CN111640919A - 一种高首效硅碳负极材料及其制备方法、锂离子电池 - Google Patents

一种高首效硅碳负极材料及其制备方法、锂离子电池 Download PDF

Info

Publication number
CN111640919A
CN111640919A CN202010408982.3A CN202010408982A CN111640919A CN 111640919 A CN111640919 A CN 111640919A CN 202010408982 A CN202010408982 A CN 202010408982A CN 111640919 A CN111640919 A CN 111640919A
Authority
CN
China
Prior art keywords
silicon
preparation
carbon
steps
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010408982.3A
Other languages
English (en)
Other versions
CN111640919B (zh
Inventor
孙宇星
吴清国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Jinying New Energy Technology Development Co ltd
Original Assignee
Zhejiang Jinying New Energy Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Jinying New Energy Technology Development Co ltd filed Critical Zhejiang Jinying New Energy Technology Development Co ltd
Priority to CN202010408982.3A priority Critical patent/CN111640919B/zh
Publication of CN111640919A publication Critical patent/CN111640919A/zh
Application granted granted Critical
Publication of CN111640919B publication Critical patent/CN111640919B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高首效硅碳负极材料及其制备方法、锂离子电池,涉及锂离子电池技术领域,硅碳负极材料的制备方法包括步骤S1备料、S2混合、S3烧结,所述S1备料包括S1.1硅料制备和S1.2碳料制备,所述S1.1硅料制备的具体过程如下:将硅粉、氧化亚硅粉和还原剂混合,并进行砂磨、烘干,得到硅料,所述硅粉占硅粉和氧化亚硅粉总质量20‑50wt%,所述还原剂为水溶性有机物且占硅粉和氧化亚硅粉总质量的10‑20wt%。还原剂起到抑制二氧化硅生成的作用,提高负极材料的首次充放电效率,且还原剂在S3烧结过程中也可作为碳源的一部分进行包覆,提高一定优势的电化学性能,且会和硅表面反应,减小硅的比表面积,从而提高首效。

Description

一种高首效硅碳负极材料及其制备方法、锂离子电池
技术领域
本发明涉及锂离子电池技术领域,特别涉及一种高首效硅碳负极材料及其制备方法、锂离子电池。
背景技术
在绿色化学电源领域,相对于传统的铅酸电池、锌锰电池、镍镉电池、镍氢电池而言,锂离子电池因其具有能量密度高、循环寿命长、环境友好等优点,是目前新能源汽车的主要动力电池之一。锂离子电池主要由正极材料、负极材料、电解液、隔膜、外壳组成,其中负极材料是锂电池储存锂的主体,使锂离子在充放电过程中嵌入与脱出。硅理论嵌锂容量高达4200mAh/g,且来源广泛、成本低,是目前认为最有望取代石墨成为下一代高能量密度锂离子电池负极材料。
然而,它本身也存在着诸多问题:1、硅颗粒在脱嵌理时由于体积膨胀和收缩而导致的颗粒粉化、脱落以及电化学性能失效;2、硅颗粒表面固体电解质层(SEI)持续生长,导致对电解液以及来自正极的锂源的不可逆消耗等,这使得以硅作为负极制备的电池循环性差,首次效率低下。因此要想将硅应用在电池中,首要问题是解决体积膨胀问题,并提高其导电性。
目前为止,对于硅基材料的改性方法很多,常见的有纳米化、多孔结构化和复合化等,通过使硅与碳复合,制备硅碳材料改善其电子通道,减小其应变是将硅基材料应用于电池负极的一个重要途径,具有良好的应用前景。其中硅作为活性物质提供高储锂容量,碳作为分散基体缓冲硅颗粒嵌在充放电过程中的体积变化,保持电极结构的完整性,并维持电极内部的电接触。
硅碳负极材料的制备方法主要有化学气相沉积法、溶胶凝胶法、高温热解法、机械球磨法、水热合成法、静电电纺等。喷雾干燥法制备的硅/碳复合材料中硅材料能够实现均匀分散,使其形貌类球形,而且制备的复合材料保持了较高的可逆比容量、循环性能。总的来说,关于硅碳负极材料的研究大多向着更高容量、更大倍率充放电性能、稳定的循环性能和更好的安全性能等方面发展,开发大规模制备低成本、性能稳定的硅碳复合材料,提高材料导电性能和循环稳定性能,是行业发展趋势。
公开号为CN108598430A的中国专利公开了一种硅碳负极材料制备方法及多孔硅碳微球负极材料,硅碳负极材料制备方法包括:研磨硅粉浆料,得到磨后硅粉浆料。对碳微粉进行石墨化处理,得到石墨化碳微粉。搅拌磨后硅粉浆料,在搅拌过程中持续向磨后硅粉浆料中加入石墨化碳微粉,加入包覆碳源,并进行超声处理,并同时搅拌,然后进行喷雾干燥,得到硅碳微球;对硅碳微球进行碳化处理,得到碳化硅碳微球;对碳化硅碳微球进行刻蚀处理,然后对碳化硅碳微球洗涤干燥,得到多孔硅碳微球负极材料。
按照上述制备方法制得硅碳负极的过程中,部分硅粉易氧化得到二氧化硅,使其储锂容量降低,影响负极材料的性能。
发明内容
针对上述技术缺陷,本发明的第一目的是提供一种高首效硅碳负极材料的制备方法,其制得的硅碳负极材料性能高。
本发明的第二目的是提供一种高首效硅碳负极材料,其具有高首效和优良的循环性能。
本发明的第三目的是提供一种锂离子电池。
为实现上述第一目的,本发明提供了如下技术方案:
一种高首效硅碳负极材料的制备方法,包括步骤S1备料、S2混合、S3烧结,所述S1备料包括S1.1硅料制备和S1.2碳料制备,所述S1.1硅料制备的具体过程如下:将硅粉、氧化亚硅粉和还原剂混合,并进行砂磨、烘干,得到硅料,所述硅粉占硅粉和氧化亚硅粉总质量20-50wt%,所述还原剂为水溶性有机物且占硅粉和氧化亚硅粉总质量的10-20wt%。
通过采用上述技术方案,硅料制备过程中,还原剂起到抑制二氧化硅生成的作用,保证负极材料的高储锂容量,进而提高负极材料的首次充放电效率。还原剂作为水溶性有机物,在S3烧结过程中也可作为碳源的一部分进行包覆,提高一定优势的电化学性能,且会和硅表面反应,减小硅的比表面积,从而提高首效。
相比于晶体硅,氧化亚硅在嵌锂过程中的体积膨胀大大减小,因此循环性能也得到了极大的提高,但是其具有首次效率低的缺点。因此氧化亚硅和硅粉复配作为硅料,可充分发挥两种材料的性能,使负极材料具有优良的首效和循环性能。
本发明进一步设置为:所述还原剂为柠檬酸和抗坏血酸中的一种或两种
通过采用上述技术方案,多种还原剂复配对于抑制二氧化硅生成的效果好,且成本低。还原剂优选为柠檬酸和抗坏血酸等比复配,其对硅的包覆更加紧致,进一步减小比表面积,提高首效。
本发明进一步设置为:所述S1.1硅料制备中,砂磨至50-300nm。
本发明进一步设置为:所述S1.2碳料制备的具体过程如下:将水、酒精、碳源混合,以2500-3500r/min的转速均匀搅拌1-4h,得到碳料,碳源占水质量的5-20wt%,碳源占酒精质量的10-50wt%。
本发明进一步设置为:所述碳源为葡萄糖、蔗糖、沥青中的一种或多种。
本发明进一步设置为:所述S2混合的具体过程如下:将碳料和硅料混合,碳料占总质量5-20wt%,均匀搅拌1-4h,得到混合物。
本发明进一步设置为:所述S3烧结的具体过程如下:混合物先进行喷雾干燥,再进行高温烧结,温度800-1000℃,持续3-10h,接着与人造石墨混合,混合物占总质量的5-20wt%,制得硅碳负极材料。
本发明进一步设置为:所述S3烧结中,喷雾干燥的温度为180-250℃。
为实现上述第二目的,本发明提供了如下技术方案:
一种高首效硅碳负极材料,其按照上述制备方法制得。
为实现上述第三目的,本发明提供了如下技术方案:
一种锂离子电池,负极材料为上述高首效硅碳负极材料。
综上所述,本发明具有以下有益效果:硅料制备过程中加入水溶性有机还原剂,抑制二氧化硅的生成,使负极材料仍保持大容量,首次充放电效率高且循环性能好。
附图说明
图1是实施例一制得的硅碳负极材料的SEM图谱。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例一:
一种高首效硅碳负极材料的制备方法,包括如下步骤:
S1备料:
S1.1硅料制备:按重量份,将30份硅粉、70份氧化亚硅粉、5份柠檬酸和5份抗坏血酸混合,并进行砂磨至50nm、烘干,得到硅料;
S1.2碳料制备:将100份水、50份95%酒精、5份葡萄糖和5份沥青混合,以3000r/min的转速均匀搅拌2h,得到碳料;
S2混合:将10份碳料和90份硅料混合,均匀搅拌2h,得到混合物;
S3烧结:混合物先进行喷雾干燥,温度180℃,再进行高温烧结,温度900℃,持续6h,接着将5份烧结后的混合物和95份人造石墨混合,制得粉末状的硅碳负极材料。
实施例二:
一种高首效硅碳负极材料的制备方法,包括如下步骤:
S1备料:
S1.1硅料制备:按重量份,将50份硅粉、50份氧化亚硅粉、10份柠檬酸和10份抗坏血酸混合,并进行砂磨至100nm、烘干,得到硅料;
S1.2碳料制备:将200份水、20份95%酒精、5份蔗糖和5份沥青混合,以3500r/min的转速均匀搅拌1h,得到碳料;
S2混合:将20份碳料和80份硅料混合,均匀搅拌4h,得到混合物;
S3烧结:混合物先进行喷雾干燥,温度250℃,再进行高温烧结,温度1000℃,持续10h,接着将5份烧结后的混合物和95份人造石墨混合,制得粉末状的硅碳负极材料。
实施例三:
一种高首效硅碳负极材料的制备方法,包括如下步骤:
S1备料:
S1.1硅料制备:按重量份,将20份硅粉、80份氧化亚硅粉、5份柠檬酸和10份抗坏血酸混合,并进行砂磨至300nm、烘干,得到硅料;
S1.2碳料制备:将50份水、100份95%酒精、5份葡萄糖和5份沥青混合,以2500r/min的转速均匀搅拌4h,得到碳料;
S2混合:将5份碳料和95份硅料混合,均匀搅拌1h,得到混合物;
S3烧结:混合物先进行喷雾干燥,温度180℃,再进行高温烧结,温度800℃,持续3h,接着将5份烧结后的混合物和95份人造石墨混合,制得粉末状的硅碳负极材料。
实施例四:
与实施例一的区别仅在于,碳源为10份葡萄糖。
实施例五:
与实施例一的区别仅在于,碳源为10份沥青。
实施例六:
与实施例一的区别仅在于,还原剂为10份抗坏血酸。
实施例七:
与实施例一的区别仅在于,还原剂为10份柠檬酸。
实施例八:
与实施例一的区别仅在于,S3烧结中,10份烧结后的混合物和40份人造石墨混合。
对比例一:
与实施例一的区别仅在于,S1.1硅料制备中不加入柠檬酸和抗坏血酸。
应用例一:
将实施例一的硅碳负极材料分别应用在锂离子电池中,锂离子电池的具体制备过程如下:
S1极片制备:
S1.1正极极片:先将50g粘结剂PVDF加入到900ml的NMP溶液中,真空搅拌均匀,再加入50g导电剂SP,真空搅拌均匀,接着加入900g811高镍三元正极材料,真空搅拌均匀,得到正极浆料,然后用NMP溶液调剂正极浆料粘度至9000mPa*s,最后抽滤、除磁、涂覆在25μm铝箔上,涂覆厚度为250μm,涂覆完成后于真空80℃下烘干8h,得到正极极片;
S1.2负极材料:先将30gCMC增稠剂加入到1000ml去离子水中,真空搅拌均匀,再加入50g导电剂SP,真空搅拌均匀,接着加入870g实施例一制得的硅碳负极材料,真空搅拌均匀,得到负极浆料,然后加入50g粘结剂SBR,真空搅拌均匀后加入去离子水,调剂负极浆料粘度至3000mPa*s,最后抽滤、除磁、涂覆在13μm铜箔上,涂覆厚度为150μm,涂覆完成后于真空80℃下烘干8h,得到负极极片;
S2电芯制备:将正极极片裁切成44*57cm,负极极片裁切成45*58cm,并留有极耳,使用宽度为60cm的隔膜进行叠片,制成电芯,再用万用表检测电芯是否短路,短路则对电芯的正负极片做调整或者重新叠片,无短路则进行下一步;
S3电池制备:焊接极耳,用铝塑膜对电芯进行顶封和侧封,再于80℃下真空烘干8h,然后放入手套箱内,充入过量电解液,静置8h后进行真空预封,得到预制电池,接着对预制电池进行0.1C充电,充电到4.3V,再于45℃下烘干8h,烘干后将预制电池放入手套箱内,剪开预封口,将多余的电解液倒出,最后进行真空终封,得到锂离子电池。
电解液型号为TC-E2686,购买自广州天赐新材料股份有限公司;隔膜型号为ND12T40,购买自上海恩捷新材料科技股份有限公司。
应用例二:
与应用例一的区别在于,负极材料选用实施例二制得的硅碳负极材料。
应用例三:
与应用例一的区别在于,负极材料选用实施例三制得的硅碳负极材料。
应用例四:
与应用例一的区别在于,负极材料选用对比例一制得的硅碳负极材料。
性能测试:
实施例一作为优选实施例,其制得的硅碳负极材料进行SEM测试,测试结果见图1。
根据图1可以看出,实施例一的硅碳负极材料呈球状结构,表面光滑,比表面积小。因此相对生成SEI膜较薄,首效高。
分别采用实施例一至八、对比例一制得的硅碳负极材料,制作组装成半电池,制作方法如下:
第一步,按重量份,先将87份硅碳负极材料、5份导电剂SP、3份CMC粘结剂和5份丁苯橡胶、150份去离子水混合,搅拌均匀,得到浆液;
第二步,将上述浆液涂覆在18μm的铜箔上,涂覆完成后厚度80μm,经过烘干、碾压制得负极片;
第三步,采用涂有氧化铝的PE薄膜作为隔膜,电解液购买自南通诚记化工贸易有限公司,型号LBC3045M10,依次组装负极壳、金属锂片、电解液、隔膜、电解液、负极片和垫片,制得半电池。
对采用实施例一至八、对比例一的硅碳负极材料制得的半电池,分别测试其充放电首效、循环性能和首次充电比容量,充放电电压范围为0.01-1.5V,充放电速率为0.1C,循环25次,结果记录在表1。
表1 半电池性能测试结果记录表
首次效率(%) 循环性能(%) 容量(mAh/g)
实施例一 88.67 95.26 518
实施例二 88.12 94.53 516
实施例三 88.06 94.67 515
实施例四 88.24 93.39 515
实施例五 87.95 93.12 513
实施例六 87.98 92.76 510
实施例七 86.88 92.18 509
实施例八 85.05 86.72 723
对比例一 84.35 78.74 482
从表1的数据可见:
1、实施例一的各项性能指标综合最高,作为优选实施例;
2、实施例一与实施例四、实施例五对比可得,碳源选择大分子量的沥青和小分子量的葡萄糖复配,可使包覆碳软硬适中,包覆更为紧密,有助于循环性能和首效的提高;
3、实施例一与实施例六、实施例七对比可得,还原剂选择抗坏血酸和柠檬酸复配,有助于抑制硅氧化的效果提高,进而全面提升硅碳负极材料的性能;
4、实施例一与实施例八对比可得,过量的硅碳混合料加入,可使容量提升,但循环性能和首效有所下降;
5、实施例一与对比例一对比可得,还原剂的加入可抑制二氧化硅的生成,使负极材料仍保持大容量,首效和循环性能显著提升。
对应用例一至四的锂离子电池进行循环性能、充放电首效和放电容量测试,充放电电压范围为3.0V-4.3V,充放电速率为1C,循环500周,测试结果见表2。
表2 锂电池性能测试结果记录表
首次效率(%) 循环性能(%) 容量(Ah)
应用例一 81.16 82.37 1.50
应用例二 81.08 82.35 1.50
应用例三 80.95 82.22 1.50
应用例四 79.86 73.74 1.45
从表2的数据可见:硅碳负极材料制备过程中还原剂的加入,显著提高了锂电池的循环性能,且充放电效率和容量也有所提高。
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。

Claims (10)

1.一种高首效硅碳负极材料的制备方法,包括步骤S1备料、S2混合、S3烧结,所述S1备料包括S1.1硅料制备和S1.2碳料制备,其特征在于:所述S1.1硅料制备的具体过程如下:将硅粉、氧化亚硅粉和还原剂混合,并进行砂磨、烘干,得到硅料,所述硅粉占硅粉和氧化亚硅粉总质量20-50wt%,所述还原剂为水溶性有机物且占硅粉和氧化亚硅粉总质量的10-20wt%。
2.根据权利要求1所述的一种高首效硅碳负极材料的制备方法,其特征在于:所述还原剂为柠檬酸和抗坏血酸中的一种或两种。
3.根据权利要求1所述的一种高首效硅碳负极材料的制备方法,其特征在于:所述S1.1硅料制备中,砂磨至50-300nm。
4.根据权利要求1所述的一种高首效硅碳负极材料的制备方法,其特征在于:所述S1.2碳料制备的具体过程如下:将水、酒精、碳源混合,以2500-3500r/min的转速均匀搅拌1-4h,得到碳料,碳源占水质量的5-20wt%,碳源占酒精质量的10-50wt%。
5.根据权利要求4所述的一种高首效硅碳负极材料的制备方法,其特征在于:所述碳源为葡萄糖、蔗糖、沥青中的一种或多种。
6.根据权利要求1所述的一种高首效硅碳负极材料的制备方法,其特征在于:所述S2混合的具体过程如下:将碳料和硅料混合,碳料占总质量5-20wt%,均匀搅拌1-4h,得到混合物。
7.根据权利要求1所述的一种高首效硅碳负极材料的制备方法,其特征在于:所述S3烧结的具体过程如下:混合物先进行喷雾干燥,再进行高温烧结,温度800-1000℃,持续3-10h,接着与人造石墨混合,混合物占总质量的5-20wt%,制得硅碳负极材料。
8.根据权利要求7所述的一种高首效硅碳负极材料的制备方法,其特征在于:所述S3烧结中,喷雾干燥的温度为180-250℃。
9.一种根据权利要求1至8任一项所述的制备方法制得的高首效硅碳负极材料。
10.一种锂离子电池,其特征在于:其负极材料为权利要求9所述的高首效硅碳负极材料。
CN202010408982.3A 2020-05-14 2020-05-14 一种高首效硅碳负极材料及其制备方法、锂离子电池 Active CN111640919B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010408982.3A CN111640919B (zh) 2020-05-14 2020-05-14 一种高首效硅碳负极材料及其制备方法、锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010408982.3A CN111640919B (zh) 2020-05-14 2020-05-14 一种高首效硅碳负极材料及其制备方法、锂离子电池

Publications (2)

Publication Number Publication Date
CN111640919A true CN111640919A (zh) 2020-09-08
CN111640919B CN111640919B (zh) 2021-10-22

Family

ID=72331956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010408982.3A Active CN111640919B (zh) 2020-05-14 2020-05-14 一种高首效硅碳负极材料及其制备方法、锂离子电池

Country Status (1)

Country Link
CN (1) CN111640919B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709386A (zh) * 2022-03-24 2022-07-05 华南理工大学 一种多孔硅-碳复合材料及其制备方法和应用
CN115417678A (zh) * 2022-11-07 2022-12-02 湖南联合半导体科技有限公司 一种低温化学气相反应法制备SiC涂层的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000902A (zh) * 2012-11-20 2013-03-27 江苏科捷锂电池有限公司 硅-碳复合锂离子电池负极材料的制备方法
CN103326023A (zh) * 2013-06-07 2013-09-25 浙江瓦力新能源科技有限公司 一种高性能锂离子电池硅碳负极材料及其制备方法
US20140042372A1 (en) * 2011-04-22 2014-02-13 Showa Denko K.K. Method for producing cathode-active material for lithium secondary battery
CN103633295A (zh) * 2012-08-23 2014-03-12 上海杉杉科技有限公司 一种硅碳复合材料、锂离子电池及其制备方法和应用
CN104103821A (zh) * 2014-06-20 2014-10-15 浙江瓦力新能源科技有限公司 硅碳负极材料的制备方法
CN105609711A (zh) * 2014-11-21 2016-05-25 国家纳米科学中心 一种微纳结构化硅碳复合微球及其制备方法和应用
CN105789594A (zh) * 2016-04-25 2016-07-20 中国科学院化学研究所 一种硅/氧化硅/碳复合材料及其制备方法和应用
CN108390057A (zh) * 2018-03-07 2018-08-10 南京理工大学 锰掺杂磷酸铁锂电极材料的制备方法
CN109428071A (zh) * 2017-09-05 2019-03-05 比亚迪股份有限公司 复合负极活性材料及其制备方法和锂电池
CN109473658A (zh) * 2018-12-04 2019-03-15 清华大学深圳研究生院 一种锂离子电池负极材料的制备方法及应用其的锂离子电池
CN109843799A (zh) * 2016-08-23 2019-06-04 奈克松有限公司 二次电池用硅类活性物质粒子及其制备方法
CN110571415A (zh) * 2019-08-15 2019-12-13 中南大学 一种硅碳负极材料和制备方法
US10615410B2 (en) * 2014-03-20 2020-04-07 Kabushiki Kaisha Toshiba Active material for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery, battery pack, method of manufacturing active material for nonaqueous electrolyte battery, and vehicle
CN111082006A (zh) * 2019-12-06 2020-04-28 深圳市比克动力电池有限公司 氧化亚硅复合负极材料及其制备方法、锂离子电池

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042372A1 (en) * 2011-04-22 2014-02-13 Showa Denko K.K. Method for producing cathode-active material for lithium secondary battery
CN103633295A (zh) * 2012-08-23 2014-03-12 上海杉杉科技有限公司 一种硅碳复合材料、锂离子电池及其制备方法和应用
CN103000902A (zh) * 2012-11-20 2013-03-27 江苏科捷锂电池有限公司 硅-碳复合锂离子电池负极材料的制备方法
CN103326023A (zh) * 2013-06-07 2013-09-25 浙江瓦力新能源科技有限公司 一种高性能锂离子电池硅碳负极材料及其制备方法
US10615410B2 (en) * 2014-03-20 2020-04-07 Kabushiki Kaisha Toshiba Active material for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery, battery pack, method of manufacturing active material for nonaqueous electrolyte battery, and vehicle
CN104103821A (zh) * 2014-06-20 2014-10-15 浙江瓦力新能源科技有限公司 硅碳负极材料的制备方法
CN105609711A (zh) * 2014-11-21 2016-05-25 国家纳米科学中心 一种微纳结构化硅碳复合微球及其制备方法和应用
CN105789594A (zh) * 2016-04-25 2016-07-20 中国科学院化学研究所 一种硅/氧化硅/碳复合材料及其制备方法和应用
CN109843799A (zh) * 2016-08-23 2019-06-04 奈克松有限公司 二次电池用硅类活性物质粒子及其制备方法
CN109428071A (zh) * 2017-09-05 2019-03-05 比亚迪股份有限公司 复合负极活性材料及其制备方法和锂电池
CN108390057A (zh) * 2018-03-07 2018-08-10 南京理工大学 锰掺杂磷酸铁锂电极材料的制备方法
CN109473658A (zh) * 2018-12-04 2019-03-15 清华大学深圳研究生院 一种锂离子电池负极材料的制备方法及应用其的锂离子电池
CN110571415A (zh) * 2019-08-15 2019-12-13 中南大学 一种硅碳负极材料和制备方法
CN111082006A (zh) * 2019-12-06 2020-04-28 深圳市比克动力电池有限公司 氧化亚硅复合负极材料及其制备方法、锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEIPEIMA,ET AL: "Double-shell-structured Si@SiOx@C composite material for long-life lithium-ion storage", 《IONICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709386A (zh) * 2022-03-24 2022-07-05 华南理工大学 一种多孔硅-碳复合材料及其制备方法和应用
CN115417678A (zh) * 2022-11-07 2022-12-02 湖南联合半导体科技有限公司 一种低温化学气相反应法制备SiC涂层的方法

Also Published As

Publication number Publication date
CN111640919B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN108155351B (zh) 锂离子电池及其负极材料
CN111816856B (zh) 复合材料及其制备方法和负极
CN209641735U (zh) 一种锂离子电池用正负极极片
CN109994710B (zh) 复合负极材料及其制备方法、负极极片、电池
CN111193018B (zh) 锂电池正极活性材料及其制备方法和应用
WO2022016374A1 (zh) 复合材料及其制备方法和负极
CN111640919B (zh) 一种高首效硅碳负极材料及其制备方法、锂离子电池
US20240105941A1 (en) Negative Electrode Material, Negative Electrode Plate, and Sodium Ion Battery
CN112635735A (zh) 一种具有包覆结构的镍钴锰酸锂前驱体、其制备方法及用途
CN113437252A (zh) 负极、包括该负极的电化学装置和电子装置
CN115566170A (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
CN115974033A (zh) 氮掺杂介孔碳包覆磷酸焦磷酸铁钠复合材料及制备方法
CN116544352A (zh) 钠离子电池负极及其制备方法、钠离子电池
CN116885146B (zh) 一种电池负极活性材料、制备方法及其应用
CN106374083B (zh) 硅基负电极及其制备方法和锂离子电池
CN116053481B (zh) 一种石墨复合材料及应用其的电池负极、电池
CN116454215A (zh) 一种微米硅复合负极材料的制备方法及其应用
CN116470003A (zh) 一种预锂化负极极片及锂离子电池
CN115974114A (zh) 一种快充石墨复合材料及其制备方法
CN114628652B (zh) 一种长循环快充SiO石墨复合负极材料及其制备方法
CN114583137A (zh) 一种在碳表面进行硫掺杂磷修饰的方法及其应用
WO2021184220A1 (zh) 一种可预锂化的锂离子启停电源及其制备方法
CN113206213A (zh) 一种硅基复合电极及其制备方法和应用
CN112614990A (zh) 一种镍锰二元复合正极材料及其制备方法
CN104916834A (zh) 一种高电压锂离子负极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant