CN111575684A - 金属化填充玻璃转接板通孔的方法 - Google Patents

金属化填充玻璃转接板通孔的方法 Download PDF

Info

Publication number
CN111575684A
CN111575684A CN202010654068.7A CN202010654068A CN111575684A CN 111575684 A CN111575684 A CN 111575684A CN 202010654068 A CN202010654068 A CN 202010654068A CN 111575684 A CN111575684 A CN 111575684A
Authority
CN
China
Prior art keywords
adapter plate
putting
glass
standing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010654068.7A
Other languages
English (en)
Inventor
陈雨哲
张继华
陈宏伟
高莉彬
方针
曲胜
邹思月
王文君
蔡星周
穆俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Maike Technology Co ltd
University of Electronic Science and Technology of China
Original Assignee
Chengdu Maike Technology Co ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Maike Technology Co ltd, University of Electronic Science and Technology of China filed Critical Chengdu Maike Technology Co ltd
Priority to CN202010654068.7A priority Critical patent/CN111575684A/zh
Publication of CN111575684A publication Critical patent/CN111575684A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemically Coating (AREA)

Abstract

本发明提供了一种金属化填充玻璃转接板通孔的方法,包括以下步骤:将转接板放入浓度在的除油液中,温度控制在80℃以上,并施加超声波场,持续5‑10min后,将转接板放入去离子水中,并施加超声波场,持续5‑10min;将转接板取出并放入浓度为3.5‑4.5ml/L硅烷偶联剂溶液中,静置30min以上;利用转盘实现转接板均匀覆盖;将转接板加热至110℃维持30‑55min;将转接板放入钯胶体溶液,静置5min;将转接板放入硝酸银溶液,静置5min;在高转速环境下化学镀;特定电流和化学镀液下电镀。通过对玻璃转接板进行表面处理、活化处理后,在玻璃转接板表面吸附自催化核,为化学镀提供基本条件,从而顺利完成化学镀。与现有技术相比,本发明的成本大幅度降低,且保证了通孔内壁的金属种子层的质量。

Description

金属化填充玻璃转接板通孔的方法
技术领域
本发明涉及三维集成封装转接板制备技术领域,尤其是一种金属化填充玻璃转接板通孔的方法。
背景技术
随着微电子技术的发展,集成电路所面临的隧道贯穿等量子效应也日渐突出,摩尔定律也遇到了前所未有的瓶颈,而这些瓶颈有望通过先进的三维集成封装技术得到突破。其中,转接板又在三维集成封装技术中扮演着重要作用:芯片之间通过高密度的镀铜通孔转接板进行垂直互联,大大缩短互连线长度,这样一来便显著降低了系统的寄生参数,功耗,信号延迟以及尺寸等。
玻璃具有优越的绝缘性能、与硅接近的热膨胀系数以及优良的气密性,是三维集成封装的有力候选者。玻璃作为转接板联通上下线路需要实现玻璃通孔金属填充,而金属填充是采用电镀铜的方式进行的。鉴于玻璃是绝缘体,无法导电,基体表面需要额外镀上一层金属种子层,实现作为阴极导电沉铜的功能。面对孔径的微型化以及深宽比(孔深与孔径之比)的增大,深孔溅射、物理气相沉积以及原子层沉积技术均能够很好地实现了高质量的金属种子层,但是这些技术成本十分高昂,且相关设备都需要靠进口。考虑到市场化的问题,国内厂商更倾向于采用化学镀的方法来替代。
发明内容
本发明所要解决的技术问题是提供一种金属化填充玻璃转接板通孔的方法,采用化学镀的方式在玻璃转接板通孔形成金属种子层,降低玻璃转接板通孔的金属化填充成本。
本发明解决其技术问题所采用的技术方案是:金属化填充玻璃转接板通孔的方法,包括以下步骤:
A、将转接板放入除油液中,温度控制在80℃以上,并施加超声波场,超声波场持续5-10min后,将转接板从除油液中取出并放入去离子水中,并施加超声波场,超声波场持续5-10min;
B、将转接板取出并放入浓度为3.5-4.5ml/L硅烷偶联剂中静置30-50min,将样品取出,放入转盘使有机物在玻璃表面覆盖均匀;
C、将转接板取出,并加热至110-120℃维持在30-55min范围内;
D、将加热后的转接板放入钯胶体溶液,静置5-7min;
E、将转接板取出并放入硝酸银溶液,静置5-7min;
F、化学镀12-18min;
G、电镀。
进一步地,步骤A中,除油液包括80g/L以上的氢氧化钠、25-40g/L碳酸钠、30-45g/L的磷酸钠,溶剂为去离子水。
进一步地,步骤B中硅烷偶联剂包括但不限于3-(2-氨基乙基氨基)丙基三甲氧基硅烷、3-(2-氨基乙基氨基)丙基三乙氧基硅烷、3-(2-氨基乙基氨基)丙基三甲氧基硅烷等。
进一步地,步骤B中硅烷偶联剂溶剂涉及到50%甲醇以及50%水。
进一步地,步骤B中利用转盘实现有机物均匀覆盖玻璃具体包括:
b1、将衬底固定到转盘上,衬底的中心偏离转盘的回转中心;
b2、环境调控至50-150Pa中,且静置8-15min,控制转盘转动,将多余的硅烷耦合剂溶液甩掉;
进一步地,步骤F中,化学镀液各组分浓度为:铜铜40-60g/L,氢氧化钠30-40g/L,柠檬酸钠40-50g/L,甲醛30-40g/L。
进一步地,步骤F中,化学镀过程中温度维持在25-30℃,采用磁力搅拌机维持转速1500-2000rpm。
进一步地,步骤G中,电镀液各组分浓度为:铜50-70g/L,硫酸20-30g/L,氯离子40-50mg/L,整平剂5-7ml/L,抑制剂5-6ml/L,加速剂8-10ml/L。
进一步地,步骤G中,电镀脉冲电流为0.05-0.1A/dm2,电流间隔时间为10微秒。
本发明的有益效果是:玻璃作为非金属物质,没有自催化活性,化学镀是无法在表面沉积金属,因此,本发明通过对玻璃转接板进行表面处理、活化处理后,在玻璃转接板表面吸附自催化核,为化学镀提供基本条件,从而顺利完成化学镀。与现有深孔溅射、物理气相沉积以及原子层沉积技术相比,本发明的成本大幅度降低,且保证了通孔内壁的金属种子层的质量。
附图说明
图1是采用本发明对玻璃转接板通孔填充后的表面示意图。
图2是采用本发明对玻璃转接板通孔填充后的剖面示意图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
本发明的金属化填充玻璃转接板通孔的方法,包括以下步骤:
A、将转接板放入除油液中,温度控制在80℃以上,并施加超声波场,超声波场持续5-10min后,将转接板从除油液中取出并放入去离子水中,并施加超声波场,超声波场持续5-10min;
B、将转接板取出并放入浓度为3.5-4.5ml/L 3-(2-氨基乙基氨基)丙基三甲氧基硅烷的水溶液中,静置30-50min,将样品取出,放入转盘使有机物再玻璃表面覆盖均匀,环境调控至50-150Pa中,既保持着液体的流动性,又不因转速太快将液体甩走,且静置8-15min,控制转盘转动,利用转速将多余的硅烷耦合剂溶液甩掉;
C、将转接板取出,并加热至110-120℃维持在30-55min范围内;将转接板取出,并加热至110-120℃维持在30-55min范围内。玻璃作为非金属物质,没有自催化活性,化学镀是无法在表面沉积金属。因此,通过上述步骤A、B、C对转接板进行表面处理,使得玻璃表面带电荷,可以捕捉到目标金属。硅烷偶联剂通过水解,与玻璃表面活跃的Si-OH键结合,形成活性表面,而另一面氨基易在水中带电荷,吸引目标金属。
D、将加热后的转接板放入钯胶体溶液,静置5-7min。钯胶体溶液也叫胶体钯溶液,生成的钯金属外围吸附着锡离子和氯离子。表面处理后的转接板在钯胶体溶液中浸泡,可以吸附捕捉游离的钯胶体。
E、将转接板取出并放入硝酸银溶液,静置5-7min,硝酸银溶液能够使转接板的表面多余的锡离子和氯离子离开留下钯金属沉积在表面,钯核能够在化学镀时吸附金属离子,从而在玻璃转接板的表面形成金属层。
F、化学镀持续15min。化学镀是实现通孔金属填充的前提,适当的化学镀金属层均匀覆盖,本发明改进实验结果,其中化学镀液各组分浓度为:铜铜40-60g/L,氢氧化钠30-40g/L,柠檬酸钠40-50g/L,甲醛30-40g/L。温度维持在25-30℃,采用磁力搅拌机维持转速1500-2000rpm。
G、电镀。对于高深宽比孔径,通孔内填充的铜柱内极易出现金属孔洞,因此本发明改良了电镀液的配比,具体地:电镀液各组分浓度为:铜50-70g/L,硫酸20-30g/L,氯离子40-50mg/L,整平剂5-7ml/L,抑制剂5-6ml/L,加速剂8-10ml/L。同时还调整了脉冲电流的大小和频率,具体地:电镀脉冲电流为0.05-0.1A/dm2,电流间隔时间为10微秒。
实施例一
金属化填充玻璃转接板通孔的方法,采用以下步骤:
A、将转接板放入除油液中、温度在85℃的,并施加超声波场,超声波场持续8min后,将转接板从溶液中取出并放入去离子水中,并施加超声波场,超声波场持续5min;
B、将转接板取出并放入浓度为4ml/L 3-(2-氨基乙基氨基)丙基三甲氧基硅烷溶液中,静置35min,将样品取出,放入转盘使有机物再玻璃表面覆盖均匀,环境调控至100Pa中,且静置10min,控制转盘转动,将多余的硅烷耦合剂溶液甩掉;
C、将转接板取出,将转接板加热110℃30min;
D、将加热后的转接板放入钯胶体溶液,静置5min;
E、将转接板取出并放入硝酸银溶液,静置5min;
F、化学镀15min;其中化学镀液各组分浓度为:铜铜50g/L,氢氧化钠40g/L,柠檬酸钠50g/L,甲醛40g/L。温度维持在30℃,采用磁力搅拌机维持转速1500rpm。
G、电镀:电镀液各组分浓度为:铜60g/L,硫酸25g/L,氯离子45mg/L,整平剂6ml/L,抑制剂5ml/L,加速剂9ml/L,电镀脉冲电流为0.08A/dm2,电流间隔时间为10微秒。
采用本实施例对玻璃转接板通孔填充后的表面示意图见图1,剖面示意图见图2,从图上可以看出,玻璃转接板通孔内填充的铜柱形状较规则,不存在孔洞等缺陷,填充质量较高,能够较高地满足转接板的要求。

Claims (8)

1.金属化填充玻璃转接板通孔的方法,其特征在于,包括以下步骤:
A、将转接板放入除油液中,温度控制在80℃以上,并施加超声波场,超声波场持续5-10min后,将转接板从除油液中取出并放入去离子水中,并施加超声波场,超声波场持续5-10min;
B、将转接板取出并放入浓度为3.5-4.5ml/L硅烷偶联剂中静置30-50min,将样品取出,放入转盘使有机物在玻璃表面覆盖均匀;
C、将转接板取出,并加热至110-120℃维持在30-55min范围内;
D、将加热后的转接板放入钯胶体溶液,静置5-7min;
E、将转接板取出并放入硝酸银溶液,静置5-7min;
F、化学镀12-18min;
G、电镀。
2.如权利要求1所述的除油液包括80g/L以上的氢氧化钠、25-40g/L碳酸钠、30-45g/L的磷酸钠,溶剂为去离子水。
3.如权利要求1所述的硅烷偶联剂包括但不限于3-(2-氨基乙基氨基)丙基三甲氧基硅烷、3-(2-氨基乙基氨基)丙基三乙氧基硅烷、3-(2-氨基乙基氨基)丙基三甲氧基硅烷等。硅烷偶联剂溶剂涉及到50%甲醇以及50%水。
4.如权利要求1所述的利用转盘实现有机物均匀覆盖玻璃的方法具体包括:将衬底固定到转盘上,衬底的中心偏离转盘的回转中心;环境调控至50-150Pa中,且静置8-15min,控制转盘转动,将多余的硅烷耦合剂溶液甩掉。
5.如权利要求1所述的化学镀液各组分浓度为:铜铜40-60g/L,氢氧化钠30-40g/L,柠檬酸钠40-50g/L,甲醛30-40g/L。
6.如权利要求5所述的化学镀过程中温度维持在25-30℃,采用磁力搅拌机维持转速1500-2000rpm,时间在12-18min。
7.如权利要求1所述的金属化填充玻璃转接板通孔的方法,其特征在于,步骤G中,电镀液各组分浓度为:铜50-70g/L,硫酸20-30g/L,氯离子40-50mg/L,整平剂5-7ml/L,抑制剂5-6ml/L,加速剂8-10ml/L。
8.如权利要求7所述的金属化填充玻璃转接板通孔的方法,其特征在于,步骤G中,电镀脉冲电流为0.05-0.1A/dm2,电流间隔时间为10微秒。
CN202010654068.7A 2020-07-09 2020-07-09 金属化填充玻璃转接板通孔的方法 Pending CN111575684A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010654068.7A CN111575684A (zh) 2020-07-09 2020-07-09 金属化填充玻璃转接板通孔的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010654068.7A CN111575684A (zh) 2020-07-09 2020-07-09 金属化填充玻璃转接板通孔的方法

Publications (1)

Publication Number Publication Date
CN111575684A true CN111575684A (zh) 2020-08-25

Family

ID=72118462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010654068.7A Pending CN111575684A (zh) 2020-07-09 2020-07-09 金属化填充玻璃转接板通孔的方法

Country Status (1)

Country Link
CN (1) CN111575684A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066758A (zh) * 2021-03-23 2021-07-02 成都迈科科技有限公司 Tgv深孔填充方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302809A (zh) * 2011-12-05 2015-01-21 埃托特克德国有限公司 用于基底表面金属化的新型粘合促进剂
WO2020061437A1 (en) * 2018-09-20 2020-03-26 Industrial Technology Research Institute Copper metallization for through-glass vias on thin glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302809A (zh) * 2011-12-05 2015-01-21 埃托特克德国有限公司 用于基底表面金属化的新型粘合促进剂
WO2020061437A1 (en) * 2018-09-20 2020-03-26 Industrial Technology Research Institute Copper metallization for through-glass vias on thin glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066758A (zh) * 2021-03-23 2021-07-02 成都迈科科技有限公司 Tgv深孔填充方法
CN113066758B (zh) * 2021-03-23 2023-08-22 三叠纪(广东)科技有限公司 Tgv深孔填充方法

Similar Documents

Publication Publication Date Title
US6824665B2 (en) Seed layer deposition
US6852627B2 (en) Conductive through wafer vias
CN100348775C (zh) 无电镀敷法和在其上形成金属镀层的半导体晶片
CN103681390A (zh) 一种基于tsv工艺的晶圆级硅基板制备方法
CN111575684A (zh) 金属化填充玻璃转接板通孔的方法
CN111081674B (zh) 一种高硅铝合金转接板及其制备方法
CN105655320A (zh) 低成本芯片背部硅通孔互连结构及其制备方法
KR20140053912A (ko) 적층 반도체 구조 내에 수직적 전기 연결을 형성하는 방법
JP7138108B2 (ja) 銅電着溶液及び高アスペクト比パターンのためのプロセス
CN104532309A (zh) 能控制tsv深孔镀铜结晶及生长方式的添加剂b及其用途
CN109628968B (zh) 一种tsv快速填充方法与装置
US8524512B2 (en) Method for repairing copper diffusion barrier layers on a semiconductor solid substrate and repair kit for implementing this method
CN103904022B (zh) 一种基于化学镀镍合金的通孔填充方法及其应用
CN111816608B (zh) 玻璃盲孔加工方法
CN104005027B (zh) 一种含硅环氧树脂表面金属化的方法
Zhu et al. Effect of leveler on performance and reliability of copper pillar bumps in wafer electroplating under large current density
CN108103534A (zh) 一种金属网格膜的制备方法
CN102222630A (zh) 一种制备Sn-Ag-In三元无铅倒装凸点的方法
KR101652134B1 (ko) 루테늄의 무전해 증착을 위한 도금액
Koo et al. Electrochemical process for 3D TSV without CMP and lithographic processes
CN205335241U (zh) 低成本晶圆级芯片尺寸硅通孔互连结构
CN109576766B (zh) 一种电泳-电沉积制备纳米TiO2增强Sn基微凸点的方法
CN109735890B (zh) 一种纳米TiO2-Sn微凸点的制备方法
KR101436553B1 (ko) 실리콘 관통 비아 구조를 가진 반도체 장치 및 그 제조 방법
CN111627826A (zh) 一种半导体芯片正面焊接金属结构的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825