CN111613694A - 一种多波段氧化镓基紫外光电探测器阵列的制备方法 - Google Patents

一种多波段氧化镓基紫外光电探测器阵列的制备方法 Download PDF

Info

Publication number
CN111613694A
CN111613694A CN202010456201.8A CN202010456201A CN111613694A CN 111613694 A CN111613694 A CN 111613694A CN 202010456201 A CN202010456201 A CN 202010456201A CN 111613694 A CN111613694 A CN 111613694A
Authority
CN
China
Prior art keywords
gallium oxide
sputtering
photoelectric detector
ultraviolet
multiband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010456201.8A
Other languages
English (en)
Inventor
商世广
王睿
陈海峰
赵玲
董军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Posts and Telecommunications
Original Assignee
Xian University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Posts and Telecommunications filed Critical Xian University of Posts and Telecommunications
Priority to CN202010456201.8A priority Critical patent/CN111613694A/zh
Publication of CN111613694A publication Critical patent/CN111613694A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种多波段氧化镓基紫外光电探测器阵列的制备方法,首先利用磁控溅射在叉指电极上沉积氧化镓薄膜,通过控制溅射功率、气体压强和气体配比等参数或引入半导体杂质,调控氧化镓薄膜的氧空位和杂质缺陷浓度,实现不同波段紫外光响应的氧化镓光电探测器单元的制备。其次,将制备的氧化镓光电探测器单元,置入气氛炉中进行退火处理,实现对氧化镓光电探测器单元紫外截止波长的调整。最后,将不同波段的氧化镓紫外光电探测器单元组装成探测器阵列,各个光电探测器单元在电学上相互独立。本发明制备的氧化镓紫外光电探测器阵列具有光谱选择性强、响应波段范围宽和稳定性高等优点。

Description

一种多波段氧化镓基紫外光电探测器阵列的制备方法
技术领域
本发明属于紫外光电探测器的制备领域,具体涉及到一种多波段氧化镓基紫外光电探测器阵列的制备方法。
背景技术
近年来,已有多种宽禁带半导体材料被用于研究紫外光电探测,包括铝镓氮(AlGaN)、氧化镁锌(MgZnO)和氧化镓(Ga2O3)等。其中,氧化镓是直接带隙半导体材料,禁带宽度约为4.3~5.1eV,具有优良的光电性能、稳定性的物理化学性能和较高的机械强度。氧化镓有5种晶相结构,单斜相β-Ga2O3最为稳定,其它晶相均为亚稳态;目前基于β-Ga2O3已成为日盲紫外光电探测研究的热点。2007年,T.Oshima等人利用分子束外延在c面蓝宝石上生长出β-Ga2O3薄膜,首次制备出基于氧化镓欧姆接触的MSM型光电探测器。2014年,Feng W等人通过热氧化二维GaSe纳米片,制备出准二维β-Ga2O3光电探测器,光谱响应最高峰位于254nm。2017年,Wu ZP研究小组通过激光分子束外延,制备出β-Ga2O3/Ga:ZnO异质结探测器,具有优异的光谱选择性。2019年,Li MQ等人利用磁控溅射技术沉积高度择优取向的氧化镓,具有较高的深紫外探测性能。关于β-Ga2O3紫外光电探测,国内外做了大量的研究工作,但利用β-Ga2O3制备宽波段紫外光电探测器,还很少有相关的报道。
发明内容
本发明目的是提供一种多波段氧化镓基紫外光电探测器阵列的制备方法。利用氧化镓因内部缺陷产生截止波长位置的不同,磁控溅射沉积氧化镓光电探测薄膜,通过控制溅射功率、气体压强和气体配比等参数有效改变氧空位浓度以及引入半导体杂质的方法,有效调控氧化镓薄膜截止波长的位置,制备出不同波段响应的氧化镓光电探测器单元,组装成一种氧化镓多波段紫外光电探测器阵列,实现宽波段紫外光的检测。该紫外光电探测器阵列具有光谱选择性强、稳定性高和工艺简单等优势,可以完成宽波段紫外光的检测。
本发明的技术方案是这样实现的:
一种多波段氧化镓基紫外光电探测器阵列的制备方法,首先,利用磁控溅射技术在叉指电极上射频沉积氧化镓薄膜,控制溅射功率、气体压强和气体配比等参数或引入半导体杂质,制备不同波段紫外光响应的氧化镓光电探测器单元;其次,将探测器单元在保护气体中进行退火处理,实现对氧化镓紫外光电探测器单元截止波长的调整;最后,将不同波段的氧化镓基紫外光电探测器单元组装成探测器阵列。
当要求截止波长在200~290nm范围内时,本底压强优于6×10-4Pa,射频溅射功率为60~200W;溅射气压为0.5~3Pa;氧氩比为1:40~6:40;溅射时间1~4h。
当要求截止波长大于380nm时,本底压强优于6×10-4Pa,射频溅射功率为60~200W;溅射气压为0.5~3Pa;氧氩比为0:40;溅射时间1~4h。
当要求截止波长在290~380nm范围内时,本底压强优于6×10-4Pa,射频溅射功率为60~200W;溅射气压为0.5~3Pa;氧氩比为1:40~6:40;溅射时间为1~4h;在沉积过程中,射频掺入半导体杂质,氧化铟或氧化铝,溅射功率为40~100W,溅射时间为5~30min。
在氩气或氮气中进行退火处理,退火温度为450~800℃、时间为1~5h。
本发明的优点如下:
1、本发明通过控制溅射功率、气体压强和气体配比等参数以及引入半导体杂质的方法,可有效调控氧化镓薄膜的内部缺陷,进而改变氧化镓薄膜截止波长的位置,该方法具有工艺简单、成本低廉优点。
2、本发明制备的氧化镓紫外光电探测薄膜具有光谱选择性强、响应波段范围宽和可重复性强等优势。
附图说明
图1是本发明中氧化镓薄膜SEM图像。
图2是本发明中氧化镓薄膜AFM图像。
图3是本发明中氧化镓薄膜XRD图谱。
图4是本发明中不同氧化镓光电探测器单元透过率曲线。
具体实施方式
下面结合附图和实施案例对本发明中多波段氧化镓基紫外光电探测器单元的制备进一步详细说明,但本发明的保护范围不仅限于这些实施案例。
首先,利用磁控溅射技术在叉指电极上射频沉积氧化镓薄膜,通过改变磁控溅射的参数(包括溅射功率、气体压强和气体配比等)改变氧空位浓度和引入半导体杂质的方法,制备不同波段紫外光响应的氧化镓光电探测器单元;其次,将氧化镓光电探测器单元置于保护气体中进行退火处理,进一步调整氧化镓光电探测器单元的截止波长;最后,将不同波段的氧化镓紫外光电探测器单元组装为具有宽波段紫外光检测功能的探测器阵列。
上述不同波段紫外光响应的氧化镓光电探测器单元主要分为:(1)氧空位较多,截止波长大于380nm的光电探测器单元;(2)结晶度较高、缺陷少,截止波长在200~290nm范围的光电探测器单元;(3)杂质缺陷起主导作用,截止波长在290~380nm范围内的光电探测器单元。
上述(1)截止波长大于380nm的光电探测器单元,其制备方法为在清洗干燥的叉指电极上射频磁控溅射氧化镓光电探测薄膜,溅射过程只通入氩气,增加氧空位的浓度;其溅射功率为60~200W,溅射气压为0.5~3Pa,氧氩比为0:40,溅射时间为1~4h。
上述(2)截止波长在200~290nm范围内的光电探测器单元,其制备方法为在清洗干燥的叉指电极上射频磁控溅射氧化镓光电探测薄膜,在溅射过程通入氧气,降低氧空位的浓度;其溅射功率为60~200W,溅射气压为0.5~3Pa,氧氩比为1:40~6:40,溅射时间为1~4h。
上述(3)截止波长在290~380nm范围内的光电探测器单元,其制备方法为在清洗干燥的叉指电极上射频磁控溅射氧化镓光电探测薄膜,在溅射过程引入半导体杂质;其溅射功率为60~200W;溅射气压为0.5~3Pa;氧氩比为1:40~6:40;溅射时间为1~4h;射频掺入半导体杂质,例如氧化铟或氧化铝,溅射功率为40~100W,溅射时间5~30min。
上述制备方法中氧化镓光电探测器单元退火处理,在保护气体中450~800℃退火处理1~3h;保护气体为氩气或氮气。
上述氧化镓紫外光电探测器阵列组装,不同的氧化镓紫外光电探测器单元之间无电学上的连接关系,各半导体光电探测器芯片的阴极电极是相互独立的,阳极电极是独立的。
实施案例1
(1)通过射频磁控溅射在叉指电极上沉积氧化镓薄膜,其中,本地压强低于6×10- 4Pa、磁控溅射功率为200W、溅射气压为1.0pa、氧气流量为0sccm、氩气流量为40sccm、溅射时间为2h。
(2)在氮气氛围450℃退火处理2h,得到氧化镓光电探测器单元1。
实施案例2
(1)通过射频磁控溅射在叉指电极上沉积氧化镓薄膜,其中,本地压强低于6×10- 4Pa、磁控溅射功率为200W、溅射气压为1.0pa、氧气流量为3sccm、氩气流量为40sccm、溅射时间为2h。
(2)在氮气氛围450℃退火处理2h,得到氧化镓光电探测器单元2。
实施案例3
(1)通过射频磁控溅射在叉指电极上沉积氧化镓薄膜,其中,本地压强低于6×10- 4Pa、磁控溅射功率为200W、溅射气压为1.0pa、氧气流量为3sccm、氩气流量为40sccm、溅射时间为2h;
(2)通过射频磁控溅射在氧化镓薄膜中引入氧化铟杂质,其中,本地压强低于6×10-4Pa、氧化铟射频溅射功率为50W、溅射气压为1.0pa、氧气流量为3sccm、氩气流量为40sccm、溅射时间为5min。
(3)在氮气氛围500℃退火处理2h,得到氧化镓光电探测器单元3。
采用扫描电子显微镜、原子力显微镜、X射线衍射仪和分光光度计分别对实施案例1、2、3制备的氧化镓光电探测薄膜进行表征分析。从图1可看出,本发明制备的氧化镓薄膜晶粒边界清晰,结晶程度较高。从图2可看出,本发明制备的氧化镓光电探测薄膜表面致密、平整、粗糙度较小。从图3可看出,在38.20°、44.32°处分别出现β-Ga2O3
Figure BDA0002509470180000041
Figure BDA0002509470180000042
晶面的衍射峰。从图4可看出,本发明中的氧化镓光电探测器单元1、2、3的截止波长分别在390nm、220nm、290nm,即通过调节工作气体配比和引入掺杂氧化铟的方式可实现对氧化镓光电探测器单元截止波长的调控。

Claims (5)

1.一种多波段氧化镓基紫外光电探测器阵列的制备方法,其特征在于:首先,利用磁控溅射技术在叉指电极上射频沉积氧化镓薄膜,控制溅射功率、气体压强和气体配比等参数或引入半导体杂质,制备不同波段紫外光响应的氧化镓光电探测器单元;其次,将探测器单元在保护气体中进行退火处理,实现对氧化镓紫外光电探测器单元截止波长的调整;最后,将不同波段的氧化镓基紫外光电探测器单元组装成探测器阵列。
2.根据权利要求1所述的一种多波段氧化镓基紫外光电探测器阵列的制备方法,其特征在于,当要求截止波长在200~290nm范围内时,本底压强优于6×10-4Pa,射频溅射功率为60~200W;溅射气压为0.5~3Pa;氧氩比为1:40~6:40;溅射时间1~4h。
3.根据权利要求1所述的一种多波段氧化镓基紫外光电探测器阵列的制备方法,其特征在于,当要求截止波长大于380nm时,本底压强优于6×10-4Pa,射频溅射功率为60~200W;溅射气压为0.5~3Pa;氧氩比为0:40;溅射时间1~4h。
4.根据权利要求1所述的一种多波段氧化镓基紫外光电探测器阵列的制备方法,其特征在于:当要求截止波长在290~380nm范围内时,本底压强优于6×10-4Pa,射频溅射功率为60~200W;溅射气压为0.5~3Pa;氧氩比为1:40~6:40;溅射时间为1~4h;在沉积过程中,射频掺入半导体杂质,氧化铟或氧化铝,溅射功率为40~100W,溅射时间为5~30min。
5.根据权利要求1所述的一种多波段氧化镓基紫外光电探测器阵列的制备方法,其特征在于:在氩气或氮气中进行退火处理,退火温度为450~800℃、时间为1~5h。
CN202010456201.8A 2020-05-26 2020-05-26 一种多波段氧化镓基紫外光电探测器阵列的制备方法 Pending CN111613694A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010456201.8A CN111613694A (zh) 2020-05-26 2020-05-26 一种多波段氧化镓基紫外光电探测器阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010456201.8A CN111613694A (zh) 2020-05-26 2020-05-26 一种多波段氧化镓基紫外光电探测器阵列的制备方法

Publications (1)

Publication Number Publication Date
CN111613694A true CN111613694A (zh) 2020-09-01

Family

ID=72202341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010456201.8A Pending CN111613694A (zh) 2020-05-26 2020-05-26 一种多波段氧化镓基紫外光电探测器阵列的制备方法

Country Status (1)

Country Link
CN (1) CN111613694A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823930A (zh) * 2022-03-24 2022-07-29 电子科技大学 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262017A (zh) * 2008-04-14 2008-09-10 山东大学 一种可调制带隙宽度的镓铟氧化物薄膜及其制备方法
JP2016155714A (ja) * 2015-02-25 2016-09-01 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子
CN107771272A (zh) * 2015-06-01 2018-03-06 首尔伟傲世有限公司 紫外线测定装置、光检测元件、紫外线检测器、紫外线指数计算装置以及包括这些的电子装置
CN109244173A (zh) * 2018-08-09 2019-01-18 西安电子科技大学 一种自供电双波段紫外光电探测器件及其制备方法
CN109285910A (zh) * 2018-08-09 2019-01-29 西安电子科技大学 基于(AlxGa1-x)2O3材料MSM结构的紫外光电探测器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262017A (zh) * 2008-04-14 2008-09-10 山东大学 一种可调制带隙宽度的镓铟氧化物薄膜及其制备方法
JP2016155714A (ja) * 2015-02-25 2016-09-01 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子
CN107771272A (zh) * 2015-06-01 2018-03-06 首尔伟傲世有限公司 紫外线测定装置、光检测元件、紫外线检测器、紫外线指数计算装置以及包括这些的电子装置
CN109244173A (zh) * 2018-08-09 2019-01-18 西安电子科技大学 一种自供电双波段紫外光电探测器件及其制备方法
CN109285910A (zh) * 2018-08-09 2019-01-29 西安电子科技大学 基于(AlxGa1-x)2O3材料MSM结构的紫外光电探测器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
商世广等: "《磁控溅射氧化镓薄膜的制备及紫外探测性能》", 《西安邮电大学学报》 *
马海林 等: "《氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响》", 《物理学报 》 *
马艳彬: "《Ga2O3薄膜及其Mg掺杂的磁控溅射制备与性质研究》", 《CNKI硕士电子期刊》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823930A (zh) * 2022-03-24 2022-07-29 电子科技大学 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法
CN114823930B (zh) * 2022-03-24 2023-04-11 电子科技大学 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法

Similar Documents

Publication Publication Date Title
Saikumar et al. RF sputtered films of Ga2O3
US20190112703A1 (en) Method of manufacturing oxide crystal thin film
Gomez et al. Gallium-doped ZnO thin films deposited by chemical spray
Olgar Optimization of sulfurization time and temperature for fabrication of Cu2ZnSnS4 (CZTS) thin films
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
JP2011521463A (ja) 太陽電池用層システム
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
AU2004222793B2 (en) Solar cell and process for producing solar cell
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Xu et al. Preparations of Cu2ZnSnS4 thin films and Cu2ZnSnS4/Si heterojunctions on silicon substrates by sputtering
CN111613694A (zh) 一种多波段氧化镓基紫外光电探测器阵列的制备方法
CN113981370A (zh) 一种深紫外透明的高导电性Si掺杂Ga2O3薄膜及其制备方法
CN110797422B (zh) 一种ZnGaO紫外探测器及其制备方法
CN110224035B (zh) 一种异质结、其制备方法和应用
WO2022105203A1 (zh) 一种新型透明导电氧化物薄膜的制备方法及其应用
CN114657637B (zh) 镓酸锌薄膜及制备方法、紫外探测器及制备方法
de la L. Olvera et al. Characteristics of ZnO: Ga thin films prepared by chemical spray using two different Zn and Ga precursors
CN109943821B (zh) 立方尖晶石结构CuGa2O4薄膜的制备方法及相应的结构
CN103103479B (zh) 一种硫氮共掺杂制备p型氧化锌薄膜的方法
CN110527954B (zh) 一种LaMnO3调控Bi4Ti3O12带隙的过渡金属氧化物铁电薄膜及其制备方法
CN111710750A (zh) 基于六方氮化硼厚膜的深紫外光电探测器及制备方法
KR20080005002A (ko) 스퍼터링을 이용한 산화아연계 산화물 박막의 제조방법
Chen et al. Effects of preparation parameters on growth and properties of β-Ga2O3 film
CN113584587B (zh) Sn掺杂的介稳态氧化镓晶相薄膜及其制备方法与应用
CN103643212A (zh) 一种在硅基衬底上制备非极性氧化锌薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200901

WD01 Invention patent application deemed withdrawn after publication