行充放电循环,得到不同温度下充电曲线并求取IC曲线,提取不同温度下特征点电压值,为了定量描述特征点偏移与温度关系,以标准温度(25℃)为基准,将其他温度特征点电压值与标准温度下特征点电压值作差,得到温度与特征点电压偏移值对应关系,并采用阿伦尼乌兹函数拟合得到特征点电压与温度关系:
    Figure PCTCN2021070228-appb-100001
    其中a,b,c为拟合参数,T为温度,y为特征点电压偏移值。
  4. 根据权利要求3所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述步骤S3不同温度下IC曲线标准化变换的方法包括如下:
    根据阿伦尼乌兹拟合结果得到温度敏感特征点电压(即驻点电压)随温度变化定量关系,将高温下充电Q-V曲线电压进行对应程度偏移,得到标准化温度后的Q-V曲线,然后再次通过数值方法得到标准化温度处理后的IC曲线。
  5. 根据权利要求4所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述高温下充电Q-V曲线是指温度大于30℃的充电Q-V曲线;所述将充电Q-V曲线电压进行对应程度偏移是通过将温度带入拟合方程实现。
  6. 根据权利要求1所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述步骤S4的实现包括容量敏感特征点的选择:
    随着电池不断老化,电池正负极活性材料和可循环锂离子逐渐损失,在IC曲线上主要表现为驻点高度逐渐降低,选择IC曲线第二驻点高度作为容量敏感特征点。
  7. 根据权利要求6所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,基于权利要求6选择的容量敏感特征点,所述步骤4的具体实现方法包括:
    利用Box-Cox变换用来增加特征点高度与电池SOH的线性度;
    所述线性度采用线性回归方程表示:
    Y=Xβ+ε    (2)
    其中,Y为因变量,X为自变量,β是系数矩阵,ε是误差;
    所述Box-Cox变换表示为:
    Figure PCTCN2021070228-appb-100002
    其中,等式右边,y为原变量,y对应的下标k表示第k个变量,λ是需要计算的转换参数,左边
    Figure PCTCN2021070228-appb-100003
    表示转换后第k个变量。
  8. 根据权利要求7所述的基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,其特征在于,所述步骤4的具体实现方法还包括:
    将y逆转换表示为:
    Figure PCTCN2021070228-appb-100004
    采用最大似然函数计算最佳λ,假设ε是独立且服从正态分布,且y符合y~(Xβ,σ 2I),X为自变量矩阵,β为系数矩阵,σ 2为方差,I为单位矩阵,n为样本数,则最大似然函数表示为:
    Figure PCTCN2021070228-appb-100005
    式(5)中,Y (λ)表示转换后因变量,待测参数β和σ 2可以表示为:
    Figure PCTCN2021070228-appb-100006
    将式(6)带入(5)中,取对数形式可得到:
    Figure PCTCN2021070228-appb-100007
    求(7)式最大值可得到最佳λ。
    再根据线性拟合公式(2),将变换后的特征点高度与电池SOH拟合,建立SOH与特征点高度的固定线性表达式。
PCT/CN2021/070228 2020-05-28 2021-01-05 基于"标准化温度"的宽温度范围下电池健康状态在线估测方法 WO2021238228A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2218907.0A GB2610366B (en) 2020-05-28 2021-01-05 On-line estimation method of battery state of health in wide temperature range based on standardized temperature
US17/603,599 US11442113B2 (en) 2020-05-28 2021-01-05 On-line estimation method of battery state of health in wide temperature range based on “standardized temperature”

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010468280.4 2020-05-28
CN202010468280.4A CN111693881B (zh) 2020-05-28 2020-05-28 基于“标准化温度”的宽温度范围下电池健康状态在线估测方法

Publications (1)

Publication Number Publication Date
WO2021238228A1 true WO2021238228A1 (zh) 2021-12-02

Family

ID=72478482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070228 WO2021238228A1 (zh) 2020-05-28 2021-01-05 基于"标准化温度"的宽温度范围下电池健康状态在线估测方法

Country Status (4)

Country Link
US (1) US11442113B2 (zh)
CN (1) CN111693881B (zh)
GB (1) GB2610366B (zh)
WO (1) WO2021238228A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462283B (zh) * 2020-10-19 2024-05-14 江苏大学 基于差分温度曲线的锂离子电池内阻及容量估算方法
CN112462288B (zh) * 2020-10-22 2024-05-10 江苏大学 一种基于电池表面温度变化值的锂离子电池健康状态估算方法
CN112485693B (zh) * 2020-11-19 2022-09-27 上海电力大学 一种基于温度概率密度函数的电池健康状态快速评估方法
CN112698217B (zh) * 2020-12-25 2023-11-03 江苏省特种设备安全监督检验研究院 基于粒子群优化算法的电池单体容量估计方法
CN112881931B (zh) * 2021-01-20 2022-08-16 同济大学 一种基于容量增量曲线的电池安全性诊断方法
CN112904218B (zh) * 2021-01-26 2021-12-21 江苏大学 基于标准样本及双重-嵌入解耦的电池健康状态估计方法
CN113466704A (zh) * 2021-06-30 2021-10-01 国网北京市电力公司 电池故障判断方法
CN116011998B (zh) * 2023-03-23 2023-06-30 深圳市杰成镍钴新能源科技有限公司 一种退役电池回收分类处理方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230953A (zh) * 2011-06-20 2011-11-02 江南大学 蓄电池剩余容量及健康状况预测方法
CN107015155A (zh) * 2017-03-24 2017-08-04 江门市地尔汉宇电器股份有限公司 一种电动车电池soh的测算方法及装置
US20170317366A1 (en) * 2016-04-27 2017-11-02 Hyundai Motor Company Pinhole determination method and system for fuel cell
CN108037460A (zh) * 2017-12-05 2018-05-15 上海空间电源研究所 一种批产锂离子电池容量实时评估方法
CN108169680A (zh) * 2017-12-08 2018-06-15 北京普莱德新能源电池科技有限公司 动力电池健康状态评估方法、系统及电动车辆
CN109632138A (zh) * 2018-11-08 2019-04-16 江苏大学 基于充电电压曲线的电池内部温度在线预估方法
CN110927586A (zh) * 2018-09-04 2020-03-27 湖南中车时代电动汽车股份有限公司 一种电池健康度计算方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827163A1 (en) * 2013-07-16 2015-01-21 ST-Ericsson SA Temperature-compensated state of charge estimation for rechargeable batteries
CN103698714B (zh) * 2014-01-02 2016-06-29 清华大学 电池容量衰减机理辨识方法及系统
CN105158698B (zh) * 2015-08-28 2017-12-22 江苏大学 基于充电电压曲线的电池组健康状态在线估算方法
CN106997028A (zh) * 2017-05-19 2017-08-01 江苏大学 一种电池差分电压及容量增量曲线高效求解方法
CN108169800B (zh) * 2017-12-27 2019-10-11 江苏省有色金属华东地质勘查局地球化学勘查与海洋地质调查研究院 可控源音频大地电磁法视电阻率近场校正方法
JP6979896B2 (ja) * 2018-02-06 2021-12-15 古河電気工業株式会社 充電可能電池状態検出装置および充電可能電池状態検出方法
CN108896913A (zh) * 2018-05-10 2018-11-27 燕山大学 一种锂离子电池健康状态的估算方法
CN109374672B (zh) * 2018-09-14 2020-12-15 天津力神电池股份有限公司 一种锂电池内部电解液含量的原位检测方法
CN110515009B (zh) * 2019-07-19 2022-02-15 江苏大学 电池全寿命周期内电化学阻抗谱特征量对温度敏感频带标定方法
CN110579716B (zh) * 2019-10-22 2022-06-03 东软睿驰汽车技术(沈阳)有限公司 一种电池检测方法及装置
CN110927591B (zh) * 2019-12-11 2020-10-02 北京理工大学 一种电池容量估计方法、计算机可读介质及车辆
CN111142036B (zh) * 2019-12-18 2021-02-02 同济大学 基于容量增量分析的锂离子电池在线快速容量估计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230953A (zh) * 2011-06-20 2011-11-02 江南大学 蓄电池剩余容量及健康状况预测方法
US20170317366A1 (en) * 2016-04-27 2017-11-02 Hyundai Motor Company Pinhole determination method and system for fuel cell
CN107015155A (zh) * 2017-03-24 2017-08-04 江门市地尔汉宇电器股份有限公司 一种电动车电池soh的测算方法及装置
CN108037460A (zh) * 2017-12-05 2018-05-15 上海空间电源研究所 一种批产锂离子电池容量实时评估方法
CN108169680A (zh) * 2017-12-08 2018-06-15 北京普莱德新能源电池科技有限公司 动力电池健康状态评估方法、系统及电动车辆
CN110927586A (zh) * 2018-09-04 2020-03-27 湖南中车时代电动汽车股份有限公司 一种电池健康度计算方法
CN109632138A (zh) * 2018-11-08 2019-04-16 江苏大学 基于充电电压曲线的电池内部温度在线预估方法

Also Published As

Publication number Publication date
GB202218907D0 (en) 2023-01-25
GB2610366A (en) 2023-03-01
GB2610366B (en) 2023-08-23
US20220146591A1 (en) 2022-05-12
US11442113B2 (en) 2022-09-13
CN111693881B (zh) 2021-09-10
CN111693881A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2021238228A1 (zh) 基于"标准化温度"的宽温度范围下电池健康状态在线估测方法
CN111142036B (zh) 基于容量增量分析的锂离子电池在线快速容量估计方法
CN110261779B (zh) 一种三元锂电池荷电状态与健康状态在线协同估计方法
CN108535661B (zh) 一种基于模型误差谱的动力电池健康状态在线估计方法
CN110196393B (zh) 一种锂电池荷电状态、能量状态和功率状态的联合在线估计方法
WO2015188610A1 (zh) 电池荷电状态估算方法和装置
CN111965547B (zh) 一种基于参数辨识法的电池系统传感器故障诊断方法
CN113176505B (zh) 车载动力电池荷电状态与健康状态在线估算方法、装置及存储介质
CN105467328A (zh) 一种锂离子电池荷电状态估计方法
CN108445422B (zh) 基于极化电压恢复特性的电池荷电状态估算方法
CN111751750B (zh) 基于模糊ekf的多阶段闭环锂电池soc估算方法
CN115877232A (zh) 一种基于卡尔曼滤波的锂离子电池内部温度估计方法
CN115327415A (zh) 基于限定记忆递推最小二乘算法的锂电池soc估算方法
CN113466728B (zh) 一种两阶段电池模型参数在线辨识的方法与系统
CN114859250B (zh) 电池的荷电状态信息确定方法、装置及电子设备
CN116930794A (zh) 电池容量更新方法、装置、电子设备及存储介质
CN113884883B (zh) 锂离子电池循环中直流内阻的校正方法及装置
CN115575823A (zh) 一种锂电池参数在线辨识方法
CN114545266A (zh) 基于改进型模型预测控制的锂电池剩余电量计量方法、系统及电量计
CN115407204A (zh) 基于电池参数补偿的电池荷电状态估算方法及系统
CN112114255B (zh) 一种基于联合集合卡尔曼滤波的锂电池荷电状态估计方法
CN114114048A (zh) 一种电池soc、soh、soe联合估算方法
CN114035075A (zh) 一种基于权重组合法的自动调整电池状态检测方法及系统
CN113567864A (zh) 电池荷电状态的确定方法、装置、计算机设备及存储介质
CN112649735A (zh) 一种快速得到电池包总容量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202218907

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210105

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813585

Country of ref document: EP

Kind code of ref document: A1