CN111650084B - 用于表征电池产气速率的真空值测试方法及装置 - Google Patents

用于表征电池产气速率的真空值测试方法及装置 Download PDF

Info

Publication number
CN111650084B
CN111650084B CN202010519017.3A CN202010519017A CN111650084B CN 111650084 B CN111650084 B CN 111650084B CN 202010519017 A CN202010519017 A CN 202010519017A CN 111650084 B CN111650084 B CN 111650084B
Authority
CN
China
Prior art keywords
vacuum
value
battery
gas production
vacuum system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010519017.3A
Other languages
English (en)
Other versions
CN111650084A (zh
Inventor
刘虎
陈利权
何巍
刘金成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Eve Power Co Ltd
Original Assignee
Hubei Eve Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Eve Power Co Ltd filed Critical Hubei Eve Power Co Ltd
Priority to CN202010519017.3A priority Critical patent/CN111650084B/zh
Publication of CN111650084A publication Critical patent/CN111650084A/zh
Application granted granted Critical
Publication of CN111650084B publication Critical patent/CN111650084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
    • G01N7/18Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference by allowing the material to react
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Secondary Cells (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明公开了一种用于表征电池产气速率的真空值测试方法及装置,涉及锂离子电池技术领域。该真空值测试方法,包括以下步骤:S10、将待测电池的注液孔与真空系统连接;S20、设置真空系统工作状态的真空值范围;S30、真空系统在工作状态的真空值范围内循环工作,直至真空系统的真空值达到稳定状态;S40、实时监测步骤S30中的真空变化值,输出时间‑真空变化曲线Ⅰ。由于真空系统真空值的变化受待测电池内部产气的影响,故时间‑真空变化曲线Ⅰ能够表征电池的产气速率。该真空值测试方法采用高真空循环保压方法,灵敏度高,避免因系统空间造成测试误差,测试精度高,从而可以更准确的表征电池的产气速率。

Description

用于表征电池产气速率的真空值测试方法及装置
技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种用于表征电池产气速率的真空值测试方法及装置。
背景技术
锂离子电池是当今国际公认的理想化学能源,日益扩大的电动汽车及储能领域给锂离子电池带来更大的发展空间。目前产业化锂离子电池在化成过程中伴随着大量产气,且随着人们对高能量密度要求越来越高,高镍材料逐渐推向市场,高温存储过程中产气也面临重要挑战,研究锂离子电池化成阶段和存储阶段产气速率快慢对于指导锂离子电池新化成工艺开发及新材料开发至关重要。而且电池化成过程中的产气直接影响着锂离子电池SEI膜生长情况,进而影响锂离子电池性能及使用寿命。
现有技术中测试锂离子电池化成过程中产气速率的方法是检测与锂离子电池注液孔连接的导气管内标识液体移动速度,根据标识液体移动速度计算得到锂离子电池产气速率。该测试方法实用性强,不受外界气体干扰,但存在测试装置操作复杂,灵敏度低,需要记录液体移动时间及移动距离,误差较大等缺点。
发明内容
本发明的一个目的在于提供一种用于表征电池产气速率的真空值测试方法,以实现准确表征电池的产气速率。
为达此目的,本发明采用以下技术方案:
一种用于表征电池产气速率的真空值测试方法,其中包括以下步骤:
S10、将待测电池的注液孔与真空系统连接;
S20、设置所述真空系统工作状态的真空值范围;
S30、所述真空系统在所述工作状态的真空值范围内循环工作,直至所述真空系统的真空值达到稳定状态;
S40、实时监测步骤S30中的真空变化值,输出时间-真空变化曲线Ⅰ。
可选地,在步骤S10之后、步骤S20之前,还包括以下步骤:
S100、检测测试装置的漏率。
可选地,所述检测测试装置的漏率的方法为:将所述真空系统的真空值设置为初始值,保压预设时间,输出漏率曲线Ⅱ。
可选地,所述初始值为-85Kpa±5Kpa。
可选地,所述工作状态的真空值范围为:-85Kpa~-60Kpa。
可选地,所述步骤S30还包括以下步骤:
S31、当所述真空系统的真空值达到所述初始值时,真空泵停止工作;
S32、当所述真空系统的真空值低于-60Kpa时,所述真空泵自动启动,将所述真空系统的真空值调至所述初始值。
可选地,所述步骤S40之后还包括以下步骤:
S50、将所述时间-真空变化曲线Ⅰ扣除所述漏率曲线Ⅱ,拟合输出高真空循环保压过程中时间-真空变化曲线Ⅲ。
可选地,所述预设时间为30min~60min。
本发明的另一个目的在于提供一种用于表征电池产气速率的真空值测试装置,以实现操作简单,灵敏度高,测试结果直观且可靠,适用性强。
为达此目的,本发明采用以下技术方案:
一种用于表征电池产气速率的真空值测试装置,应用于所述用于表征电池产气速率的真空值测试方法,其中包括导气管和真空系统,待测电池的注液孔通过所述导气管与所述真空系统连接。
可选地,还包括缓存容器,所述缓存容器设置于所述待测电池与所述真空系统之间,所述缓存容器上设置有进气口和出气口,所述进气口与所述待测电池的注液孔连接,所述出气口与所述真空系统连接。
本发明的有益效果:
本发明提供的用于表征电池产气速率的真空值测试方法,将待测电池的注液孔与真空系统连接,设置真空系统工作状态的真空值范围,使得真空系统在工作状态的真空值范围内循环工作,直至真空系统的真空值达到稳定状态,电池的产气过程结束。真空系统实时监测产气过程中真空值的变化,并输出时间-真空变化曲线Ⅰ,时间-真空变化曲线Ⅰ能够清楚地反应不同时间段内真空值变化的快慢,由于真空系统与待测电池的注液孔连接,真空值的变化受待测电池内部产气的影响,故时间-真空变化曲线Ⅰ能够表征电池的产气速率。该真空值测试方法采用高真空循环保压方法,灵敏度高,避免因系统空间造成测试误差,测试精度高,从而能够准确地表征电池的产气速率。
本发明提供的用于表征电池产气速率的真空值的测试装置,通过导气管将待测电池的注液孔与真空系统连接,控制真空系统在高真空值范围内循环工作,并将工作过程中时间-真空变化曲线Ⅰ输出。该真空值的测试装置操作简单,灵敏度高,测试结果直观且可靠,适用性强。
附图说明
图1是本发明实施例提供的用于表征电池产气速率的真空值的测试装置的结构示意图;
图2是本发明实施例提供的用于表征电池产气速率的真空值的测试方法的主要步骤流程图;
图3是本发明实施例提供的用于表征电池产气速率的真空值的测试方法的详细步骤流程图;
图4是本发明实施例提供的模拟漏率曲线Ⅱ;
图5是本发明实施例提供的模拟时间-真空变化曲线Ⅰ;
图6是本发明实施例提供的模拟高真空循环保压过程中时间-真空变化曲线Ⅲ。
图中:
1、待测电池;2、导气管;3、缓存容器;4、真空系统;
41、触摸屏。
具体实施方式
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一特征和第二特征直接接触,也可以包括第一特征和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
目前产业化锂离子电池在化成过程中伴随着大量产气,且随着人们对高能量密度要求越来越高,高镍材料逐渐推向市场,高温存储过程中产气也面临重要挑战,研究锂离子电池化成阶段和存储阶段产气速率快慢对于指导锂离子电池新化成工艺开发及新材料开发至关重要。
鉴于上述情况,本发明基于方形锂离子电池,研发了一种用于表征电池产气速率的真空值测试方法及装置,该真空值的测试方法采用高真空循环保压方法,灵敏度高,借助于计算机系统拟合作用,通过对测试装置真空值变化实时监测,实现对锂离子电池产气速率表征。
如图1所示,本实施例提供了一种用于表征电池产气速率的真空值测试装置,包括导气管2和真空系统4,待测电池1的注液孔通过导气管2与真空系统4连接。
本实施例提供的用于表征电池产气速率的真空值测试装置,通过导气管2将待测电池1的注液孔与真空系统4连接,控制真空系统4在高真空值范围内循环工作,并将工作过程中真空变化曲线Ⅰ输出。该真空值检测的测试装置操作简单,灵敏度高,测试结果直观且可靠,适用性强。
优选地,本实施例提供的用于表征电池产气速率的真空值测试装置,还包括缓存容器3,缓存容器3设置于待测电池1与真空系统4之间,缓存容器3上设置有进气口和出气口,进气口与待测电池1的注液孔连接,出气口与真空系统4连接。设置缓存容器3是为了防止待测电池1中的电解液进入真空系统4,对真空系统4造成损坏。
可选地,导气管2与待测电池1的注液孔、缓存容器3的进气口和出气口以及真空系统4的接头处均采用密封胶密封。以确保测试装置的密封性,防止外界气体的干扰,提高测试精度。
真空系统4是由真空泵、PLC程序控制单元、储气罐、真空管道、真空阀门、境外过滤总成等组成的成套真空系统4。真空系统4出厂时已经包括了抽速控制、进气过滤、主要运行数据显示、运行保护及远程控制接口等。只需要在现场进行简单的连接电源和管道即可以组成一个完成的真空系统4。该真空系统4的控制系统由先进的PLC控制系统编程后组成,以触摸屏41为人机界面,实现对真空系统4、工件行走、磁控靶、工艺设定和执行、报警保护系统等的全自动化控制。在本实施例中,操作人员通过触摸屏41对真空系统4进行初始值和工作状态的真空值范围设定,并实现测试装置漏率曲线Ⅱ和时间-真空变化曲线Ⅰ的输出,以及高真空循环保压过程中时间-真空变化曲线Ⅲ的拟合输出。
如图2和图3所示,本实施例还提供了一种用于表征电池产气速率的真空值测试方法,应用上述测试装置,包括以下步骤:
S10、将待测电池1的注液孔与真空系统4连接;
在本实施例中,在测试之前,先通过导气管2将待测电池1的注液孔与缓存容器3的进气口连接,再通过导气管2将缓存容器3的出气口与真空系统4连接。
可选地,在步骤S10之后、步骤S20之前,还包括以下步骤:
S100、检测测试装置的漏率。
检测测试装置的漏率的方法为:将真空系统4的真空设置为初始值,保压预设时间,输出漏率曲线Ⅱ。如图4所示,测试装置的真空值始终保持在-85Kpa,说明测试装置的密封性良好。检测测试装置的漏率是为了确保测试装置的密封性,防止外界气体的干扰,进一步地提高测试精度。需要说明的是,本实施例是对待测电池1在化成阶段的产气测试,检测测试装置的漏率是在待测电池1刚注完电解液之后进行的,并没有对待测电池1进行充放电,待测电池1的化成还没有开始,即待测电池1还没有开始产气。
可选地,初始值为-85Kpa±5Kpa。预设时间为30min~60min。在本实施例中,将初始值设置为-85Kpa,预设时间设置为45min。当然在其他实施例中,初始值和预设时间可根据实际情况设定。
S20、设置真空系统4工作状态的真空值范围;
测试装置的漏率检测完成后,设置真空系统4工作状态的真空值范围,然后开始对待测电池1充放电,待测电池1开始化成产气,同时启动真空系统4,开始测试真空系统4的真空值变化。
S30、真空系统4在工作状态的真空值范围内循环工作,直至真空系统4的真空值达到稳定状态;
方形锂离子电池化成过程中存在一定程度产气,且随着化成过程进行,产气速率会有差异,由于方形电池本身内部存在一定空间,微量产气起始阶段或当产气量开始减少时往往不易监测,因此本实施例基于高真空循环保压方法,实现对锂离子电池化成过程不同阶段产气速率表征,灵敏度高。
在本实施例中,步骤S30还包括以下步骤:
S31、当真空系统4的真空值达到初始值时,真空泵停止工作;
在本实施例中,工作状态的真空值范围为:-85Kpa~-60Kpa。真空泵的工作范围为-85Kpa~-60Kpa,即当测试装置中的真空值达到PLC程序控制单元设定的初始值-85Kpa时,真空泵停止工作。容易理解的是,如果待测电池1不产气,真空系统4一直从缓存容器3和待测电池1内抽真空,真空系统4内的真空值会增加,为了实现保压,在真空系统4的真空值达到设定的初始值时,真空泵停止工作。
S32、当真空系统4的真空值低于-60Kpa时,真空泵自动启动,将真空系统4的真空值调至初始值。
随着待测电池1化成过程的进行,测试装置的真空值随着产气过程不断变化,当测试装置的真空值低于-60Kpa时,真空泵自动启动,瞬间确保测试装置达到真空初始值,周而复始,真空泵循环工作,直至系统真空值逐渐达到稳定状态,产气过程结束。
S40、实时监测步骤S30中的真空变化值,输出时间-真空变化曲线Ⅰ。
在测试过程中,真空系统4的PLC程序控制单元实时监测测试过程中测试装置的真空变化值,并输出时间-真空变化曲线Ⅰ。如图5所示,可以直观地看出在各个时间段内真空值的变化。
可选地,步骤S40之后还包括以下步骤:
S50、将时间-真空变化曲线Ⅰ扣除漏率曲线Ⅱ,拟合输出高真空循环保压过程中时间-真空变化曲线Ⅲ。
通过真空系统4的PLC程序控制单元计算扣除漏率曲线Ⅱ,最终拟合输出高真空循环保压过程中时间-真空变化曲线Ⅲ。如图6所示,高真空循环保压过程中时间-真空变化曲线Ⅲ可以非常直观地看出不同时间段内真空值变化的快慢,由于真空系统4与待测电池1的注液孔连接,测试装置的密封性良好,真空值的变化仅受待测电池1内部产气的影响,故高真空循环保压过程中时间-真空变化曲线Ⅲ能够准确地表征电池化成过程中不同时间段内产气速率。
操作人员通过真空系统4的触摸屏41可以看到该高真空循环保压过程中时间-真空变化曲线Ⅲ,也可通过远程控制接口连接的PC端将该高真空循环保压过程中时间-真空变化曲线Ⅲ保存。
从图6可看出,该待测电池1在前40min内产气速率慢;在40min~120min内,产气速率快;在120min~180min内,产气速率又变慢;在180min之后,真空值比较稳定,产气过程结束。
本实施例提供的用于表征电池产气速率的真空值测试方法,将待测电池1的注液孔与真空系统4连接,设置真空系统4工作状态的真空值范围,使得真空系统4在工作状态的真空值范围内循环工作,直至真空系统4的真空值达到稳定状态,电池的产气过程结束。真空系统4实时监测产气过程中真空值的变化,并输出时间-真空变化曲线Ⅰ,时间-真空变化曲线Ⅰ能够清楚地反应不同时间段内真空值变化的快慢,由于真空系统与待测电池的注液孔连接,真空值的变化受待测电池内部产气的影响,故时间-真空变化曲线Ⅰ能够表征电池化成阶段的产气速率。该真空值测试方法采用高真空循环保压方法,灵敏度高,避免因系统空间造成测试误差,测试精度高,从而能够准确地表征电池的产气速率。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种用于表征电池产气速率的真空值测试方法,其特征在于,包括以下步骤:
S10、将待测电池(1)的注液孔与真空系统(4)连接;
S20、设置所述真空系统(4)工作状态的真空值范围;
S30、所述真空系统(4)在所述工作状态的真空值范围内循环工作,直至所述真空系统(4)的真空值达到稳定状态;
S40、实时监测步骤S30中的真空变化值,输出时间-真空变化曲线Ⅰ。
2.根据权利要求1所述的用于表征电池产气速率的真空值测试方法,其特征在于,在步骤S10之后、步骤S20之前,还包括以下步骤:
S100、检测测试装置的漏率。
3.根据权利要求2所述的用于表征电池产气速率的真空值测试方法,其特征在于,所述检测测试装置的漏率的方法为:将所述真空系统(4)的真空值设置为初始值,保压预设时间,输出漏率曲线Ⅱ。
4.根据权利要求3所述的用于表征电池产气速率的真空值测试方法,其特征在于,所述初始值为-85Kpa±5Kpa。
5.根据权利要求4所述的用于表征电池产气速率的真空值测试方法,其特征在于,所述工作状态的真空值范围为:-85Kpa~-60Kpa。
6.根据权利要求5所述的用于表征电池产气速率的真空值测试方法,其特征在于,所述步骤S30还包括以下步骤:
S31、当所述真空系统(4)的真空值达到所述初始值时,真空泵停止工作;
S32、当所述真空系统(4)的真空值低于-60Kpa时,所述真空泵自动启动,将所述真空系统(4)的真空值调至所述初始值。
7.根据权利要求3所述的用于表征电池产气速率的真空值测试方法,其特征在于,所述步骤S40之后还包括以下步骤:
S50、将所述时间-真空变化曲线Ⅰ扣除所述漏率曲线Ⅱ,拟合输出高真空循环保压过程中时间-真空变化曲线Ⅲ。
8.根据权利要求3所述的用于表征电池产气速率的真空值测试方法,其特征在于,所述预设时间为30min~60min。
9.一种用于表征电池产气速率的真空值测试装置,应用于如权利要求1-8任一项所述用于表征电池产气速率的真空值测试方法,其特征在于,包括导气管(2)和真空系统(4),待测电池(1)的注液孔通过所述导气管(2)与所述真空系统(4)连接,所述真空系统(4)实时监测产气过程中真空值的变化,并输出所述时间-真空变化曲线Ⅰ。
10.根据权利要求9所述的用于表征电池产气速率的真空值测试装置,其特征在于,还包括缓存容器(3),所述缓存容器(3)设置于所述待测电池(1)与所述真空系统(4)之间,所述缓存容器(3)上设置有进气口和出气口,所述进气口与所述待测电池(1)的注液孔连接,所述出气口与所述真空系统(4)连接。
CN202010519017.3A 2020-06-09 2020-06-09 用于表征电池产气速率的真空值测试方法及装置 Active CN111650084B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010519017.3A CN111650084B (zh) 2020-06-09 2020-06-09 用于表征电池产气速率的真空值测试方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010519017.3A CN111650084B (zh) 2020-06-09 2020-06-09 用于表征电池产气速率的真空值测试方法及装置

Publications (2)

Publication Number Publication Date
CN111650084A CN111650084A (zh) 2020-09-11
CN111650084B true CN111650084B (zh) 2023-03-31

Family

ID=72347297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010519017.3A Active CN111650084B (zh) 2020-06-09 2020-06-09 用于表征电池产气速率的真空值测试方法及装置

Country Status (1)

Country Link
CN (1) CN111650084B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087857A (ja) * 2007-10-02 2009-04-23 Nissan Motor Co Ltd 燃料電池システム
CN103674768A (zh) * 2013-11-22 2014-03-26 深圳市迪凯特电池科技有限公司 一种锂离子电池化成产气量检测方法及测量装置
CN103852396A (zh) * 2014-03-04 2014-06-11 北京科技大学 利用容量法测量气固化学反应速率的测试装置及测试方法
CN108808102A (zh) * 2018-06-13 2018-11-13 桑德集团有限公司 用于锂离子电池化成过程的间歇式负压调节系统和负压调节方法
CN109520678A (zh) * 2018-12-26 2019-03-26 浙江工业大学 一种用于压力容器气密性试验的保压检测方法
CN109738329A (zh) * 2018-12-29 2019-05-10 蜂巢能源科技有限公司 用于测量电芯产气量的测量装置和测量方法
CN109921119A (zh) * 2019-03-08 2019-06-21 安徽泰能新能源科技有限公司 一种圆柱锂离子电池预充方法、生产方法及其得到的产品
CN110073205A (zh) * 2016-11-10 2019-07-30 坎麦克斯动力有限责任公司 用于评估电化学电池质量的系统和方法
CN110137585A (zh) * 2019-05-29 2019-08-16 成都特隆美储能技术有限公司 一种长寿命锂离子储能电池的化成工艺
JP2020031470A (ja) * 2018-08-21 2020-02-27 Fdk株式会社 二次電池の充電制御方法及び充電制御システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595824A (en) * 1979-01-13 1980-07-21 Mitsubishi Heavy Ind Ltd Measuring device for discharged gas amount in ultra-high vacuum
KR101025516B1 (ko) * 2006-09-11 2011-04-04 주식회사 엘지화학 전지셀의 부피 변화 측정 장치
CN102914484A (zh) * 2012-10-16 2013-02-06 绥中正国新能源科技有限公司 一种锂离子电池极片或电芯干燥度测试方法
CN204557172U (zh) * 2015-04-29 2015-08-12 中航锂电(洛阳)有限公司 一种化成手套箱及其抽真空控制系统
KR102105470B1 (ko) * 2015-08-12 2020-04-28 주식회사 엘지화학 리튬 공기 전지용 측정장치와 그 측정방법
CN106568673A (zh) * 2015-10-12 2017-04-19 哈尔滨理工大学 负压回升速率法快速检测熔体含气量
WO2017205257A1 (en) * 2016-05-23 2017-11-30 Tk Holdings Inc. Gas generating compositions and methods of making and using thereof
US10215678B2 (en) * 2016-08-01 2019-02-26 Instrotek, Inc. Systems and methods for maximum specific gravity tests for asphalt mixture samples
CN206479622U (zh) * 2017-01-12 2017-09-08 浙江零跑科技有限公司 一种电池内压和产气量的测量装置
CN107490417A (zh) * 2017-07-25 2017-12-19 合肥国轩高科动力能源有限公司 一种锂离子动力电池化成阶段产气速率测试装置及方法
JP6809404B2 (ja) * 2017-07-27 2021-01-06 トヨタ自動車株式会社 燃料電池システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087857A (ja) * 2007-10-02 2009-04-23 Nissan Motor Co Ltd 燃料電池システム
CN103674768A (zh) * 2013-11-22 2014-03-26 深圳市迪凯特电池科技有限公司 一种锂离子电池化成产气量检测方法及测量装置
CN103852396A (zh) * 2014-03-04 2014-06-11 北京科技大学 利用容量法测量气固化学反应速率的测试装置及测试方法
CN110073205A (zh) * 2016-11-10 2019-07-30 坎麦克斯动力有限责任公司 用于评估电化学电池质量的系统和方法
CN108808102A (zh) * 2018-06-13 2018-11-13 桑德集团有限公司 用于锂离子电池化成过程的间歇式负压调节系统和负压调节方法
JP2020031470A (ja) * 2018-08-21 2020-02-27 Fdk株式会社 二次電池の充電制御方法及び充電制御システム
CN109520678A (zh) * 2018-12-26 2019-03-26 浙江工业大学 一种用于压力容器气密性试验的保压检测方法
CN109738329A (zh) * 2018-12-29 2019-05-10 蜂巢能源科技有限公司 用于测量电芯产气量的测量装置和测量方法
CN109921119A (zh) * 2019-03-08 2019-06-21 安徽泰能新能源科技有限公司 一种圆柱锂离子电池预充方法、生产方法及其得到的产品
CN110137585A (zh) * 2019-05-29 2019-08-16 成都特隆美储能技术有限公司 一种长寿命锂离子储能电池的化成工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
牛慧贤.真空技术及设备在动力电池制造中的应用.真空科学与技术学报.2006,第26卷(第5期),第392-396页. *
程玉龙 等.全固态薄膜锂蓄电池研究进展.电源技术.2007,第31卷(第8期),第663-666页. *

Also Published As

Publication number Publication date
CN111650084A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN102426082B (zh) 一种锂离子蓄电池注液封口前的检漏方法
CN202631207U (zh) 一种动力电池气密性检测装置
CN202903434U (zh) 一种检测装置
CN107796570B (zh) 一种产品局部异型表面气密性检测系统及应用
CN102095557A (zh) 一种超级电容器的测漏装置
CN209166762U (zh) 一种气密性检测装置
CN206504833U (zh) 一种限压盖板的封口焊接测漏装置
CN111650084B (zh) 用于表征电池产气速率的真空值测试方法及装置
CN108693045A (zh) 橡胶胶管在线高压定压测试系统
CN208746789U (zh) 一种双层油罐泄漏检测装置及系统
CN110726547A (zh) 便携式压力保护器件综合校验装置
CN116183141A (zh) 一种电池包气密性检测装置与方法
CN116511082A (zh) 电芯烘烤在线检测设备及方法
CN110940468A (zh) 一种智能化气密性检测试验台
CN207231716U (zh) 一种加速器真空等级实时监测系统
CN115655599A (zh) 掺氢连接密封件泄漏检测和疲劳一体化实验装置及方法
CN206862581U (zh) 一种电池测漏设备
CN205940905U (zh) 一种注液机夹具气密检测装置
CN214149718U (zh) 一种氢燃料电池气密性低压高效检漏装置
CN211740526U (zh) 一种气密性检测设备
CN210108640U (zh) 一种热水器气密性检测装置
CN210742203U (zh) 电池检测系统
CN104155070A (zh) 一种气密封性检测装置及方法
CN106443407A (zh) 一种小型高温高压试验系统及方法
CN114076661A (zh) 一种燃料电池堆自动检漏装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant