CN111659451A - 一种含氮空位少层多孔氮化碳光催化剂的制法及其应用 - Google Patents

一种含氮空位少层多孔氮化碳光催化剂的制法及其应用 Download PDF

Info

Publication number
CN111659451A
CN111659451A CN202010672061.8A CN202010672061A CN111659451A CN 111659451 A CN111659451 A CN 111659451A CN 202010672061 A CN202010672061 A CN 202010672061A CN 111659451 A CN111659451 A CN 111659451A
Authority
CN
China
Prior art keywords
carbon nitride
graphene oxide
graphite
porous carbon
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010672061.8A
Other languages
English (en)
Other versions
CN111659451B (zh
Inventor
郑占丰
王瑞义
谷献模
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Institute of Coal Chemistry of CAS
Original Assignee
Shanxi Institute of Coal Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Institute of Coal Chemistry of CAS filed Critical Shanxi Institute of Coal Chemistry of CAS
Priority to CN202010672061.8A priority Critical patent/CN111659451B/zh
Publication of CN111659451A publication Critical patent/CN111659451A/zh
Application granted granted Critical
Publication of CN111659451B publication Critical patent/CN111659451B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化剂的制备技术领域,具体是一种含氮空位少层多孔氮化碳光催化剂的制法及其应用,旨在解决现有体相g‑C3N4剥离技术耗时耗力,剥离得到的少层g‑C3N4可见光的吸收性能差的技术问题。采用如下技术方案:采用氧化石墨烯和石墨相氮化碳前驱体为反应物,置于马沸炉,并以3‑10℃/min的速率升温至540℃~560℃,保温4~10h,得到样品。本发明还提出上述方法制备的石墨相氮化碳在光催化甲醇水相重整制氢上的应用。

Description

一种含氮空位少层多孔氮化碳光催化剂的制法及其应用
技术领域
本发明涉及光催化剂的制备技术领域,具体是一种含氮空位少层多孔氮化碳光催化剂的制法及其应用。
背景技术
石墨相氮化碳(g-C3N4)是一种新型的非金属光催化材料,具有无毒环保、价格低廉、稳定性好等特点,在光催化领域引起了广泛的关注。g-C3N4的禁带宽度为2.7 eV,光照下产生的电子和空穴具有较强的氧化还原能力,被广泛用于光催化CO2还原、光解水制氢、光催化污染物降解以及精细化学品合成等领域。g-C3N4通常采用高温热聚合的方法制备,这种方法制备出的体相g-C3N4比表面较小(<10 m2 g-1),光生载流子复合较快,活性位点少,这严重制约着g-C3N4的应用。
将体相g-C3N4剥离为少层甚至单层带有缺陷位点的g-C3N4材料被证实为是一种有效解决以上问题的方法。研究人员开发了多种剥离体相g-C3N4的方法,如超声剥离、球磨剥离、蒸汽剥离、水热剥离、化学剥离等。现有这些方法首先要合成体相g-C3N4,然后在体相g-C3N4基础上进行剥离,过程耗时、程序繁琐,同时因为量子限域效应,剥离得到的少层g-C3N4的禁带宽度变大,可见光的利用效率降低。因此,开发一种简单有效的体相g-C3N4剥离方法同时又不损失其可见光的吸收性能是一个巨大的挑战,具有重要意义。
发明内容
本发明旨在解决现有体相g-C3N4剥离技术耗时耗力,剥离得到的少层g-C3N4可见光的吸收性能差的技术问题。
本发明解决其技术问题所采用的技术方案是:
一种含氮空位少层多孔氮化碳光催化剂的制法,包括以下步骤:
S1、将氧化石墨烯分散于小分子醇中,超声处理,形成氧化石墨烯醇分散液;
S2、将石墨相氮化碳前驱体溶于小分子醇中,搅拌均匀,形成石墨相氮化碳前驱体醇溶液;
S3、采用氧化石墨烯为牺牲剂模板,将氧化石墨烯醇分散液与石墨相氮化碳前驱体醇溶液混合均匀;
S4、将步骤S3所得液送入旋转蒸干仪去除小分子醇;
S5、将步骤S4所得样品送入烘箱干燥;
S6、将步骤S5所得产品置于马沸炉,并以3-10℃/min的速率升温至540℃~560℃,保温4~10h,得到样品。
上述含氮空位少层多孔氮化碳光催化剂在光催化甲醇水相重整制氢中的应用。
本发明的有益效果是:
1)本发明的制备方法通过一步便可得到少层多孔含氮空位的石墨相氮化碳材料,简单快捷;
2)通过本发明方法制备出的石墨相氮化碳,具有少层g-C3N4材料的优点,如比表面积大、光生载流子复合慢、反应活性位点多,同时又具有较高的可见光利用效率,光催化性能高;
3)将本发明方法制备出的石墨相氮化碳作为光催化剂,活性高、稳定性好,在甲醇水相重整制氢时,能够在25℃、光照强度0.1-0.5 W/cm2的条件下得到229-317 μmol/ h的产氢速率,产氢速率较高。
具体实施方式
实施例1
一种含氮空位少层多孔氮化碳光催化剂的制法,包括以下步骤:
S1、将1g氧化石墨烯分散于100mL甲醇中,超声1h,形成氧化石墨烯甲醇分散液,其中氧化石墨烯的比表面为79m2/g,C/O的摩尔比例为1:1.2,单层厚度为0.7 nm,横向尺寸为200nm,本步骤中氧化石墨烯在甲醇中的超声处理时间属于本领域人员常用的试验手段,一般为1h;
S2、将5g三聚氰胺溶于100mL甲醇中,25℃下搅拌1h,形成三聚氰胺甲醇溶液,本步骤中三聚氰胺在甲醇中溶解的具体实验手段应是本领域人员公知的,一般在25℃下搅拌1h即可;
S3、采用氧化石墨烯为牺牲剂模板,将氧化石墨烯甲醇分散液与石墨相氮化碳前驱体甲醇溶液混合均匀,并继续超声1h,搅拌1h,本步骤中将氧化石墨烯分散液与石墨相氮化碳前驱体甲醇溶液混合均匀的具体实验手段应是本领域人员公知的,一般超声1h、搅拌1h即可;
S4、将步骤S3所得液送入烘旋转蒸干仪在70℃下去除甲醇,本步骤中甲醇去除的温度选择应是本领域人员公知的;
S5、将步骤S4所得样品送入烘箱在120℃条件下干燥12h,本步骤中在烘箱中干燥的条件属于本领域人员公知的技术,一般采用在120℃下干燥12h即可;
S6、将步骤S5所得产品置于马沸炉,并以3℃/min的速率升温至540℃,保持8h,得到石墨相氮化碳;
S7、将步骤S6得到的石墨相氮化碳50mg加入反应釜,同时加入体积比为1:9的甲醇与去离子水,在500rpm的转速、25 oC、光强为0.3W/cm2的条件下反应,反应后产物在线取气,在气相色谱进行分析,结果表明,产氢速率为305μmol /h。
实施例2
S1、将1g氧化石墨烯分散于100mL乙醇中,超声1h,形成氧化石墨烯乙醇分散液,其中氧化石墨烯的比表面为65m2/g,C/O的摩尔比例为1:1.3,单层厚度为0.6 nm,横向尺寸为800nm;
S2、将10g尿素溶于100mL乙醇中,25℃下搅拌1h,形成尿素乙醇溶液;
S3、采用氧化石墨烯为牺牲剂模板,将氧化石墨烯乙醇分散液与尿素乙醇溶液混合均匀,并继续超声1h,搅拌1h;
S4、将步骤S3所得液送入烘旋转蒸干仪在70℃下去除乙醇;
S5、将步骤S4所得样品送入烘箱在120℃条件下干燥12h;
S6、将步骤S5所得产品置于马沸炉,并以5℃/min的速率升温至550℃,保持6h,得到石墨相氮化碳;
S7、将步骤S6得到的石墨相氮化碳50mg加入反应釜,同时加入体积比为1:9的甲醇与去离子水,在500rpm的转速、25 oC、光强为0.2W/cm2的条件下反应,反应后产物在线取气,在气相色谱进行分析,结果表明,产氢速率为265μmol /h。
实施例3
S1、将1g氧化石墨烯分散于100mL甲醇中,超声1h,形成氧化石墨烯甲醇分散液,其中氧化石墨烯的比表面为96m2/g,C/O的摩尔比例为1:1.5,单层厚度为0.7 nm,横向尺寸为540nm;
S2、将7g三聚氰胺和双氰胺溶于100mL甲醇中,25℃下搅拌1h,形成三聚氰胺双氰胺甲醇溶液;
S3、采用氧化石墨烯为牺牲剂模板,将氧化石墨烯甲醇分散液与三聚氰胺双氰胺甲醇溶液混合均匀,并继续超声1h,搅拌1h;
S4、将步骤S3所得液送入烘旋转蒸干仪在70℃下去除甲醇;
S5、将步骤S4所得样品送入烘箱在120℃条件下干燥12h;
S6、将步骤S5所得产品置于马沸炉,并以7℃/min的速率升温至560℃,保持4h,得到石墨相氮化碳;
S7、将步骤S6得到的石墨相氮化碳50mg加入反应釜,同时加入体积比为1:9的甲醇与去离子水,在500rpm的转速、25 oC、光强为0.1W/cm2的条件下反应,反应后产物在线取气,在气相色谱进行分析,结果表明,产氢速率为232μmol /h。
实施例4
S1、将1g氧化石墨烯分散于100mL丙醇中,超声1h,形成氧化石墨烯丙醇分散液,其中氧化石墨烯的比表面为87m2/g,C/O的摩尔比例为1:0.8,单层厚度为0.7 nm,横向尺寸为1
Figure 100002_DEST_PATH_IMAGE002
S2、将4g硫脲溶于100mL丙醇中,25℃下搅拌1h,形成硫脲丙醇溶液;
S3、采用氧化石墨烯为牺牲剂模板,将氧化石墨烯丙醇分散液与硫脲丙醇溶液混合均匀,并继续超声1h,搅拌1h;
S4、将步骤S3所得液送入烘旋转蒸干仪在70℃下去除丙醇;
S5、将步骤S4所得样品送入烘箱在120℃条件下干燥12h;
S6、将步骤S5所得产品置于马沸炉,并以8℃/min的速率升温至540℃,保持10h,得到石墨相氮化碳;
S7、将步骤S6得到的石墨相氮化碳50mg加入反应釜,同时加入体积比为1:9的甲醇与去离子水,在500rpm的转速、25 oC、光强为0.4W/cm2的条件下反应,反应后产物在线取气,在气相色谱进行分析,结果表明,产氢速率为298μmol /h。
实施例5
S1、将1g氧化石墨烯分散于100mL甲醇中,超声1h,形成氧化石墨烯甲醇分散液,其中氧化石墨烯的比表面为69m2/g,C/O的摩尔比例为1:1.2,单层厚度为0.8 nm,横向尺寸为10
Figure 946621DEST_PATH_IMAGE002
S2、将1g氰胺溶于100mL甲醇中,25℃下搅拌1h,形成氰胺甲醇溶液;
S3、采用氧化石墨烯为牺牲剂模板,将氧化石墨烯甲醇分散液与氰胺甲醇溶液混合均匀,并继续超声1h,搅拌1h;
S4、将步骤S3所得液送入烘旋转蒸干仪在70℃下去除甲醇;
S5、将步骤S4所得样品送入烘箱在120℃条件下干燥12h;
S6、将步骤S5所得产品置于马沸炉,并以10℃/min的速率升温至560℃,保持7h,得到石墨相氮化碳;
S7、将步骤S6得到的石墨相氮化碳50mg加入反应釜,同时加入体积比为1:9的甲醇与去离子水,在500rpm的转速、25 oC、光强为0.5W/cm2的条件下反应,反应后产物在线取气,在气相色谱进行分析,结果表明,产氢速率为308μmol /h。
从实施例1~5可看出,采用本方法制备的石墨相氮化碳能够在25℃、光照强度0.1-0.5 W/cm2的条件下得到229-317 μmol/ h的产氢速率,说明采用本方法制备的石墨相氮化碳对于可见光的吸收能力较强,解决了现有剥离得到的少层g-C3N4的禁带宽度变大,可见光的利用效率降低的技术问题。
从实施例1~5可看出,采用本方法制备的石墨相氮化碳作为光催化剂进行甲醇水相重整制氢时,可得到较高的产氢速率。
本发明中,分散氧化石墨烯的小分子醇和溶解石墨相氮化碳前驱体的小分子醇选用同种或不同种皆可,优选采用相同种类的醇。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (6)

1.一种含氮空位少层多孔氮化碳光催化剂的制法,其特征在于,包括以下步骤:
S1、将氧化石墨烯分散于小分子醇中,超声处理,形成氧化石墨烯醇分散液;
S2、将石墨相氮化碳前驱体溶于小分子醇中,搅拌均匀,形成石墨相氮化碳前驱体醇溶液;
S3、采用氧化石墨烯为牺牲剂模板,将氧化石墨烯醇分散液与石墨相氮化碳前驱体醇溶液混合均匀;
S4、将步骤S3所得液送入旋转蒸干仪去除小分子醇;
S5、将步骤S4所得样品送入烘箱干燥;
S6、将步骤S5所得产品置于马沸炉,并以3-10℃/min的速率升温至540℃~560℃,保温4~10h,得到样品。
2.根据权利要求1所述的一种含氮空位少层多孔氮化碳光催化剂的制法,其特征在于:氧化石墨烯与石墨相氮化碳前驱体的质量比为1:1~10。
3.根据权利要求1所述的一种含氮空位少层多孔氮化碳光催化剂的制法,其特征在于:氧化石墨烯的比表面大于65 m2/g,C/O摩尔比例介于0.8~1.5之间,单层厚度在0.6 nm~0.8nm之间,横向尺寸在200nm~10
Figure DEST_PATH_IMAGE002
之间。
4.根据权利要求1所述的一种含氮空位少层多孔氮化碳光催化剂的制法,其特征在于:石墨相氮化碳前驱体为尿素、硫脲、双氰胺、氰胺、三聚氰胺中的一种或几种。
5.根据权利要求1所述的一种含氮空位少层多孔氮化碳光催化剂的制法,其特征在于:小分子醇为甲醇或乙醇或丙醇。
6.如根据权利要求1-5任一项所述的含氮空位少层多孔氮化碳光催化剂在光催化甲醇水相重整制氢中的应用。
CN202010672061.8A 2020-07-14 2020-07-14 一种含氮空位少层多孔氮化碳光催化剂的制法及其应用 Active CN111659451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010672061.8A CN111659451B (zh) 2020-07-14 2020-07-14 一种含氮空位少层多孔氮化碳光催化剂的制法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010672061.8A CN111659451B (zh) 2020-07-14 2020-07-14 一种含氮空位少层多孔氮化碳光催化剂的制法及其应用

Publications (2)

Publication Number Publication Date
CN111659451A true CN111659451A (zh) 2020-09-15
CN111659451B CN111659451B (zh) 2023-03-24

Family

ID=72391654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010672061.8A Active CN111659451B (zh) 2020-07-14 2020-07-14 一种含氮空位少层多孔氮化碳光催化剂的制法及其应用

Country Status (1)

Country Link
CN (1) CN111659451B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739154A (zh) * 2022-11-16 2023-03-07 山东科技大学 具有三配位氮空位氮化碳纳米材料及其制备方法和应用
CN116020516A (zh) * 2023-01-17 2023-04-28 齐鲁工业大学(山东省科学院) 一种尺寸可控的石墨相氮化碳光催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134797A (ko) * 2012-05-31 2013-12-10 인하대학교 산학협력단 카본 나이트라이드(c3n4)-그래핀 복합체 제조방법 및 이에 의해 제조되는 카본 나이트라이드(c3n4)-그래핀 복합체
CN103801354A (zh) * 2014-03-12 2014-05-21 福州大学 一种后退火处理的石墨相氮化碳空心球可见光催化剂
CN107331537A (zh) * 2017-08-04 2017-11-07 太原理工大学 一种三维石墨烯/石墨相碳化氮的制备方法及应用
CN109701577A (zh) * 2019-01-10 2019-05-03 安徽工业大学 一种利用碳纳米管作为硬模板制备多孔石墨相氮化碳的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134797A (ko) * 2012-05-31 2013-12-10 인하대학교 산학협력단 카본 나이트라이드(c3n4)-그래핀 복합체 제조방법 및 이에 의해 제조되는 카본 나이트라이드(c3n4)-그래핀 복합체
CN103801354A (zh) * 2014-03-12 2014-05-21 福州大学 一种后退火处理的石墨相氮化碳空心球可见光催化剂
CN107331537A (zh) * 2017-08-04 2017-11-07 太原理工大学 一种三维石墨烯/石墨相碳化氮的制备方法及应用
CN109701577A (zh) * 2019-01-10 2019-05-03 安徽工业大学 一种利用碳纳米管作为硬模板制备多孔石墨相氮化碳的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739154A (zh) * 2022-11-16 2023-03-07 山东科技大学 具有三配位氮空位氮化碳纳米材料及其制备方法和应用
CN115739154B (zh) * 2022-11-16 2024-02-02 山东科技大学 具有三配位氮空位氮化碳纳米材料及其制备方法和应用
CN116020516A (zh) * 2023-01-17 2023-04-28 齐鲁工业大学(山东省科学院) 一种尺寸可控的石墨相氮化碳光催化剂及其制备方法
CN116020516B (zh) * 2023-01-17 2023-10-20 齐鲁工业大学(山东省科学院) 一种尺寸可控的石墨相氮化碳光催化剂及其制备方法

Also Published As

Publication number Publication date
CN111659451B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
KR101147259B1 (ko) 탄소나노튜브의 연속적인 정제 방법 및 장치
EP2105407B1 (en) Continuous methods and apparatus of functionalizing carbon nanotube
CN109126867B (zh) 一种用于水处理的光催化分离膜及制备方法
CN111659451B (zh) 一种含氮空位少层多孔氮化碳光催化剂的制法及其应用
CN105271217A (zh) 一种氮掺杂的三维石墨烯的制备方法
JP2009040673A (ja) 結晶性が優れた気孔性グラファイト炭素の製造方法およびグラファイト炭素を担体として適用する燃料電池用触媒
CN113042078B (zh) 一种具有磺酸基基团的改性MXene材料的制备方法
Zhao et al. Construction of three-dimensional mesoporous carbon nitride with high surface area for efficient visible-light-driven hydrogen evolution
CN109962250A (zh) 一种Fe-N-C催化剂及其制备方法和应用
KR20160010151A (ko) 개미산의 분해 및 재생용 촉매 및 이의 제조방법
Wang et al. A low-cost and high-yield approach for preparing g-C3N4 with a large specific surface area and enhanced photocatalytic activity by using formaldehyde-treated melamine
CN103449403A (zh) 氮掺杂多壁碳纳米管的制备方法
CN102730668B (zh) 一种基于芳香醇通过溶剂热制备石墨烯的方法
CN109999887A (zh) 一种β-FeOOH/g-C3N4异质结光催化材料的制备方法
Zheng et al. High-loaded sub-6 nm Cu catalyst with superior hydrothermal-stability and efficiency for aqueous phase reforming of methanol to hydrogen
KR20240120707A (ko) 팽창 그라파이트 제조 방법
Shcherban et al. Hard template synthesis and photocatalytic activity of graphitic carbon nitride in the hydrogen evolution reaction using organic acids as electron donors
CN103801354A (zh) 一种后退火处理的石墨相氮化碳空心球可见光催化剂
WO2012039305A1 (ja) カーボンナノチューブ製造方法
JP3819329B2 (ja) カーボンナノチューブの製造方法
CN111943722A (zh) 一种在泡沫陶瓷表面合成碳纳米管的可控方法及其应用
CN108620110B (zh) 一种碳化钒/石墨烯纳米片复合材料、制备方法及其在水裂解产氢方面的应用
Guo et al. Higher-than-common temperature short-time processed polymeric carbon nitride nanosheets as an efficient photocatalyst for H2 production
CN113413917A (zh) 一种基于芘四羧酸的Tb-MOF纳米片的制备及应用
CN110385137B (zh) 一种异相纳米碳基催化剂、其制备方法及其在乙苯氧化中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant