CN111607545B - 一种高产法尼烯的重组菌及其构建方法与应用 - Google Patents

一种高产法尼烯的重组菌及其构建方法与应用 Download PDF

Info

Publication number
CN111607545B
CN111607545B CN202010366859.XA CN202010366859A CN111607545B CN 111607545 B CN111607545 B CN 111607545B CN 202010366859 A CN202010366859 A CN 202010366859A CN 111607545 B CN111607545 B CN 111607545B
Authority
CN
China
Prior art keywords
farnesene
gene
aafs
seq
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010366859.XA
Other languages
English (en)
Other versions
CN111607545A (zh
Inventor
张海波
门潇
咸漠
刘晋锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Original Assignee
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Institute of Bioenergy and Bioprocess Technology of CAS filed Critical Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority to CN202010366859.XA priority Critical patent/CN111607545B/zh
Publication of CN111607545A publication Critical patent/CN111607545A/zh
Application granted granted Critical
Publication of CN111607545B publication Critical patent/CN111607545B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01088Hydroxymethylglutaryl-CoA reductase (1.1.1.88)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01016Acetyl-CoA C-acyltransferase (2.3.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/0301Hydroxymethylglutaryl-CoA synthase (2.3.3.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01092(2Z,6Z)-Farnesyl diphosphate synthase (2.5.1.92)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01036Mevalonate kinase (2.7.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/04Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • C12Y207/04002Phosphomevalonate kinase (2.7.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01033Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03047Beta-farnesene synthase (4.2.3.47)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03002Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种高产法尼烯的重组菌及其构建方法与应用,属于微生物技术领域。为了进一步提高大肠杆菌合成法尼烯的产量、提升合成途径上酶的催化效率和稳定性,本发明提供了一种合成法尼烯的基因工程菌,所述基因工程菌过表达mvaE、mvaS、ERG12、ERG8、ERG19、AaIDI、ispA以及带有D18定位肽的β‑法尼烯合成酶D18‑AaFS基因。所述基因工程菌发酵96h法尼烯产量达到35.93g/L,有利于推动生物法合成法尼烯的工业化进程。

Description

一种高产法尼烯的重组菌及其构建方法与应用
技术领域
本发明属于微生物技术领域,具体涉及一种高产法尼烯的重组菌及其构建方法与应用。
背景技术
法尼烯(farnesene),分子式C15H24,又称金合欢烯,是一种链状倍半萜烯。法尼烯因具有芳香气味和抗氧化等活性,可作为添加剂应用于日化、医药、食品等工业;还可作为信息素,应用于农业害虫的生物防治;此外,法尼烯还是合成维生素E侧链的重要中间体。近年来,萜烯类生物燃料越来越受到关注。法尼烯的加氢产物法尼烷(farnesane)因具有高十六烷值和较低的碳排放,被认为是极具潜力的航空航天领域新型生物燃料,并已通过ASTMD7566航空燃料标准的测试。
天然法尼烯存在于多种植物精油中。但是植物中法尼烯含量低,提取成本高,易受原料限制;而化学法合成法尼烯需要专门仪器设备,步骤复杂,能耗高,易产生污染。随着基因工程和合成生物学的发展,利用工程微生物来生产法尼烯已经实现。通过引入外源途径,利用大肠杆菌(Escherichia coli)合成法尼烯的产量在摇瓶水平达到5.40g/L(发酵96h),在发酵罐水平达到8.74g/L(发酵120h)。通过改造内源途径和引入合成酶,利用酿酒酵母(Saccharomyces cerevisiae)合成法尼烯的产量在20万升工业级发酵罐水平达到130g/L以上(发酵两周)。鱼腥藻(Anabaena sp.PCC 7120)仅利用二氧化碳、光照和微量元素合成法尼烯的产量达到69.1±1.8μg·L-1·O.D.-1·d-1。由于法尼烯本身对常见宿主没有毒性,有望通过基因工程改造或发酵技术改进来进一步提高其产量。
细菌微区室(bacterial microcompartments,BMCs)是20世纪50年代在蓝细菌中发现的一类以蛋白质为基础的多面体亚细胞结构,它能提高底物、酶、辅助因子的浓度,产生底物通道效应,提高原核生物的代谢效率;能隔离有毒代谢产物对细胞的伤害以及外界条件变化对被包裹酶活性的影响;还能减少分支或竞争代谢途径对目的产物产量的影响。BMCs体系具有应用于合成生物学的巨大潜力。将BMCs的定位肽添加到合成途径酶的N端,能够使酶聚集或者固定化,从而提高外源途径的代谢效率。
发酵罐发酵技术也是影响目的产物产量的重要因素。例如,培养基成分(碳氮比)、搅拌转速、溶氧、温度、pH、补料成分与方式等都会影响菌体的生长、质粒的稳定性、酶的表达和活性、副产物的生成等,从而影响产物的产量。不断优化和寻找最适发酵条件,对于法尼烯产量的提高具有重要意义。
发明内容
为了进一步提高大肠杆菌合成法尼烯的产量,我们将BMCs的定位肽D18添加到法尼烯合成酶AaFS的N端,构建了合成法尼烯的重组菌;并通过发酵罐发酵技术的优化,使法尼烯产量有了显著提升。本发明采用技术方案如下:
本发明通过Gibson Assembly方法构建了pTrc-ERG12-ERG8-ERG19和pET28a-(D18-AsFS)-ispA-AaIDI两个质粒。将以上两个质粒和pACYC-mvaE-mvaS共转化大肠杆菌BL21(DE3),获得产法尼烯的重组菌。挑取单菌落进行发酵,通过IPTG诱导表达和TRPO原位萃取获得含有法尼烯的样品,通过气相色谱和法尼烯标准品曲线对样品进行定量分析。
基于上述技术方案,本发明提供了一种高产法尼烯的重组菌,所述重组菌过表达乙酰CoA酰基转移酶/HMG-CoA还原酶mvaE基因、HMG-CoA合成酶mvaS基因、甲羟戊酸激酶ERG12基因、甲羟戊酸-5-磷酸激酶ERG8基因、甲羟戊酸-5-二磷酸脱羧酶ERG19基因、来自青蒿的异戊烯基二磷酸异构酶AaIDI基因、法尼基二磷酸合成酶ispA基因以及带有D18定位肽的β-法尼烯合成酶AaFS基因,出发菌株为大肠杆菌。
进一步地限定,所述来自青蒿的异戊烯基二磷酸异构酶AaIDI基因是按大肠杆菌密码子偏好性优化后获得的,优化后的核苷酸序列如SEQ ID No:1所示;所述法尼基二磷酸合成酶ispA基因核苷酸序列如SEQ ID No:2所示;所述来自青蒿的β-法尼烯合成酶AaFS基因是按大肠杆菌密码子偏好性优化后获得的,优化后的核苷酸序列如SEQ ID No:3所示。
进一步地限定,所述大肠杆菌为BL21(DE3)。
本发明还提供了上述高产法尼烯的重组菌的构建方法,包括如下步骤:
1)质粒pTrcLower-ΔIDI构建:以pTrcLower质粒为模板,PCR扩增除ScIDI以外的载体部分,通过Gibson Assembly方法使载体自连,得到不含IDI基因的质粒pTrcLower-ΔIDI;所述pTrcLower质粒中含有ERG12、ERG8、ERG19和ScIDI基因;
2)质粒pET28a-(D18-AaFS)-ispA-AaIDI构建:
分别扩增pET28a载体序列、D18定位肽基因片段、AaFS基因、ispA基因和AaIDI基因序列,先通过overlap PCR得到带有D18定位肽的β-法尼烯合成酶AaFS基因,记为D18-AaFS片段,再通过Gibson Assembly方法构建获得pET28a-(D18-AaFS)-ispA-AaIDI质粒;所述pET28a载体序列如SEQ ID No:4所示;
3)质粒转化:将步骤1)、2)构建的质粒和含有mvaE和mvaS基因的质粒pACYC-mvaE-mvaS共同转化到大肠杆菌感受态细胞,获得合成法尼烯的重组菌。
进一步地限定,步骤2)所述β-法尼烯合成酶AaFS基因、异戊烯基二磷酸异构酶AaIDI基因根据大肠杆菌密码子偏好性进行优化,由公司合成并克隆到pUC57-simple载体上,得到的质粒pUC57-AaFS和pUC57-AaIDI;从质粒pET14b-D18-GFP-SsrP扩增和胶回收D18片段,从pUC57-AaFS扩增和胶回收AaFS片段,以上述两者胶回收产物为模板,通过overlapPCR连接两个片段,得到D18-AaFS片段;从BL21(DE3)扩增ispA片段,从pUC57-AaIDI扩增AaIDI片段,从pET28a扩增载体片段;使用NEBuilder HiFi DNA Assembly连接上述四个片段,获得质粒pET28a-(D18-AaFS)-ispA-AaIDI。
进一步地限定,步骤2)所述pET28a载体序列扩增用的上游引物序列如SEQ ID No:5所示,下游引物序列如SEQ ID No:6所示;D18片段扩增用的上游引物序列如SEQ ID No:7所示,下游引物序列如SEQ ID No:8所示;AaFS基因扩增用的上游引物序列如SEQ ID No:9所示,下游引物序列如SEQ ID No:10所示;ispA基因扩增用的上游引物序列如SEQ ID No:11所示,下游引物序列如SEQ ID No:12所示;AaIDI基因扩增用的上游引物序列如SEQ IDNo:13所示,下游引物序列如SEQ ID No:14所示。
本发明还提供了上述重组菌在合成法尼烯中的应用。
进一步地限定,将所述的重组菌依次经一级种子培养基和二级种子培养基培养后,获得的种子液接种到发酵罐培养基中进行分批补料发酵得到法尼烯。
进一步地限定,所述一级种子培养基为LB培养基,其成分为:10g/L NaCl、10g/L蛋白胨、5g/L酵母提取物,其余为水;所述二级种子培养基成分为:20g/L葡萄糖、9.8g/LK2HPO4、5g/L牛肉提取物、0.3g/L柠檬酸铁氨、2.1g/L一水合柠檬酸、0.06g/L MgSO4、1mL/L微量元素溶液,其余为水;所述微量元素溶液含有(NH4)6Mo7O24·4H2O 0.37g/L、ZnSO4·7H2O0.29g/L、H3BO3 2.47g/L、CuSO4·5H2O 0.25g/L和MnCl2·4H2O 1.58g/L。
进一步地限定,所述发酵罐培养基成分为在二级种子培养基成分的基础上,将微量元素溶液改为1.5mL/L,并添加终浓度1g/L甜菜碱和3g/L硫酸铵;补料成分为50%葡萄糖。
本发明所述的合成法尼烯的重组菌在构建过程中使用的:
质粒pACYC-mvaE-mvaS,构建时采用的原始空载体为pACYCDuet-1。所述质粒pACYC-mvaE-mvaS记载在Yang J,Xian M,Su S,Zhao G,Nie Q,Jiang X,Zheng Y,LiuW.2012.Enhancing production of bio-isoprene using hybrid MVA pathway andisoprene synthase in E.coli,PLoS ONE 7:e33509。
质粒pTrcLower,构建时采用的原始空载体为pTrcHIS2b。所述质粒pTrcLower记载在Jiang X,Yang J,Zhang H,Zou H,Wang C,Xian M.2012.In vitro assembly ofmultiple DNA fragments using successive hybridization.PLoS ONE 7:e30267,该质粒中含有甲羟戊酸激酶ERG12基因、甲羟戊酸-5-磷酸激酶ERG8基因、甲羟戊酸-5-二磷酸脱羧酶ERG19基因和来自酿酒酵母的异戊烯基二磷酸异构酶ScIDI基因。
质粒pET14b-D18-GFP-SsrA,构建时采用的原始空载体为pET14b。所述质粒pET14b-D18-GFP-SsrA记载在Lee MJ,Brown IR,Juodeikis R,Frank S,WarrenMJ.2016.Employing bacterial microcompartment technology to engineer a shell-free enzyme-aggregate for enhanced 1,2-propanediol production in Escherichiacoli.Metabolic Engineering,36:48-56.
有益效果
1.本发明将BMCs体系的定位肽D18添加到法尼烯合成酶AaFS的N端,获得了更稳定的重组菌;并进一步优化发酵技术,发酵罐发酵96h法尼烯产量达到35.93g/L,比目前文献中报道的大肠杆菌发酵罐水平合成法尼烯的最高产量(8.74g/L)高出311%。
2.本发明方法不仅具有生长发酵周期短、培养成本低、遗传操作简单等特点,与酵母做宿主相比减少了发酵周期长带来的染菌风险,而且进一步提高大肠杆菌合成法尼烯的产量,生产出的法尼烯具有产量和纯度较高、无毒无害的优点,与植物提取和化学合成相比,是更为经济、环保、可持续的生产方式,更有利于推动生物法合成法尼烯的工业化进程。
附图说明
图1.为法尼烯的合成途径;
图2.质粒图谱,a为pTrcLower-ΔIDI质粒图谱;b为pET28a-(D18-AaFS)-ispA-AaIDI质粒图谱,c为pACYC-mvaE-mvaS质粒图谱;
图3.为5L发酵罐发酵法尼烯产量,横坐标为发酵时间(h),纵坐标为法尼烯产量(g/L)。
具体实施方式
实施例中所用质粒pACYCDuet-1、pTrcHIS2b、pET28a、大肠杆菌BL21(DE3)感受态细胞、引物和试剂等均可通过商业途径购买获得或通过本领域技术人员所熟知的常规手段获得。
其中:
NEBuilder HiFi DNA Assembly Master Mix试剂盒购自NEB,货号:E2621S
DNA聚合酶预混液PrimeSATR Max Premix购自TaKaRa,货号:R045A。
引物合成自:青岛擎科梓熙生物技术有限公司。
大肠杆菌DH5α和BL21(DE3),购自北京全式金生物技术有限公司。
Cm代表氯霉素;Kan代表卡那霉素;Amp代表氨苄青霉素。本发明所提供的菌株是大肠杆菌(Escherichia coli)BL21(DE3),所含有的质粒是pACYC-mvaE-mvaS、pTrcLower-ΔIDI和pET28a-(D18-AaFS)-ispA-AaIDI,后两个质粒皆用吉布森组装(Gibson Assembly)的方法构建。
本发明构建的法尼烯合成途径如附图1所示,该途径由质粒pACYC-mvaE-mvaS、pTrcLower-ΔIDI、pET28a-(D18-AaFS)-ispA-AaIDI以及大肠杆菌本身的MEP途径组成。其中,乙酰CoA酰基转移酶/HMG-CoA还原酶mvaE基因为一个拷贝,它能催化两步反应。
本发明D18定位肽不限于仅添加到β-法尼烯合成酶AaFS的N端,可添加于法尼烯合成途径任何一个酶的N端。
实施例1.高产法尼烯的重组菌的构建方法。
1)质粒pTrcLower-ΔIDI构建:以实验室已有的质粒pTrcLower为模板,通过PCR扩增除ScIDI基因以外的载体部分,上下游引物GA-Low-F、GA-Low-R序列如SEQ ID No:15-16所示,PCR体系如下:
Figure BDA0002476765300000051
PCR产物进行琼脂糖凝胶电泳和目的条带割胶回收,目的片段pTrc-ERG12-ERG8-ERG19约8390bp。回收产物进行自连接反应:
Figure BDA0002476765300000052
连接产物加5μL无菌水混匀,全部热激转化DH5α感受态细胞并涂布LB Amp平板,37℃培养过夜。第二天观察板子上的菌落情况,挑取单菌落到液体培养基,37℃培养至较浓,进行菌落PCR鉴定或提取质粒酶切鉴定,并送交测序,得到质粒pTrcLower-ΔIDI(附图2中a)。
2)质粒pET28a-(D18-AaFS)-ispA-AaIDI构建:
来自青蒿的β-法尼烯合成酶AaFS基因、异戊烯基二磷酸异构酶AaIDI基因根据大肠杆菌密码子偏好性进行优化,由公司合成并克隆到pUC57-simple载体上,得到质粒pUC57-AaFS和pUC57-AaIDI,异戊烯基二磷酸异构酶AaIDI基因经密码子优化后,合成的序列如SEQ ID No:1所示,β-法尼烯合成酶AaFS基因经密码子优化后,合成的序列如SEQ IDNo:3所示。分别从质粒pET14b-D18-GFP-SsrA扩增D18片段、从pUC57-AaFS扩增AaFS片段,D18片段扩增用的上游引物GA-D18-F序列如SEQ ID No:7所示,下游引物GA-D18-R序列如SEQ ID No:8所示;AaFS基因扩增用的上游引物GA-AaFS-F序列如SEQ ID No:9所示,下游引物GA-AaFS-R序列如SEQ ID No:10所示;PCR体系如下:
Figure BDA0002476765300000061
PCR产物进行琼脂糖凝胶电泳和目的条带割胶回收,D18片段约117bp,AaFS片段约1725bp。以上述两片段胶回收产物为模板进行overlap PCR反应:
Figure BDA0002476765300000062
PCR产物进行琼脂糖凝胶电泳和目的条带割胶回收,得到约1842bp的D18-AaFS片段。
以pET28a为模板扩增载体片段,pET28a载体序列扩增用的上游引物GA-28a-F序列如SEQ ID No:5所示,下游引物GA-28a-R序列如SEQ ID No:6所示。
以BL21(DE3)菌液为模板扩增ispA片段,以质粒pUC57-AaIDI为模板扩增AaIDI片段,ispA基因扩增用的上游引物GA-IspA-F序列如SEQ ID No:11所示,下游引物GA-IspA-R序列如SEQ ID No:12所示;AaIDI基因扩增用的上游引物GA-AaIDI-F序列如SEQ ID No:13所示,下游引物GA-AaIDI-R序列如SEQ ID No:14所示。
PCR体系如下:
Figure BDA0002476765300000063
PCR产物进行琼脂糖凝胶电泳,分别割胶回收约5307bp的pET28a载体片段、约900bp的ispA片段和约708bp的AaIDI片段。测定胶回收产物浓度,使用NEBuilder HiFi DNAAssembly试剂盒进行四片段连接,根据说明书计算片段的比例和各成分的量,连接反应50℃60min,产物加等体积无菌水稀释,取10μL热激转化DH5α感受态细胞并涂布LB Kan平板,37℃培养过夜。第二天观察板子上的菌落情况,挑取单菌落到液体培养基,37℃培养至较浓,进行菌落PCR鉴定或提取质粒酶切鉴定,并送交测序,得到质粒pET28a-(D18-AaFS)-ispA-AaIDI(附图2中b)。
所述D18-AaFS核苷酸序列如SEQ ID No:17所示;所述ispA核苷酸序列如SEQ IDNo:2所示;所述AaIDI核苷酸序列如SEQ ID No:1所示;所述pET28a载体序列如SEQ ID No:4所示。
3)质粒转化:
将测序正确的质粒pTrcLower-ΔIDI、pET28a-(D18-AaFS)-ispA-AaIDI和pACYC-mvaE-mvaS(附图2中c)共转化E.coli BL21(DE3)感受态细胞,涂布相应的三抗(Amp、Kan和Cm)LB培养基平板,其中Cm在LB培养基中的终浓度为34mg/L,Amp在LB培养基中的终浓度为100mg/L,Kan在LB培养基中的终浓度为50mg/L,37℃培养至有单菌落长出,获得合成法尼烯的重组菌。
通过上述构建方法获得合成法尼烯的重组菌,过表达乙酰CoA酰基转移酶/HMG-CoA还原酶mvaE基因、HMG-CoA合成酶mvaS基因、甲羟戊酸-5-磷酸激酶ERG8基因、甲羟戊酸激酶ERG12基因、甲羟戊酸-5-二磷酸脱羧酶ERG19基因、异戊烯基二磷酸异构酶AaIDI基因、法尼基二磷酸合成酶ispA基因以及带D18定位肽的β-法尼烯合成酶基因D18-AaFS。
实施例2.实施例1构建的重组菌在合成法尼烯中的应用。
本实施例中所述的利用气相色谱进行法尼烯定量检测,色谱柱为Agilent DB-5MS(30m×0.25mm×0.25μm)毛细管柱,柱升温程序为:初始60℃保持0.75min,以40℃/min速率升温至300℃保持2min,再降至初始温度。利用β-法尼烯标准品做标准曲线(y=3056.9x,x为β-法尼烯标准品浓度,单位为g/L;y为β-法尼烯峰面积)进行定量。
本实施例中所述一级种子培养基为LB培养基,其成分为:10g/L NaCl、10g/L蛋白胨、5g/L酵母提取物,其余为水。
所述二级种子培养基(发酵培养基)成分为:20g/L葡萄糖、9.8g/L K2HPO4、5g/L牛肉提取物、0.3g/L柠檬酸铁氨、2.1g/L一水合柠檬酸、0.06g/L MgSO4、1mL/L微量元素溶液,所述微量元素溶液含有(NH4)6Mo7O24·4H2O 0.37g/L、ZnSO4·7H2O 0.29g/L、H3BO3 2.47g/L、CuSO4·5H2O 0.25g/L和MnCl2·4H2O 1.58g/L,所述浓度为各成分在微量元素溶液中的终浓度。
所述发酵罐培养基成分为在二级种子培养基成分的基础上,将微量元素溶液改为1.5mL/L,并添加1g/L甜菜碱和3g/L硫酸铵。此外,碳源不限于使用葡萄糖,可利用生物质水解液等其它碳源。
所述补料培养基的成分为:50%葡萄糖(终质量浓度)。
以发酵罐发酵法为例,描述实施例1构建的重组菌在合成法尼烯中的应用。
挑取实施例1中获得的重组菌单菌落接种到5mL含有相应抗生素(Cm/Amp/Kan)的LB培养基中,37℃200rpm摇床培养8~12h,获得一级种子液。将一级种子液转接1mL至100mL发酵培养基中,37℃200rpm摇床培养过夜12~14h,获得二级种子液。配制2L发酵培养基于5L发酵罐中,接通pH电极用标准溶液校准pH,将温度电极、pH电极、溶氧电极用铝箔包好,一同高压灭菌115℃30min。灭菌完成后接通空气、冷凝水、温度电极、pH电极、溶氧电极,将温度调至37℃。待温度稳定后,加入抗生素各2mL(1/1000)、微量元素3mL(1.5mL/L)、葡萄糖(20g/L),将二级种子液200mL接入发酵罐中,设定pH 6.9、转速与溶氧关联。初糖大概在8~13h消耗完,按照7%速率补料,待OD600为35~40时将温度设定为30℃。待温度稳定后(降温过程约1h),添加IPTG至终浓度0.1mM,加入萃取剂TRPO 100mL(5%),溶氧骤升后迅速下降,继续生长2h。观察pH、溶氧、转速等参数,若菌体生长状态良好,继续添加5%萃取剂,溶氧骤升后又迅速下降,继续培养1.5h。观察发酵参数,若菌体生长状态良好,继续添加10%萃取剂,此时溶氧参数开始持续上升,将补料速率降低至5%,转速固定至800rpm,通过观察溶氧曲线的变化调节补料速率,最低补料速率为3%。当诱导16h左右溶氧曲线开始下降,菌体度过延滞期,此后发酵进入稳定期,发酵至96h下罐。每隔12h取样测OD600和法尼烯的产量。如附图3所示,发酵96h法尼烯产量达到35.93g/L,比目前文献中报道的大肠杆菌发酵罐水平合成法尼烯的最高产量(8.74g/L,You S,Yin Q,Zhang J,Zhang C,Qi W,Gao L,etal.2017.Utilization of biodiesel by-product as substrate for high-productionofβ-farnesene via relatively balanced mevalonate pathway in Escherichiacoli.Bioresource Technology.243:228-236)高出311%,且在效率上已接近或超过酵母合成法尼烯的产量(Meadows A,Hawkins K,Tsegaye Y,Antipov E,Kim Y,Raetz L,etal.2016.Rewriting yeast central carbon metabolism for industrial isoprenoidproduction.Nature.537:694-697;Liu Y,Jiang X,Cui Z,Wang Z,Qi Q,HouJ.2019.Engineering the oleaginous yeast Yarrowia lipolytica for production ofα-farnesene.Biotechnology for Biofuels.12:296)。
SEQUENCE LISTING
<110> 中国科学院青岛生物能源与过程研究所
<120> 一种高产法尼烯的重组菌及其构建方法与应用
<130>
<160> 17
<170> PatentIn version 3.5
<210> 1
<211> 708
<212> DNA
<213> 经优化后的异戊烯基二磷酸异构酶AaIDI基因序列
<400> 1
atgaccattc tgaccgatgc agatagcaat atggatgccg tgcagcgtcg tctgatgttt 60
gaagatgaat gcattctggt ggatgcaaat gatgccgtgg ttggccatga taccaaatat 120
aattgtcatc tgatggaaaa gatccagagc gaaaatctgc tgcatcgtgc ctttagtgtg 180
tttctgttta atagtaaata cgagctgctg ctgcaacagc gtagtgccac caaagttacc 240
tttccgctgg tgtggaccaa tacctgttgt agccatccgc tgtatcgtga aagtgaactg 300
attgaagaaa attatctggg cgtgcgcaat gcagcccagc gtaaactgct ggatgaactg 360
ggtattccga gtgatgaact gccggttaat gaattcattc cgctgggtcg cattctgtat 420
aaagcaccga gtgatggtaa atggggcgaa catgaactgg attatctgct gtttattgtt 480
cgcgatgtga gcatggcacc gaatccggat gaagttgccg aagttaaata tgtgaatcgt 540
gaacagctga aagaactggt tatgaaagcc gatctgggtg aagaaggtct gaaactgagc 600
ccgtggtttc gcattgttgt tgataatttt ctgttcaaat ggtgggatca tgtggaaaat 660
ggtagcctgc tggaagcctg tgatatgaaa accattcata atctgtaa 708
<210> 2
<211> 900
<212> DNA
<213> 法尼基二磷酸合成酶ispA基因核苷酸序列
<400> 2
atggactttc cgcagcaact cgaagcctgc gttaagcagg ccaaccaggc gctgagccgt 60
tttatcgccc cactgccctt tcagaacact cccgtggtcg aaaccatgca gtatggcgca 120
ttattaggtg gtaagcgcct gcgacctttc ctggtttatg ccaccggtca tatgttcggc 180
gttagcacaa acacgctgga cgcacccgct gccgccgttg agtgtatcca cgcttactca 240
ttaattcatg atgatttacc ggcaatggat gatgacgatc tgcgtcgcgg tttgccaacc 300
tgccatgtga agtttggcga agcaaacgcg attctcgctg gcgacgcttt acaaacgctg 360
gcgttctcga ttttaagcga tgccgatatg ccggaagtgt cggaccgcga cagaatttcg 420
atgatttctg aactggcgag cgccagtggt attgccggaa tgtgcggtgg tcaggcatta 480
gatttagacg cggaaggcaa acacgtacct ctggacgcgc ttgagcgtat tcatcgtcat 540
aaaaccggcg cattgattcg cgccgccgtt cgccttggtg cattaagcgc cggagataaa 600
ggacgtcgtg ctctgccggt actcgacaag tatgcagaga gcatcggcct tgccttccag 660
gttcaggatg acatcctgga tgtggtggga gatactgcaa cgttgggaaa acgccagggt 720
gccgaccagc aacttggtaa aagtacctac cctgcacttc tgggtcttga gcaagcccgg 780
aagaaagccc gggatctgat cgacgatgcc cgtcagtcgc tgaaacaact ggctgaacag 840
tcactcgata cctcggcact ggaagcgcta gcggactaca tcatccagcg taataaataa 900
<210> 3
<211> 1725
<212> DNA
<213> 经优化后的法尼烯合成酶AaFS基因序列
<400> 3
atgagcaccc tgccgattag cagtgtgagc tttagtagta gcaccagtcc gctggtggtg 60
gatgataaag tgagcaccaa accggatgtt attcgccata ccatgaattt taatgcaagt 120
atttggggtg accagtttct gacctatgat gaaccggaag atttggttat gaaaaaacag 180
ctggtggaag aactgaaaga agaagtgaaa aaagaactga ttaccattaa gggcagtaat 240
gaaccgatgc agcatgttaa actgattgaa ctgattgatg ccgttcagcg tctgggtatt 300
gcctatcatt ttgaagaaga aattgaggaa gcactgcagc atattcatgt gacctatggc 360
gaacagtggg ttgataaaga aaatctgcag agcattagtc tgtggtttcg tctgctgcgt 420
cagcagggct ttaatgttag cagtggcgtt tttaaagatt ttatggatga aaagggcaag 480
tttaaagaaa gcctgtgcaa tgatgcccag ggtattctgg cactgtatga agccgccttt 540
atgcgtgtgg aagatgaaac cattctggat aatgccctgg agtttactaa agtgcatctg 600
gatattattg caaaagatcc gagttgtgat agcagtctgc gcacccagat tcatcaggcc 660
ctgaaacagc cgctgcgtcg ccgcctggcc cgtattgaag ccctgcatta tatgccgatc 720
tatcagcagg aaaccagcca tgatgaagtt ctgctgaaac tggccaaact ggattttagt 780
gtgctgcaga gtatgcataa aaaagaatta agtcacatct gcaagtggtg gaaagatttg 840
gatctgcaga ataagctgcc gtatgttcgt gatcgcgttg tggaaggtta tttttggatt 900
ctgagtatct attacgagcc gcagcacgct cgtacccgca tgtttctgat gaaaacctgt 960
atgtggctgg ttgttctgga tgataccttt gataattatg gtacatacga agaactggaa 1020
atttttaccc aggccgttga acgttggagt attagctgtc tggatatgct gccggaatat 1080
atgaaactga tctatcagga actggttaat ctgcatgtgg aaatggaaga aagcctggaa 1140
aaagaaggca aaacctatca gattcattat gttaaagaga tggccaaaga actggtgcgc 1200
aattatctgg ttgaagcccg ctggctgaaa gaaggctata tgccgaccct ggaagaatat 1260
atgagcgtta gcatggtgac cggcacctat ggtctgatga ttgcacgcag ttatgtgggt 1320
cgcggcgata ttgttaccga agataccttt aaatgggtta gcagctatcc gccgattatt 1380
aaggccagct gtgttattgt gcgcctgatg gatgatattg tgagtcataa agaagaacag 1440
gaacgtggtc atgttgccag tagcattgaa tgttatagta aagaaagcgg cgcaagtgaa 1500
gaagaagcat gtgaatatat tagccgcaaa gttgaagatg cctggaaagt gattaatcgt 1560
gaaagtctgc gtccgaccgc cgttccgttt ccgctgctga tgccggccat taatctggcc 1620
cgtatgtgtg aagttctgta tagtgtgaat gatggtttta cccatgcaga aggtgacatg 1680
aaaagctata tgaaaagttt ctttgtgcac ccgatggttg tttaa 1725
<210> 4
<211> 5369
<212> DNA
<213> pET28a载体序列
<400> 4
atccggatat agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa 60
ggggttatgc tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcgggctt 120
tgttagcagc cggatctcag tggtggtggt ggtggtgctc gagtgcggcc gcaagcttgt 180
cgacggagct cgaattcgga tccgcgaccc atttgctgtc caccagtcat gctagccata 240
tggctgccgc gcggcaccag gccgctgctg tgatgatgat gatgatggct gctgcccatg 300
gtatatctcc ttcttaaagt taaacaaaat tatttctaga ggggaattgt tatccgctca 360
caattcccct atagtgagtc gtattaattt cgcgggatcg agatctcgat cctctacgcc 420
ggacgcatcg tggccggcat caccggcgcc acaggtgcgg ttgctggcgc ctatatcgcc 480
gacatcaccg atggggaaga tcgggctcgc cacttcgggc tcatgagcgc ttgtttcggc 540
gtgggtatgg tggcaggccc cgtggccggg ggactgttgg gcgccatctc cttgcatgca 600
ccattccttg cggcggcggt gctcaacggc ctcaacctac tactgggctg cttcctaatg 660
caggagtcgc ataagggaga gcgtcgagat cccggacacc atcgaatggc gcaaaacctt 720
tcgcggtatg gcatgatagc gcccggaaga gagtcaattc agggtggtga atgtgaaacc 780
agtaacgtta tacgatgtcg cagagtatgc cggtgtctct tatcagaccg tttcccgcgt 840
ggtgaaccag gccagccacg tttctgcgaa aacgcgggaa aaagtggaag cggcgatggc 900
ggagctgaat tacattccca accgcgtggc acaacaactg gcgggcaaac agtcgttgct 960
gattggcgtt gccacctcca gtctggccct gcacgcgccg tcgcaaattg tcgcggcgat 1020
taaatctcgc gccgatcaac tgggtgccag cgtggtggtg tcgatggtag aacgaagcgg 1080
cgtcgaagcc tgtaaagcgg cggtgcacaa tcttctcgcg caacgcgtca gtgggctgat 1140
cattaactat ccgctggatg accaggatgc cattgctgtg gaagctgcct gcactaatgt 1200
tccggcgtta tttcttgatg tctctgacca gacacccatc aacagtatta ttttctccca 1260
tgaagacggt acgcgactgg gcgtggagca tctggtcgca ttgggtcacc agcaaatcgc 1320
gctgttagcg ggcccattaa gttctgtctc ggcgcgtctg cgtctggctg gctggcataa 1380
atatctcact cgcaatcaaa ttcagccgat agcggaacgg gaaggcgact ggagtgccat 1440
gtccggtttt caacaaacca tgcaaatgct gaatgagggc atcgttccca ctgcgatgct 1500
ggttgccaac gatcagatgg cgctgggcgc aatgcgcgcc attaccgagt ccgggctgcg 1560
cgttggtgcg gatatctcgg tagtgggata cgacgatacc gaagacagct catgttatat 1620
cccgccgtta accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg 1680
cttgctgcaa ctctctcagg gccaggcggt gaagggcaat cagctgttgc ccgtctcact 1740
ggtgaaaaga aaaaccaccc tggcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 1800
cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca 1860
acgcaattaa tgtaagttag ctcactcatt aggcaccggg atctcgaccg atgcccttga 1920
gagccttcaa cccagtcagc tccttccggt gggcgcgggg catgactatc gtcgccgcac 1980
ttatgactgt cttctttatc atgcaactcg taggacaggt gccggcagcg ctctgggtca 2040
ttttcggcga ggaccgcttt cgctggagcg cgacgatgat cggcctgtcg cttgcggtat 2100
tcggaatctt gcacgccctc gctcaagcct tcgtcactgg tcccgccacc aaacgtttcg 2160
gcgagaagca ggccattatc gccggcatgg cggccccacg ggtgcgcatg atcgtgctcc 2220
tgtcgttgag gacccggcta ggctggcggg gttgccttac tggttagcag aatgaatcac 2280
cgatacgcga gcgaacgtga agcgactgct gctgcaaaac gtctgcgacc tgagcaacaa 2340
catgaatggt cttcggtttc cgtgtttcgt aaagtctgga aacgcggaag tcagcgccct 2400
gcaccattat gttccggatc tgcatcgcag gatgctgctg gctaccctgt ggaacaccta 2460
catctgtatt aacgaagcgc tggcattgac cctgagtgat ttttctctgg tcccgccgca 2520
tccataccgc cagttgttta ccctcacaac gttccagtaa ccgggcatgt tcatcatcag 2580
taacccgtat cgtgagcatc ctctctcgtt tcatcggtat cattaccccc atgaacagaa 2640
atccccctta cacggaggca tcagtgacca aacaggaaaa aaccgccctt aacatggccc 2700
gctttatcag aagccagaca ttaacgcttc tggagaaact caacgagctg gacgcggatg 2760
aacaggcaga catctgtgaa tcgcttcacg accacgctga tgagctttac cgcagctgcc 2820
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 2880
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 2940
ttggcgggtg tcggggcgca gccatgaccc agtcacgtag cgatagcgga gtgtatactg 3000
gcttaactat gcggcatcag agcagattgt actgagagtg caccatatat gcggtgtgaa 3060
ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc ttcctcgctc 3120
actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg 3180
gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc 3240
cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc 3300
ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga 3360
ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc 3420
ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat 3480
agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg 3540
cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc 3600
aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga 3660
gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact 3720
agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt 3780
ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag 3840
cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg 3900
tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgaa caataaaact 3960
gtctgcttac ataaacagta atacaagggg tgttatgagc catattcaac gggaaacgtc 4020
ttgctctagg ccgcgattaa attccaacat ggatgctgat ttatatgggt ataaatgggc 4080
tcgcgataat gtcgggcaat caggtgcgac aatctatcga ttgtatggga agcccgatgc 4140
gccagagttg tttctgaaac atggcaaagg tagcgttgcc aatgatgtta cagatgagat 4200
ggtcagacta aactggctga cggaatttat gcctcttccg accatcaagc attttatccg 4260
tactcctgat gatgcatggt tactcaccac tgcgatcccc gggaaaacag cattccaggt 4320
attagaagaa tatcctgatt caggtgaaaa tattgttgat gcgctggcag tgttcctgcg 4380
ccggttgcat tcgattcctg tttgtaattg tccttttaac agcgatcgcg tatttcgtct 4440
cgctcaggcg caatcacgaa tgaataacgg tttggttgat gcgagtgatt ttgatgacga 4500
gcgtaatggc tggcctgttg aacaagtctg gaaagaaatg cataaacttt tgccattctc 4560
accggattca gtcgtcactc atggtgattt ctcacttgat aaccttattt ttgacgaggg 4620
gaaattaata ggttgtattg atgttggacg agtcggaatc gcagaccgat accaggatct 4680
tgccatccta tggaactgcc tcggtgagtt ttctccttca ttacagaaac ggctttttca 4740
aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttga tgctcgatga 4800
gtttttctaa gaattaattc atgagcggat acatatttga atgtatttag aaaaataaac 4860
aaataggggt tccgcgcaca tttccccgaa aagtgccacc tgaaattgta aacgttaata 4920
ttttgttaaa attcgcgtta aatttttgtt aaatcagctc attttttaac caataggccg 4980
aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg agtgttgttc 5040
cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa 5100
ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt 5160
cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt agagcttgac 5220
ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta 5280
gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg 5340
cgccgctaca gggcgcgtcc cattcgcca 5369
<210> 5
<211> 18
<212> DNA
<213> GA-28a-F
<400> 5
ggatccgaat tcgagctc 18
<210> 6
<211> 20
<212> DNA
<213> GA-28a-R
<400> 6
gcccatggta tatctccttc 20
<210> 7
<211> 44
<212> DNA
<213> GA-D18-F
<400> 7
gaaggagata taccatgggc atggaaatca atgaaaagct gctg 44
<210> 8
<211> 35
<212> DNA
<213> GA-D18-R
<400> 8
aatcggcagg gtgctcatat ggctgccgcg cggca 35
<210> 9
<211> 38
<212> DNA
<213> GA-AaFS-F
<400> 9
gaaggagata taccatgggc atgagcaccc tgccgatt 38
<210> 10
<211> 21
<212> DNA
<213> GA-AaFS-R
<400> 10
ttaaacaacc atcgggtgca c 21
<210> 11
<211> 53
<212> DNA
<213> GA-IspA-F
<400> 11
tgcacccgat ggttgtttaa aggaggttaa ttggatggac tttccgcagc aac 53
<210> 12
<211> 27
<212> DNA
<213> GA-IspA-R
<400> 12
ttatttatta cgctggatga tgtagtc 27
<210> 13
<211> 54
<212> DNA
<213> GA-AaIDI-F
<400> 13
tcatccagcg taataaataa aggaggttaa ttggatgacc attctgaccg atgc 54
<210> 14
<211> 54
<212> DNA
<213> GA-AaIDI-R
<400> 14
cggagctcga attcggatcc ttacagatta tgaatggttt tcatatcac 49
<210> 15
<211> 30
<212> DNA
<213> GA-Low-F
<400> 15
aaaggaataa ctgcagctgg taccatatgg 30
<210> 16
<211> 36
<212> DNA
<213> GA-Low-R
<400> 16
ccagctgcag ttattccttt ggtagaccag tctttg 36
<210> 17
<211> 1842
<212> DNA
<213> D18-AaFS基因序列
<400> 17
atggaaatca atgaaaagct gctgcgccag attattgaag acgtactgtc tgaacccatg 60
ggcagcagcc atcatcatca tcatcacagc agcggcctgg tgccgcgcgg cagccatatg 120
agcaccctgc cgattagcag tgtgagcttt agtagtagca ccagtccgct ggtggtggat 180
gataaagtga gcaccaaacc ggatgttatt cgccatacca tgaattttaa tgcaagtatt 240
tggggtgacc agtttctgac ctatgatgaa ccggaagatt tggttatgaa aaaacagctg 300
gtggaagaac tgaaagaaga agtgaaaaaa gaactgatta ccattaaggg cagtaatgaa 360
ccgatgcagc atgttaaact gattgaactg attgatgccg ttcagcgtct gggtattgcc 420
tatcattttg aagaagaaat tgaggaagca ctgcagcata ttcatgtgac ctatggcgaa 480
cagtgggttg ataaagaaaa tctgcagagc attagtctgt ggtttcgtct gctgcgtcag 540
cagggcttta atgttagcag tggcgttttt aaagatttta tggatgaaaa gggcaagttt 600
aaagaaagcc tgtgcaatga tgcccagggt attctggcac tgtatgaagc cgcctttatg 660
cgtgtggaag atgaaaccat tctggataat gccctggagt ttactaaagt gcatctggat 720
attattgcaa aagatccgag ttgtgatagc agtctgcgca cccagattca tcaggccctg 780
aaacagccgc tgcgtcgccg cctggcccgt attgaagccc tgcattatat gccgatctat 840
cagcaggaaa ccagccatga tgaagttctg ctgaaactgg ccaaactgga ttttagtgtg 900
ctgcagagta tgcataaaaa agaattaagt cacatctgca agtggtggaa agatttggat 960
ctgcagaata agctgccgta tgttcgtgat cgcgttgtgg aaggttattt ttggattctg 1020
agtatctatt acgagccgca gcacgctcgt acccgcatgt ttctgatgaa aacctgtatg 1080
tggctggttg ttctggatga tacctttgat aattatggta catacgaaga actggaaatt 1140
tttacccagg ccgttgaacg ttggagtatt agctgtctgg atatgctgcc ggaatatatg 1200
aaactgatct atcaggaact ggttaatctg catgtggaaa tggaagaaag cctggaaaaa 1260
gaaggcaaaa cctatcagat tcattatgtt aaagagatgg ccaaagaact ggtgcgcaat 1320
tatctggttg aagcccgctg gctgaaagaa ggctatatgc cgaccctgga agaatatatg 1380
agcgttagca tggtgaccgg cacctatggt ctgatgattg cacgcagtta tgtgggtcgc 1440
ggcgatattg ttaccgaaga tacctttaaa tgggttagca gctatccgcc gattattaag 1500
gccagctgtg ttattgtgcg cctgatggat gatattgtga gtcataaaga agaacaggaa 1560
cgtggtcatg ttgccagtag cattgaatgt tatagtaaag aaagcggcgc aagtgaagaa 1620
gaagcatgtg aatatattag ccgcaaagtt gaagatgcct ggaaagtgat taatcgtgaa 1680
agtctgcgtc cgaccgccgt tccgtttccg ctgctgatgc cggccattaa tctggcccgt 1740
atgtgtgaag ttctgtatag tgtgaatgat ggttttaccc atgcagaagg tgacatgaaa 1800
agctatatga aaagtttctt tgtgcacccg atggttgttt aa 1842

Claims (9)

1.一种高产法尼烯的重组菌,其特征在于,所述重组菌过表达乙酰CoA酰基转移酶/HMG-CoA还原酶mvaE基因、HMG-CoA合成酶mvaS基因、甲羟戊酸激酶ERG12基因、甲羟戊酸-5-磷酸激酶ERG8基因、甲羟戊酸-5-二磷酸脱羧酶ERG19基因、来自青蒿的异戊烯基二磷酸异构酶AaIDI基因、法尼基二磷酸合成酶ispA基因以及带有D18定位肽的β-法尼烯合成酶AaFS基因,出发菌株为大肠杆菌;所述来自青蒿的异戊烯基二磷酸异构酶AaIDI基因是按大肠杆菌密码子偏好性优化后获得的,优化后的核苷酸序列如SEQ ID No: 1所示;所述法尼基二磷酸合成酶 ispA基因核苷酸序列如SEQ ID No: 2所示;所述来自青蒿的β-法尼烯合成酶AaFS基因是按大肠杆菌密码子偏好性优化后获得的,优化后的核苷酸序列如SEQ ID No: 3所示;所述带有D18定位肽的β-法尼烯合成酶AaFS基因的核苷酸序列如SEQ ID No: 17所示。
2.根据权利要求1所述的高产法尼烯的重组菌,其特征在于,所述大肠杆菌为BL21(DE3)。
3.权利要求1或2所述的高产法尼烯的重组菌的构建方法,其特征在于,包括如下步骤:
1)质粒pTrcLower-ΔIDI构建:以pTrcLower质粒为模板,PCR扩增除ScIDI以外的载体部分,通过Gibson Assembly方法使载体自连,得到不含IDI基因的质粒pTrcLower-ΔIDI;所述pTrcLower质粒中含有ERG12ERG8ERG19ScIDI基因;
2)质粒pET28a-(D18-AaFS)-ispA-AaIDI构建:
分别扩增pET28a载体序列、D18定位肽基因片段、AaFS基因、ispA基因和AaIDI基因序列,先通过overlap PCR得到带有D18定位肽的β-法尼烯合成酶AaFS基因,记为D18-AaFS片段,再通过Gibson Assembly方法构建获得pET28a-(D18-AaFS)-ispA-AaIDI质粒;所述pET28a载体序列如SEQ ID No: 4所示;
3)质粒转化:将步骤1)、2)构建的质粒和含有mvaEmvaS基因的质粒pACYC-mvaE-mvaS共同转化到大肠杆菌感受态细胞,获得合成法尼烯的重组菌。
4.根据权利要求3所述的高产法尼烯的重组菌的构建方法,其特征在于,步骤2)所述β-法尼烯合成酶AaFS基因、异戊烯基二磷酸异构酶AaIDI基因根据大肠杆菌密码子偏好性进行优化,由公司合成并克隆到pUC57-simple载体上,得到的质粒pUC57-AaFS和pUC57-AaIDI;从质粒pET14b-D18-GFP-SsrP扩增和胶回收D18片段,从pUC57-AaFS扩增和胶回收AaFS片段,以上述两者胶回收产物为模板,通过overlap PCR连接两个片段,得到D18-AaFS片段;从BL21(DE3)扩增ispA片段,从pUC57-AaIDI扩增AaIDI片段,从pET28a扩增载体片段;使用NEBuilder HiFi DNA Assembly连接上述四个片段,获得质粒pET28a-(D18-AaFS)-ispA-AaIDI。
5.根据权利要求3所述的高产法尼烯的重组菌的构建方法,其特征在于,步骤2)所述pET28a载体序列扩增用的上游引物序列如SEQ ID No: 5所示,下游引物序列如SEQ ID No:6所示;D18片段扩增用的上游引物序列如SEQ ID No: 7所示,下游引物序列如SEQ ID No:8所示;AaFS基因扩增用的上游引物序列如SEQ ID No: 9所示,下游引物序列如SEQ ID No:10所示;ispA基因扩增用的上游引物序列如SEQ ID No: 11所示,下游引物序列如SEQ IDNo: 12所示;AaIDI基因扩增用的上游引物序列如SEQ ID No: 13所示,下游引物序列如SEQID No: 14所示。
6.权利要求1或2所述的重组菌在合成法尼烯中的应用。
7.根据权利要求6所述的重组菌在合成法尼烯中的应用,其特征在于,将所述的重组菌依次经一级种子培养基和二级种子培养基培养后,获得的种子液接种到发酵罐培养基中进行分批补料发酵得到法尼烯。
8.根据权利要求7所述的重组菌在合成法尼烯中的应用,其特征在于,所述一级种子培养基为LB培养基,其成分为:10 g/L NaCl、10 g/L蛋白胨、5 g/L酵母提取物,其余为水;所述二级种子培养基成分为:20 g/L葡萄糖、9.8 g/L K2HPO4、5 g/L牛肉提取物、0.3 g/L柠檬酸铁氨、 2.1 g/L一水合柠檬酸、0.06 g/L MgSO4、1 mL/L微量元素溶液,其余为水;所述微量元素溶液含有 (NH4)6Mo7O24·4H2O 0.37 g/L、 ZnSO4·7H2O 0.29 g/L、H3BO3 2.47 g/L、CuSO4·5H2O 0.25 g/L和MnCl2·4H2O 1.58 g/L。
9.根据权利要求7所述的重组菌在合成法尼烯中的应用,其特征在于,所述发酵罐培养基成分为在二级种子培养基成分的基础上,将微量元素溶液改为1.5 mL/L,并添加终浓度1g/L甜菜碱和3 g/L硫酸铵;补料成分为50%葡萄糖。
CN202010366859.XA 2020-04-30 2020-04-30 一种高产法尼烯的重组菌及其构建方法与应用 Active CN111607545B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010366859.XA CN111607545B (zh) 2020-04-30 2020-04-30 一种高产法尼烯的重组菌及其构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010366859.XA CN111607545B (zh) 2020-04-30 2020-04-30 一种高产法尼烯的重组菌及其构建方法与应用

Publications (2)

Publication Number Publication Date
CN111607545A CN111607545A (zh) 2020-09-01
CN111607545B true CN111607545B (zh) 2022-08-09

Family

ID=72197651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010366859.XA Active CN111607545B (zh) 2020-04-30 2020-04-30 一种高产法尼烯的重组菌及其构建方法与应用

Country Status (1)

Country Link
CN (1) CN111607545B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216464B (zh) * 2021-04-19 2024-07-05 武汉合生科技有限公司 获得α-法尼烯以及β-法尼烯的重组微生物及其构建方法
CN115197955A (zh) * 2022-05-20 2022-10-18 菏泽学院 pBACS质粒载体构建方法及其在单片段至多片段无缝克隆中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609424A (zh) * 2018-12-26 2019-04-12 浙江医药股份有限公司 用于生产法尼烯的大肠杆菌
CN110964678A (zh) * 2018-09-29 2020-04-07 中国科学院青岛生物能源与过程研究所 一种合成法尼烯的基因工程菌及其构建方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2544078B (en) * 2015-11-05 2019-05-29 Univ Of Kent Bacterial microcompartment-free recombinant biosynthetic pathway comprising enzymes having microcompartment signal.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964678A (zh) * 2018-09-29 2020-04-07 中国科学院青岛生物能源与过程研究所 一种合成法尼烯的基因工程菌及其构建方法与应用
CN109609424A (zh) * 2018-12-26 2019-04-12 浙江医药股份有限公司 用于生产法尼烯的大肠杆菌

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Investigation of fermentation conditions of biodiesel by-products for high production of β-farnesene by an engineered Escherichia coli;Pin Yaoet al.;《Environmental Science and Pollution Research》;20200422;第27卷;第22760-22761页左栏第2段 *
酿酒酵母乙酰辅酶A 精细调控合成萜类化合物研究进展;樊婧婧等;《化工进展》;20181231;第37卷(第7期);第2773-2779页 *

Also Published As

Publication number Publication date
CN111607545A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN112725256B (zh) 重组大肠杆菌及利用重组大肠杆菌生物合成香叶木素的方法
CN109825488A (zh) 一种在大肠杆菌中进行木聚糖酶分泌表达的新方法
CN111607545B (zh) 一种高产法尼烯的重组菌及其构建方法与应用
CN110577965B (zh) xCas9n-epBE碱基编辑系统在基因编辑中的应用
CN1430673A (zh) 夜香树黄叶卷曲病毒启动子
CN114107340A (zh) 一种甲羟戊酸激酶基因rkmk及其应用
CN106939316A (zh) 利用CRISPR/Cas9系统定点敲除水稻OsPDCD5基因第二外显子的方法
CN110878322B (zh) 一种用于肺炎克雷伯菌基因编辑的双质粒系统
CN110724685A (zh) 转基因耐盐耐除草剂玉米sr801外源插入旁侧序列及其应用
CN108531439A (zh) 一种大肠杆菌基因工程菌及其构建方法与应用
CN114410560B (zh) 一株高产fk228的工程菌株及其构建与应用
CN108728389B (zh) 一株用于生产2,3,5,6-四甲基吡嗪的大肠杆菌工程菌及其应用
CN108456687B (zh) 基于赖氨酸浓度控制的重组表达质粒、转化子及其应用
CN114369560A (zh) 一种提高生物靛蓝产量的方法
CN116867894A (zh) 由异丁香酚生物合成香草醛
CN109266686A (zh) 一种基因组核苷酸定点替换的方法
CN116926092A (zh) 一种泛酸激酶基因RkPank及其应用
CN112912510A (zh) 用于生物生产乙酸甘油酯化合物的方法
KR20240009946A (ko) 레독스 민감성 cralbp 돌연변이 단백질
CN109666693B (zh) Mg132在碱基编辑系统编辑受体基因组中的应用
CN109666694B (zh) Scr7在碱基编辑系统编辑受体基因组中的应用
CN112680474A (zh) 一种荧光标记CRISPR/SpCas9系统介导的基因替换体系及其在植物中的应用
CN109265562B (zh) 一种切刻酶及其在基因组碱基替换中的应用
CN106497991B (zh) 一种以左旋多巴为底物合成咖啡酸的方法
CN113789362B (zh) 一种利用细胞色素P450酶合成16α-羟基化甾体类化合物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant