CN111644171B - 一种NaZnMo复合物催化剂材料的制备方法及其用途 - Google Patents

一种NaZnMo复合物催化剂材料的制备方法及其用途 Download PDF

Info

Publication number
CN111644171B
CN111644171B CN202010519831.5A CN202010519831A CN111644171B CN 111644171 B CN111644171 B CN 111644171B CN 202010519831 A CN202010519831 A CN 202010519831A CN 111644171 B CN111644171 B CN 111644171B
Authority
CN
China
Prior art keywords
solution
naznmo
ultrasonic
carrying
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010519831.5A
Other languages
English (en)
Other versions
CN111644171A (zh
Inventor
李星
石朝霞
李涛海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN202010519831.5A priority Critical patent/CN111644171B/zh
Publication of CN111644171A publication Critical patent/CN111644171A/zh
Application granted granted Critical
Publication of CN111644171B publication Critical patent/CN111644171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种NaZnMo复合物催化剂材料的制备方法及其用途,本发明以醋酸锌和钼酸钠为原料,通过超声、调控pH值、溶液反应制备NaZnMo复合物,其作为超声催化剂催化降解有机染料效率高,结构稳定,应用前景广泛。本发明制备工艺简单,反应条件温和、成本低廉,设备投资少,适合批量生产。

Description

一种NaZnMo复合物催化剂材料的制备方法及其用途
技术领域
本发明属于无机催化领域,具体涉及一种NaZnMo复合物催化剂材料的制备方法及其用途。
背景技术
近来,由于技术进步和工业发展引起的环境污染物已成为全球性问题。而氧化处理被认为是最有效的方法,其中光催化过程被认为是分解有机污染物的可持续的途径。然而,废水通常是半透明的,并且包含各种相对较高浓度的有机物,极大地阻碍了入射阳光的渗透和太阳能在催化剂颗粒表面的传输,从而极大地限制了光催化的去除效率。相反,超声催化能够克服上述缺点,并在废水处理和净化领域中具有潜在的应用价值。
纳米材料具有独特性能,其现有合成方法有多种,如高温固相法,溶胶-凝胶法,声化学法,水热法,共沉淀法等,但超声化学法(声化学法)因其具有高均匀性,良好的结晶性,简便性和可控参数等多种优势而被认为是最重要的方法之一,其可成功合成出不同的化合物。而且使用声化学法,它的高效合成技术可节省时间和能源,促进各种化学反应,有利于节能环保,且无需加热即可合成。在众多研究中,钼酸盐是一种性能良好的催化剂材料,应用广泛,如光催化剂、传感器、光子和激光设备构建材料等。NaZn2(OH)(MoO4)2·H2O这种钼酸盐研究的比较少。
发明内容
本发明所要解决的技术问题是针对现有技术,提供制备工艺简单、反应条件温和、无需添加表面活性剂、产率高的一种NaZnMo复合物催化剂材料的制备方法。
本发明为解决上述技术问题所采取的技术方案为:一种NaZnMo复合物催化剂材料的制备方法,该制备方法以醋酸锌和钼酸钠为原料,通过超声技术和调控酸碱度,在常温常压下,进行溶液反应,得到一种NaZnMo复合物催化剂材料,具体包括以下步骤:
(1)称取适量的醋酸锌Zn(Ac)2·2H2O加入到一定体积的蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液A,其浓度为0.2mmol/mL;
(2)称取适量的钼酸钠Na2MoO4·2H2O加入到一定体积的蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液B,其浓度为0.2mmol/mL;
(3)在超声条件下,将溶液A缓慢的滴入到溶液B中,得到混合溶液C,用2M的NaOH调节溶液C的pH至6,再用超声仪超声,得到含有白色沉淀的浑浊液D;
(4)将上述浑浊液D进行离心分离,得到白色沉淀物,将白色沉淀物分别用蒸馏水和无水乙醇交替洗三次,然后在70℃下干燥12h后,得到一种NaZnMo复合物催化剂材料;
所述步骤(1)、(2)和(3)中超声仪的超声功率为200W;
所述一种NaZnMo复合物的化学式为NaZn2(OH)(MoO4)2·H2O;
所述一种NaZnMo复合物的形貌为片状梭形。
进一步的,本发明还提供了所述NaZnMo复合物的用途,该复合物作为催化剂,在超声条件下能够高效快速催化降解亚甲基蓝及罗丹明B。
本文通过简单的声化学法,制备了一种NaZnMo复合物,其作为催化剂在超声条件下对亚甲基蓝及罗丹明B等有机染料具有很好的超声催化降解性能。
与现有技术相比,本发明具有如下特点:
(1)本发明所制备的NaZnMo复合物的形貌为片状梭形;
(2)本发明所制备NaZnMo复合物作为催化剂,能够在常温常压超声条件下,高效快速催化降解亚甲基蓝及罗丹明B有机染料。
附图说明
图1是不同时间所制备NaZnMo复合物催化剂的XRD图。
图2是反应时间40min所制备NaZnMo复合物催化剂的SEM图。
图3是不同时间所制备NaZnMo复合物催化剂在超声条件下催化降解亚甲基蓝浓度随着超声时间变化的关系图。
图4是不同时间所制备NaZnMo复合物催化剂在超声条件下催化降解罗丹明B浓度随着超声时间变化的关系图。
具体实施方式
以下结合实施例对本发明作进一步详细描述,本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
实施例1
称取2.0mmol(0.438g)的醋酸锌Zn(Ac)2·2H2O加入到10mL蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液A;称取2.0mmol(0.484g)的钼酸钠Na2MoO4·2H2O加入到10mL蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液B;在超声条件下,将溶液A缓慢的滴入到溶液B中,得到混合溶液C,用2M的NaOH调节溶液C的pH至6,再用超声仪超声5分钟,得到含有白色沉淀的浑浊液D;将上述浑浊液D进行离心分离,得到白色沉淀物,将白色沉淀物分别用蒸馏水和无水乙醇交替洗三次,然后在70℃下干燥12h后,得到一种NaZnMo复合物催化剂材料,其化学式为NaZn2(OH)(MoO4)2·H2O,并记为T5,并扫描电镜SEM观测其形貌。
实施例2
称取2.0mmol(0.438g)的醋酸锌Zn(Ac)2·2H2O加入到10mL蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液A;称取2.0mmol(0.484g)的钼酸钠Na2MoO4·2H2O加入到10mL蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液B;在超声条件下,将溶液A缓慢的滴入到溶液B中,得到混合溶液C,用2M的NaOH调节溶液C的pH至6,再用超声仪超声10分钟,得到含有白色沉淀的浑浊液D;将上述浑浊液D进行离心分离,得到白色沉淀物,将白色沉淀物分别用蒸馏水和无水乙醇交替洗三次,然后在70℃下干燥12h后,得到一种NaZnMo复合物催化剂材料,其化学式为NaZn2(OH)(MoO4)2·H2O,记为T10,并扫SEM观测其形貌。
实施例3
称取2.0mmol(0.438g)的醋酸锌Zn(Ac)2·2H2O加入到10mL蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液A;称取2.0mmol(0.484g)的钼酸钠Na2MoO4·2H2O加入到10mL蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液B;在超声条件下,将溶液A缓慢的滴入到溶液B中,得到混合溶液C,用2M的NaOH调节溶液C的pH至6,再用超声仪超声15分钟,得到含有白色沉淀的浑浊液D;将上述浑浊液D进行离心分离,得到白色沉淀物,将白色沉淀物分别用蒸馏水和无水乙醇交替洗三次,然后在70℃下干燥12h后,得到一种NaZnMo复合物催化剂材料,其化学式为NaZn2(OH)(MoO4)2·H2O,记为T15,并扫SEM观测其形貌。
实施例4
称取2.0mmol(0.438g)的醋酸锌Zn(Ac)2·2H2O加入到10mL蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液A;称取2.0mmol(0.484g)的钼酸钠Na2MoO4·2H2O加入到10mL蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液B;在超声条件下,将溶液A缓慢的滴入到溶液B中,得到混合溶液C,用2M的NaOH调节溶液C的pH至6,再用超声仪超声40分钟,得到含有白色沉淀的浑浊液D;将上述浑浊液D进行离心分离,得到白色沉淀物,将白色沉淀物分别用蒸馏水和无水乙醇交替洗三次,然后在70℃下干燥12h后,得到一种NaZnMo复合物催化剂材料,其化学式为NaZn2(OH)(MoO4)2·H2O,记为T40,并扫SEM观测其形貌。
将上述实施例中所得到的T5、T10、T15和T40分别进行粉末X射线衍射分析,结果显示所获得的化合物为NaZn2(OH)(MoO4)2·H2O(图1)。
将上述实施例4所获得NaZnMo复合物催化剂材料用扫描电镜观测其形貌,结果显示材料的形貌为片状梭形(图2)。
将上述实施案例1-4中所制得的NaZnMo复合物作为催化剂,分别进行超声催化降解亚甲基蓝,结果表明所制备的复合物催化剂材料具有良好催化降解性能(图3),其中所用溶剂为水,催化剂用量为1.0g/L,亚甲基蓝染料溶液pH为7,亚甲基蓝染料溶液浓度10mg/L,超声功率为200W。从图3可以看到,所有样品对亚甲基蓝都有较好的催化降解效果,催化剂在前40分钟内降解速率很快,其中T40的降解率达63%,之后降解速率变慢。在120分钟后T5、T10、T15、T40催化降解率分别为82%,82%,86%,88%。表明超声时间越长,其催化降解效果越好。
将上述实施案例1-4中所制得的NaZnMo复合物作为催化剂,分别进行超声催化降解罗丹明B,结果表明所制备的复合物催化剂材料具有良好降解性能(图4),其中所用溶剂为水,催化剂用量为1.0g/L,罗丹明B染料溶液pH为7,罗丹明B染料溶液浓度10mg/L,超声功率为200W。从图4可以看到,所有样品对罗丹明B都有较好的催化降解效果。从图4可知,在前40分钟内降解速率比较慢,其T40的降解率达38%,之后降解速率变快。在120分钟后T5、T10、T15、T40降解率分别为82%,77%,90%,92%。表明超声时间越长,其催化降解效果越好。

Claims (2)

1.一种NaZnMo复合物催化剂材料的制备方法,其特征在于,所述制备方法包括如下步骤:
1)称取适量的醋酸锌加入到一定体积的蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液A,其浓度为0.2mmol/mL;
2)称取适量的钼酸钠加入到一定体积的蒸馏水中,用超声仪超声5分钟后,形成均匀透明的溶液B,其浓度为0.2mmol/mL;
3)在超声条件下,将溶液A缓慢的滴入到溶液B中,得到混合溶液C,用2M的NaOH调节溶液C的pH至6,再用超声仪超声5-40分钟,得到含有白色沉淀的浑浊液D;
4)将上述浑浊液D进行离心分离,得到白色沉淀物,将白色沉淀物分别用蒸馏水和无水乙醇交替洗三次,然后在70℃下干燥12h后,得到一种NaZnMo复合物催化剂材料;
所述醋酸锌的化学式为Zn(Ac)2·2H2O;所述钼酸钠化学式为Na2MoO4·2H2O;
所述NaZnMo复合物的化学式为NaZn2(OH)(MoO4)2·H2O;
所述步骤1)、2)和3)中用超声仪的超声的功率为200W;
所述NaZnMo复合物的形貌为片状梭形。
2.一种如权利要求1所述制备方法得到的NaZnMo复合物的用途,其特征在于,该复合物作为催化剂,在超声条件下能够高效快速催化降解亚甲基蓝及罗丹明B有机染料。
CN202010519831.5A 2020-06-09 2020-06-09 一种NaZnMo复合物催化剂材料的制备方法及其用途 Active CN111644171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010519831.5A CN111644171B (zh) 2020-06-09 2020-06-09 一种NaZnMo复合物催化剂材料的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010519831.5A CN111644171B (zh) 2020-06-09 2020-06-09 一种NaZnMo复合物催化剂材料的制备方法及其用途

Publications (2)

Publication Number Publication Date
CN111644171A CN111644171A (zh) 2020-09-11
CN111644171B true CN111644171B (zh) 2022-07-08

Family

ID=72343190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010519831.5A Active CN111644171B (zh) 2020-06-09 2020-06-09 一种NaZnMo复合物催化剂材料的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN111644171B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113385168B (zh) * 2021-06-10 2023-04-11 宁波大学 一种六角棱锥状的Sb2MoO6材料的制备方法及其催化用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671284A (zh) * 2014-12-29 2015-06-03 河北联合大学 超声波化学沉淀法制备超细ZnMoO4抗菌粉体
CN105420810A (zh) * 2015-11-25 2016-03-23 上海应用技术学院 一种新晶型多金属钼酸盐微纳米颗粒及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671284A (zh) * 2014-12-29 2015-06-03 河北联合大学 超声波化学沉淀法制备超细ZnMoO4抗菌粉体
CN105420810A (zh) * 2015-11-25 2016-03-23 上海应用技术学院 一种新晶型多金属钼酸盐微纳米颗粒及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: Advantage over conventional method;S.E.Karekar等;《Chemical Engineering and Processing》;20141118;第87卷;第51-59页 *

Also Published As

Publication number Publication date
CN111644171A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN110918126B (zh) 一种花状二硫化钼结合UiO-66光催化剂的制备方法
Das et al. A review on advances in photocatalysts towards CO 2 conversion
Fang et al. Synthesis and photocatalysis of ZnIn2S4 nano/micropeony
CN101254463B (zh) 一种可见光催化剂Bi2MoO6的合成方法
US20190247832A1 (en) MEHTOD FOR HYDROTHERMAL SYNTHESIS OF THREE DIMENSIONAL Bi4MoO9/TiO2 NANOSTRUCTURE HETEROJUNCTION
CN103172030B (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN107486231B (zh) 一种石墨相氮化碳胶体光催化剂的制备方法
CN105618021B (zh) 一种h2o2改性的锐钛矿/金红石二氧化钛纳米晶体复合材料
CN107282077A (zh) 一种光催化固氮催化剂的制备方法及其应用
CN108525697A (zh) 一种碱性高分散负载型Pt基纳米催化剂及其制备和应用
CN104069848B (zh) 一种醇热法制备纯相钛酸铋与氧化钛复合材料的方法
CN106076390A (zh) 一种二氧化钛/石墨相氮化碳复合光催化剂的制备方法
CN108636436A (zh) 有效构筑z型三元异质结光催化剂的制备方法
CN108452805A (zh) 一种用于光解水产氢的NiTiO3/TiO2催化剂及其制备方法和用途
CN111644171B (zh) 一种NaZnMo复合物催化剂材料的制备方法及其用途
CN108636415A (zh) 一种硅酸铁钠纳米线的制备方法
Liu et al. CoNi bimetallic alloy cocatalyst-modified TiO2 nanoflowers with enhanced photocatalytic hydrogen evolution
CN108568302B (zh) 一种正对称双Z型体系声催化剂SnO2–CdSe–Bi2O3及其制备方法和应用
CN106111129B (zh) 用于同时产氢和选择性氧化乙醇的光催化剂及其制备方法
CN107537468A (zh) 一种负载氧化石墨的钨酸铋基光催化剂的制备方法
CN106964352B (zh) 新型光催化材料TiO2@Fe2O3、SrTiO3@Fe2O3的制备及应用
CN110721685B (zh) 一种复合光催化材料及其制备方法和应用
CN111151238B (zh) 一种钒酸铋异质结BiVO4/Bi25VO40材料及其制备方法和应用
CN105032471B (zh) 一种可见光响应的纳米TiO2/沸石复合材料的制备
CN108246306B (zh) 一锅法合成具有可见光响应的光催化剂CuBi2O4/Bi2WO6纳米球及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant