CN111584351A - 一种SiC外延沟槽的填充方法 - Google Patents

一种SiC外延沟槽的填充方法 Download PDF

Info

Publication number
CN111584351A
CN111584351A CN202010451568.0A CN202010451568A CN111584351A CN 111584351 A CN111584351 A CN 111584351A CN 202010451568 A CN202010451568 A CN 202010451568A CN 111584351 A CN111584351 A CN 111584351A
Authority
CN
China
Prior art keywords
groove
filling
sic
shaped pit
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010451568.0A
Other languages
English (en)
Inventor
左万胜
钮应喜
刘洋
张晓洪
刘锦锦
袁松
史田超
史文华
钟敏
胡新星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Qidi Semiconductor Co ltd
Original Assignee
Wuhu Qidi Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Qidi Semiconductor Co ltd filed Critical Wuhu Qidi Semiconductor Co ltd
Priority to CN202010451568.0A priority Critical patent/CN111584351A/zh
Publication of CN111584351A publication Critical patent/CN111584351A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)

Abstract

本发明提供了一种SiC外延沟槽的填充方法,包括以下步骤:对衬底上生长的N型4H‑SiC外延层进行沟槽刻蚀,对刻蚀后的沟槽进行部分填充,在沟槽内形成表面为V型坑的SiC外延层并生长V型坑,向沟槽内填充表面平整的SiC外延层,直至将沟槽填满,最后抛光除去台面顶部过生长的4H‑SiC,得到上表面光滑的交替排列的p型和n形区域;本发明通过在沟槽内先填充形成V型坑,再进行V型坑生长,通过控制生长条件增大V型坑斜边的长度,降低V型坑顶部的长度,以降低穿透位错的概率,促使界面位错和缺陷充分转弯而自我湮灭,利用这种V型坑位错自我湮灭机制,将衬底和外延层界面处形成的界面位错和衬底上的缺陷自我湮灭,从而降低器件的漏电流和提高器件的击穿电压。

Description

一种SiC外延沟槽的填充方法
技术领域
本发明属于半导体技术领域,涉及一种SiC外延沟槽的填充方法,具体涉及一种深度5-15μm的SiC外延沟槽的填充方法。
背景技术
随着节能减排、新能源汽车、智能电网的发展,这些领域对功率半导体器件的性能指标和可靠性的要求日益提高,要求器件有更高的工作电压、更大的电流承载能力、更高的工作频率、更高的效率、更高的工作温度、更强的散热能力和更高的可靠性。经过半个多世纪的发展,基于硅材料的功率半导体器件的性能已经接近其物理极限,进一步提高电力电子器件的性能则需诉诸于综合性能更优越的第三代半导体材料。因此,以SiC等为代表的第三代半导体材料的发展开始受到重视。
SiC作为第三代宽禁带半导体材料的典型代表,具有宽禁带宽度、高临界击穿场强、高热导率及高载流子饱和速率等特性。SiC器件优化进步的重要方向之一是不断降低器件的比导通电阻。而超级结技术毫无疑问是降低漂移区比导通电阻的最有效手段。超级结技术是一种通过采用交替的P型掺杂区域和N型掺杂区域结构来实现电荷补偿并作为耐压层,以同时得到低比导通电阻和高耐压能力的技术。理论上已经证明超级结器件可以将半导体材料理论极限的Ron,sp∝BV2.3~2.5降低到Ron,sp∝BV1.32
目前4H-SiC同质外延过程中,为了避免3C-SiC多型的出现,通过采用台阶流生长方法。在台阶流的生长方法中,所采用的是与(0001)面有一定偏角的衬底。具有偏角的衬底表面包含有台面、台阶及扭折。由于台阶和扭折处的表面势能较低,在采用偏角的衬底进行外延生长时,衬底表面的吸附原子更趋于向台阶和扭折处迁移,并与台阶和扭折处具有悬挂键的原子成键结合,并按照衬底的堆垛顺序生长为晶体。这种生长方式下,各个台阶和扭折处不断吸收吸附原子而进行横向移动,从而实现同质外延生长。
然而,目前获得SiC超级结采取沟槽刻蚀-外延回填技术,在N+型硅衬底上生长N型厚外延层,然后在厚外延层上刻蚀深沟槽,最后用P型外延层填充沟槽,由于N的原子半径比C和Si原子半径小,Al的原子半径比C和Si原子半径大,在N型4H-SiC外延层上生长P型4H-SiC外延层,P型4H-SiC外延层将受到压应力,界面处晶格失配较大,界面位错和衬底上的缺陷会沿着位错线穿透至外延层表面,严重影响器件的漏电流和击穿电压,如图1所示。
发明内容
为解决上述技术问题,本发明提供了一种SiC外延深沟槽的填充方法,通过在沟槽内先填充形成V型坑,再进行V型坑生长,通过控制生长条件增大V型坑斜边的长度,降低V型坑顶部的长度,以降低穿透位错的概率,促使界面位错和衬底的缺陷在外延层中充分转弯而自我湮灭,从而降低器件的漏电流和提高器件的击穿电压。
本发明采取的技术方案为:
一种SiC外延沟槽的填充方法,包括以下步骤:
(1)对衬底上生长的N型4H-SiC外延层进行沟槽刻蚀;
(2)对刻蚀后的沟槽进行填充,在沟槽内形成表面为V型坑的SiC外延层;
(3)生长表面为V型坑的SiC外延层;
(4)将步骤(3)中的V型坑填平;
(5)向沟槽内填充表面平整的SiC外延层,直至将沟槽填满。
进一步地,所述步骤(2)之前还包括:(1-1)向刻蚀后的沟槽内填充本征4H-SiC缓冲层的步骤,和/或(1-2)向沟槽内填充梯度P型SiC缓冲层的步骤。通过生长本征4H-SiC缓冲层的步骤,和/或梯度P型SiC缓冲层,可缓解晶格失配,提高晶体质量。
进一步地,所述本征4H-SiC缓冲层的厚度为10~100nm;在N型4H-SiC外延层和P型4H-SiC外延层之间插入晶格常数在N型4H-SiC外延层与P型4H-SiC外延层之间的本征4H-SiC,可缓解晶格失配,提高晶体质量;如果缓冲层的厚度小于10nm难以有效缓冲晶格失配,厚度大于100nm,会增大器件的导通电阻。
所述步骤(5)之后还包括抛光的步骤,抛去台面顶部过生长的4H-SiC。
进一步地,步骤(1)中,所述N型4H-SiC外延层的厚度为5~20μm,掺杂浓度为3×1014cm-3~9×1016cm-3;外延层厚度和掺杂浓度决定器件的耐压能力,厚度越厚,耐压能力越强;掺杂浓度越低,耐压能力越强,但导通电阻越高,所以本发明中N型4H-SiC外延层的厚度为5~20μm,掺杂浓度为3×1014cm-3~9×1016cm-3
步骤(1)中,所述刻蚀沟槽的方法为沿<11-20>晶向进行刻蚀,刻蚀深度5-15μm,沟槽侧壁倾角86~90°,底部宽度与台面顶部宽度一致,均为2~2.5μm。
步骤(1-2)中,控制Al掺杂剂的流量在0.5~2min内由0增大到5~100sccm,以生长掺杂浓度从0到2×1016cm-3~5×1018cm-3的梯度P型SiC缓冲层。
步骤(1-2)中,控制含氯的硅源气体、碳源、HCl、H2的流量分别为30~100sccm、30~100sccm和1000~5000sccm、150~300slm,且控制Cl/Si=20~50,于1600~1700℃温度和100~600mbar压力下进行生长。
3)步骤(2)中,所述填充的方法为:分别以30~100sccm、30~100sccm、1000~5000sccm和30~50sccm的流量通入含氯的硅源气体、碳源、HCl和Al掺杂剂,控制Cl/Si=20~50;同时通入H2和惰性气体作为载气,H2/惰性气体的流量为1/1~1/3,载气总量为150~300slm,于1550~1600℃温度和500~600mbar压力下生长2~5min,形成V型坑;CVD法生长机理为自由基反应,H2为还原性气体,H2气氛有助于硅源和C源裂解成Si自由基和C自由基,由于原子在惰性气氛中的扩散长度要明显低于H2气氛,如果H2/惰性气体的流量大于1,原子扩散距离增加,难以形成V型坑,如果H2/惰性气体的流量小于1/3,裂解速度下降,长速下降,因此本发明控制H2/惰性气体的流量为1/1~1/3以有利于形成V型坑。在高Cl/Si生长条件下,台面顶部的刻蚀速度增大,刻蚀后的原子经过扩散迁移至沟槽,也有利于V型坑的形成,而且本发明采用相对降低温度和高压生长条件也都有利于降低原子扩散长度,同样可促进V型坑的形成。
步骤(3)中,分别以150~300sccm、150~300sccm、1000~5000sccm和10~50sccm的流量通入含氯的硅源气体、碳源、HCl和Al掺杂剂,控制Cl/Si=20~50;以H2和惰性气体作为载气,控制Cl/Si=20~50,于1550~1600℃温度和500~600mbar压力下生长5~10min。生长时间较短,V型坑较小,位错和缺陷不能充分发生转弯,降低发生自我湮灭的概率;生长时间较长,V型坑较大,填平需要的时间较长。本发明通过控制上述V型坑生长的条件,增大V型坑斜边的长度至0.5~1μm,降低V型坑顶部的长度至<0.1μm,以降低穿透位错的概率,促使位错充分转弯而自我湮灭。
步骤(4)中,保持步骤(3)中的其他条件不变,关闭惰性气体,载气H2的流量及Al掺杂剂的流量均提高至1.5~2倍,于1650~1750℃温度和50~200mbar压力下生长10~15min。增大载气流量可使得反应源在反应腔室中充分扩散,并使反应源分压降低,生长速度下降,生长速度下降有利于提高原子迁移距离以填平V型坑;且载气流量增加,Al掺杂剂的分压降低,而C/Si比不变,根据竞位原理,掺杂浓度下降,因此,需要按比例补偿Al的流量即将Al掺杂剂的流量提高至上一步骤的1.5~2倍,使得沟槽内掺杂浓度保持一致,并使用相对高温,低压,低长速生长条件,提高原子的扩散长度,促进V型坑填平效率。
步骤(5)中,分别以30~100sccm、30~100sccm和1000~5000sccm的流量通入含氯的硅源气体、碳源、HCl和Al掺杂剂,以150~300slm通入载气H2,控制Cl/Si=20~50,于1600~1700℃温度和100~600mbar压力下,填满沟槽。
所述含氯的硅源气体为SiCl4,SiHCl3,SiH2C12或SiH3Cl。
与现有技术相比,本发明具有以下优点:
(1)通过在沟槽内先填充形成V型坑,再进行V型坑生长,通过控制生长条件增大V型坑斜边的长度,降低V型坑顶部的长度,如图2所示,以降低穿透位错的概率,在填平V型坑过程中促使位错充分转弯而自我湮灭,如图3所示,以减小界面位错和缺陷穿透到表面的概率,从而明显减小穿透位错的密度,降低漏电流,提高填充沟槽晶体质量;
(2)通过在形成V型坑及生长V型坑之前生长本征4H-SiC缓冲层,和/或梯度P型SiC缓冲层,缓解晶格失配,提高晶体质量。
附图说明
图1为传统的外延层和衬底界面处形成界面位错和衬底上的缺陷的传播示意图;
图2为本发明中外延层和衬底界面处形成界面位错和衬底上的的缺陷传播示意图;
图3为本发明中外延层和衬底界面处形成界面位错和衬底上的的缺陷自我湮灭机制示意图;
图4为实施例1中的SiC外延沟槽的填充工艺流程示意图。
具体实施方式
下面结合实施例对本发明进行详细说明。
实施例1
一种SiC外延沟槽的填充方法,包括以下步骤:
(1)N型4H-SiC外延层生长:在外延炉在SiC衬底上生长5~20μm,掺杂浓度3×1014cm-3~9×1016cm-3N型4H-SiC外延层,取出,清洗;沿<11-20>晶向刻蚀深度5-15μm,沟槽侧壁倾角86~90°,底部宽度与台面顶部宽度一致,均为2~2.5μm,刻蚀完去掉掩膜;再一次清洗,烘干,送入外延炉中;
(2)形成P型V形坑:分别以30~100sccm、30~100sccm和1000~5000sccm的流量通入含氯的硅源气体、碳源和HCl,控制Cl/Si=20~50,通入H2和惰性气体作为载气,H2/惰性气体的流量为1/1~1/3,载气总量为150~300slm,于1550~1600℃温度和500~600mbar压力下生长2~5min,形成P型V形坑;所述惰性气体为氦气或氩气;
(3)P型V型坑生长:分别以150~300sccm、150~300sccm、1000~5000sccm和10~50sccm的流量通入含氯的硅源气体、碳源、HCl和Al掺杂剂,以150~300slm通入载气H2和惰性气体,H2与惰性气体的流量之比为1/1~1/3;控制Cl/Si=20~50,于1550~1600℃温度和500~600mbar压力下生长5~10min,形成斜边长度0.5~1μm、顶部长度<0.1μm的P型V形坑;所述惰性气体为氦气或氩气;
(4)填平P型V形坑:维持含氯的硅源气体、碳源、HCl流量不变,提升载气H2及Al掺杂剂的流量为原来的1.5~2倍,于1650~1750℃温度和50~200mbar压力下生长10~15min;
(5)填满沟槽:沟槽内V型坑填平之后,分别以30~100sccm、30~100sccm和1000~5000sccm的流量通入含氯的硅源气体、碳源和HCl和Al掺杂剂,以150~300slm通入载气H2,控制Cl/Si=20~50,于1600~1700℃温度和100~600mbar压力下,填满沟槽;
(6)CMP抛光:使用标准工艺进行化学机械抛光,抛去台面顶部过生长的4H-SiC,得到上表面光滑的交替排列的p型和n形区域。
实施例2
一种SiC外延沟槽的填充方法,其他同实施例1,只是在步骤(1)之后还包括续长本征4H-SiC缓冲层的步骤,具体为:关闭N2掺杂剂,使用生长N型外延层的条件生长10~100nm厚的本征SiC外延层做为缓冲层。
实施例3
一种SiC外延沟槽的填充方法,其他同实施例1,只是在步骤(1)之后还包括填充梯度P型SiC缓冲层的步骤,具体为:分别以30~100sccm、30~100sccm和1000~5000sccm的流量通入含氯的硅源气体、碳源和HCl,控制Cl/Si=20~50,并以150~300slm通入载气H2;于1600~1700℃温度和100~600mbar压力下,控制Al掺杂剂的流量在0.5~2min内由0增大到5~100sccm,以生长掺杂浓度从0到2×1016cm-3~5×1018cm-3的梯度P型SiC缓冲层。
实施例4
一种SiC外延沟槽的填充方法,包括以下步骤:其他同实施例1,只是在步骤(1)之后还包括续长本征4H-SiC缓冲层和填充梯度P型SiC缓冲层的步骤,具体为:
续长本征4H-SiC缓冲层:关闭N2掺杂剂,使用生长N型外延层的条件生长10~100nm厚的本征SiC外延层做为缓冲层;
梯度P型SiC缓冲层:分别以30~100sccm、30~100sccm和1000~5000sccm的流量通入含氯的硅源气体、碳源和HCl,控制Cl/Si=20~50,并以150~300slm通入载气H2;于1600~1700℃温度和100~600mbar压力下,控制Al掺杂剂的流量在0.5~2min内由0增大到5~100sccm,以生长掺杂浓度从0到2×1016cm-3~5×1018cm-3的梯度P型SiC缓冲层。
比较例1
一种SiC外延沟槽的填充方法,其他同实施例1,只是在步骤(1)之后直接进行步骤(5)填充,其外延表征数据如表1所示。
表1
粗糙度Ra(nm)(10um*10um) 外延表面缺陷密度(cm<sup>-2</sup>)
比较例1 ≥0.64 ≥0.58
实施例1 ≤0.25 ≤0.21
上述参照实施例对一种SiC外延沟槽的填充方法进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。

Claims (10)

1.一种SiC外延沟槽的填充方法,其特征在于,包括以下步骤:
(1)对衬底上生长的N型4H-SiC外延层进行沟槽刻蚀;
(2)对刻蚀后的沟槽进行填充,在沟槽内形成表面为V型坑的SiC外延层;
(3)生长表面为V型坑的SiC外延层;
(4)将步骤(3)中的V型坑填平;
(5)向沟槽内填充表面平整的SiC外延层,直至将沟槽填满。
2.根据权利要求1所述的填充方法,其特征在于,步骤(2)之前还包括:(1-1)向刻蚀后的沟槽内填充本征4H-SiC缓冲层的步骤,和/或(1-2)向沟槽内填充梯度P型SiC缓冲层的步骤。
3.根据权利要求1所述的填充方法,其特征在于,所述步骤(5)之后还包括抛光的步骤,抛去台面顶部过生长的4H-SiC。
4.根据权利要求1-3任意一项所述的填充方法,其特征在于,步骤(1)中,所述N型4H-SiC外延层的厚度为5~20μm,掺杂浓度为3×1014cm-3~9×1016cm-3;所述刻蚀沟槽的方法为沿<11-20>晶向进行刻蚀,刻蚀深度5-15μm,沟槽侧壁倾角86~90°,底部宽度与台面顶部宽度一致,均为2~2.5μm。
5.根据权利要求2所述的填充方法,其特征在于,步骤(1-2)中,控制Al掺杂剂的流量在0.5~2min内由0增大到5~100sccm,以生长掺杂浓度从0到2×1016cm-3~5×1018cm-3的梯度P型SiC缓冲层。
6.根据权利要求5所述的填充方法,其特征在于,步骤(1-2)中,控制含氯的硅源气体、碳源、HCl、H2的流量分别为30~100sccm、30~100sccm和1000~5000sccm、150~300slm,且控制Cl/Si=20~50,于1600~1700℃温度和100~600mbar压力下进行生长。
7.根据权利要求1-3任意一项所述的填充方法,其特征在于,步骤(2)中,所述填充的方法为:分别以30~100sccm、30~100sccm、1000~5000sccm和30~50sccm的流量通入含氯的硅源气体、碳源、HCl和Al掺杂剂,控制Cl/Si=20~50;同时通入H2和惰性气体作为载气,H2/惰性气体的流量为1/1~1/3,载气总量为150~300slm,于1550~1600℃温度和500~600mbar压力下生长2~5min,形成V型坑。
8.根据权利要求1所述的填充方法,其特征在于,步骤(3)中,分别以150~300sccm、150~300sccm、1000~5000sccm和10~50sccm的流量通入含氯的硅源气体、碳源、HCl和Al掺杂剂,控制Cl/Si=20~50;以H2和惰性气体作为载气,控制Cl/Si=20~50,于1550~1600℃温度和500~600mbar压力下生长5~10min。
9.根据权利要求1所述的填充方法,其特征在于,步骤(4)中,保持步骤(3)中的其他条件不变,关闭惰性气体,载气H2的流量及Al掺杂剂的流量均提高至1.5~2倍,于1650~1750℃温度和50~200mbar压力下生长10~15min。
10.根据权利要求1所述的填充方法,其特征在于,步骤(5)中,分别以30~100sccm、30~100sccm和1000~5000sccm的流量通入含氯的硅源气体、碳源、HCl和Al掺杂剂,以150~300slm通入载气H2,控制Cl/Si=20~50,于1600~1700℃温度和100~600mbar压力下,填满沟槽。
CN202010451568.0A 2020-05-25 2020-05-25 一种SiC外延沟槽的填充方法 Pending CN111584351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010451568.0A CN111584351A (zh) 2020-05-25 2020-05-25 一种SiC外延沟槽的填充方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010451568.0A CN111584351A (zh) 2020-05-25 2020-05-25 一种SiC外延沟槽的填充方法

Publications (1)

Publication Number Publication Date
CN111584351A true CN111584351A (zh) 2020-08-25

Family

ID=72111102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010451568.0A Pending CN111584351A (zh) 2020-05-25 2020-05-25 一种SiC外延沟槽的填充方法

Country Status (1)

Country Link
CN (1) CN111584351A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048716A (zh) * 2016-06-30 2016-10-26 山东天岳先进材料科技有限公司 一种碳化硅衬底的优化方法
CN106876463A (zh) * 2016-12-28 2017-06-20 全球能源互联网研究院 一种超结碳化硅器件及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048716A (zh) * 2016-06-30 2016-10-26 山东天岳先进材料科技有限公司 一种碳化硅衬底的优化方法
CN106876463A (zh) * 2016-12-28 2017-06-20 全球能源互联网研究院 一种超结碳化硅器件及其制备方法

Similar Documents

Publication Publication Date Title
US9903048B2 (en) Single-crystal 4H-SiC substrate
KR102285498B1 (ko) 기저면 전위가 탄화규소 기판의 에피택셜층에 미치는 영향을 줄이는 방법
CN102341893B (zh) 碳化硅半导体装置的制造方法
US20090085044A1 (en) Silicon carbide semiconductor substrate and silicon carbide semiconductor device by using thereof
CN103165777B (zh) 具有梯形结构的n型插入层的led外延片及其生长方法
KR102136000B1 (ko) 에피택셜 탄화 규소 단결정 웨이퍼의 제조 방법 및 에피택셜 탄화 규소 단결정 웨이퍼
US20200056302A1 (en) Elimination of Basal Plane Dislocation and Pinning the Conversion Point Below the Epilayer Interface for SiC Power Device Applications
CN106816499A (zh) 一种发光二极管外延片的制备方法
KR20150002066A (ko) 에피택셜 웨이퍼
CN111584350B (zh) 一种SiC外延沟槽的填充方法及该方法制备得到的沟槽填充结构
CN111584351A (zh) 一种SiC外延沟槽的填充方法
CN113488375B (zh) 一种抑制外延边缘Crown缺陷的方法
CN114613847B (zh) 硅基AlGaN/GaN HEMT外延薄膜及其生长方法
JP4826373B2 (ja) 単結晶ウェハの製造方法
CN112687771B (zh) 一种制备AlN薄层的方法
CN111584349A (zh) 一种SiC外延深沟槽的填充方法
CN113913931A (zh) 一种具有p型缓冲层的外延结构及其制备方法
CN113078050B (zh) 一种C面SiC外延结构及外延沟槽的填充方法
CN114520143B (zh) 抑制双极型退化的碳化硅薄膜外延方法、碳化硅外延片
TWI779980B (zh) 半導體結構
US20220077287A1 (en) Nitride semiconductor substrate
CN114335134A (zh) 含超级结的增强型SiC异质结晶体管外延结构及其制备方法
CN111477542A (zh) 一种含超级结的3C-SiC外延结构及其制备方法
CN114284347A (zh) 耗尽型SiC异质结晶体管外延结构及其制备方法
KR20150025648A (ko) 에피택셜 웨이퍼

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 241000 1803, building 3, service outsourcing park, Wuhu high tech Industrial Development Zone, Anhui Province

Applicant after: Anhui Changfei Advanced Semiconductor Co.,Ltd.

Address before: 241000 1803, building 3, service outsourcing park, high tech Industrial Development Zone, Yijiang District, Wuhu City, Anhui Province

Applicant before: WUHU QIDI SEMICONDUCTOR Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825