CN111545437B - 一种金属与碳基材料电极表面碳纳米管涂层及其制备方法 - Google Patents

一种金属与碳基材料电极表面碳纳米管涂层及其制备方法 Download PDF

Info

Publication number
CN111545437B
CN111545437B CN202010387179.6A CN202010387179A CN111545437B CN 111545437 B CN111545437 B CN 111545437B CN 202010387179 A CN202010387179 A CN 202010387179A CN 111545437 B CN111545437 B CN 111545437B
Authority
CN
China
Prior art keywords
carbon
coating
carbon nanotube
metal
nano tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010387179.6A
Other languages
English (en)
Other versions
CN111545437A (zh
Inventor
张亚非
任燕
张习武
江垠
周涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jinduo Yuchen Water Environment Engineering Co ltd
Original Assignee
Shanghai Jinduo Yuchen Water Environment Engineering Co ltd
Jiangsu Yunchao Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jinduo Yuchen Water Environment Engineering Co ltd, Jiangsu Yunchao Environmental Protection Technology Co ltd filed Critical Shanghai Jinduo Yuchen Water Environment Engineering Co ltd
Priority to CN202010387179.6A priority Critical patent/CN111545437B/zh
Publication of CN111545437A publication Critical patent/CN111545437A/zh
Application granted granted Critical
Publication of CN111545437B publication Critical patent/CN111545437B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0272After-treatment with ovens
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种金属与碳基材料电极表面碳纳米管涂层及其制备方法,属于半导体涂层技术领域。碳纳米管涂层包含碳纳米管和金属骨架,所述碳纳米管涂层前体包括金属盐溶液、表面功能化的碳纳米管以及有机溶剂,利用热分解的思想反应生成金属与碳基材料电极表面碳纳米管涂层。其制备方法包括如下步骤:将表面功能化的碳纳米管分散在有机溶剂中进行超声处理,形成稳定的分散体系,将金属盐溶液与所述碳纳米管分散液混合均匀后,涂敷在电极表面,放入烘箱中进行干燥和管式炉进行热分解反应,从而制备所述电极表面的碳纳米管涂层。本发明制备的涂层比表面积大,充分发挥了碳纳米管的催化作用,制备方法和工艺简单,有利于工业化生产。

Description

一种金属与碳基材料电极表面碳纳米管涂层及其制备方法
技术领域
本发明属于半导体涂层技术领域,尤其是一种金属与碳基材料电极表面碳纳米管涂层及其制备方法。
背景技术
在涂层领域中,优质的涂层可以发挥强大的界面作用。尤其是在电极表面的应用中,涂层质量的性能直接影响电极的催化和导电等性能,现有的导电涂层具有很多缺点,一方面,这些材料较差的韧性使其很难应用在柔性衬底上。另一方面,由于其耐环境酸碱度和抗老化性能均较差、制备工艺复杂,且原材料成本高昂使得它们的价格较高。
碳纳米管凭借着优异的电学、力学和化学性质在电子器件领域发挥着举足轻重的作用。特别是在电催化方面,碳纳米管是一种高比表面积、高吸附性和高导电性的候选电极材料。通常采用涂层的方法将碳纳米管与金属电极复合,增强电极表面的活性位点和改善电极表面的电化学性能。其次,在金属与碳基材料电极表面碳纳米管涂层技术中,主要利用PVD和CVD等方法制备的电极涂层虽然质量高,但也带来了较高的制备成本和工艺复杂度。湿法化学的技术为电极涂层的制备带来了低成本和降低工艺复杂度的可能。
发明内容
发明目的:提供一种金属与碳基材料电极表面碳纳米管涂层及其制备方法,以解决背景技术中所涉及的问题。
技术方案:本发明提供一种金属与碳基材料电极表面碳纳米管涂层,所述碳纳米管涂层包含碳纳米管和金属骨架并在电极表面构成,碳纳米管涂层前体包括金属盐溶液、表面功能化的碳纳米管以及有机溶剂,利用热分解反应生成金属与碳基材料电极表面碳纳米管涂层。
本发明还提供一种金属与碳基材料电极表面碳纳米管涂层的制备方法,包括如下步骤:
S1、提供纳表面功能化的碳纳米管、金属盐溶液、有机溶剂、聚乙烯醇、去离子水和目标电极;
S2、将所述碳纳米管均匀分散在有机溶剂中,并进行超声处理使溶液中的碳纳米管进一步分散;
S3、将所述金属盐溶液和去离子水混合,并添加一定比例的聚乙烯醇,在室温下磁力搅拌,形成涂层骨架前体;
S4、将碳纳米管分散液与所述涂层骨架前体在室温搅拌下均匀混合,得到涂层前体;
S5、将所述涂层前体涂覆在目标电极表面,放在烘箱中进行干燥处理和管式炉中进行热分解反应,得到所述电极表面碳纳米管涂层。
作为一个优选方案,所述金属盐溶液为钛酸四丁酯、氯铂酸、异丙醇铝和醋酸锌等金属盐的任一种或其组合。
作为一个优选方案,所述有机溶剂为乙醇、异丙醇、正丁醇和丁原醇的任一种或含有其中任一种或其组合。
作为一个优选方案,所述S2中所制备的碳纳米管分散液中,碳纳米管在分散液中的质量分数为20%~45%。
作为一个优选方案,所述涂层骨架前体中聚乙烯醇的添加质量分数为5%~20%。
作为一个优选方案,所述S4的涂层前体中,碳纳米管分散液和涂层骨架前体的质量比为(1~3):1。
作为一个优选方案,所述S5的涂层处理工艺中,干燥处理温度为100 ℃,热分解反应的温度为300~500 ℃,反应时间为3~5 h。
作为一个优选方案,所述S1中的表面功能化的碳纳米管为等离子体处理后的功能化碳纳米管。
作为一个优选方案,功能化碳纳米管为分散剂改性的碳纳米管,其制备方法包括如下步骤:
步骤一、纯化
将碳纳米管与硝酸溶液混合,在80~100℃的温度下搅拌回流24~48h,去除上层清液和悬浮固形物,然后通过聚碳酸酯薄膜过滤,得到黑色残余固体,用去离子水清洗至中性,并干燥待用;
步骤二、氧化
将上述纯化后的碳纳米管分散于强酸溶液中,在40~50℃的温度下搅拌氧化2~4h,然后静置分层,去除上层清液,然后通过聚碳酸酯薄膜过滤,用去离子水清洗至中性,并干燥、研磨待用;
步骤三、功能化
将氧化碳纳米管分散于焦棓酚红溶液中,超声波分散3~5h,离心去除未分散的碳纳米管,然后通过聚碳酸酯薄膜过滤,用去离子水清洗至中性,并干燥待用。
有益效果:本发明涉及一种金属与碳基材料电极表面碳纳米管涂层及其制备方法,本发明采用热分解反应制备电极表面的碳纳米管涂层,比表面积大,充分发挥了碳纳米管的吸附性能和催化作用,相较于传统行业的电极涂层技术,本发明的成本低,适合工业化生产。
附图说明
图1为本发明所示的一种金属与碳基材料电极表面碳纳米管涂层制备方法的流程图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
在金属与碳基材料电极表面碳纳米管涂层技术中,主要利用PVD和CVD等方法制备的电极涂层虽然质量高,但也带来了较高的制备成本和工艺复杂度。湿法化学的技术为电极涂层的制备带来了低成本和降低工艺复杂度的可能。
为了解决现有电极涂层制备成本高和效率低等技术问题,本发明借鉴热分解镀膜的思路来设计一种金属与碳基材料电极表面碳纳米管涂层技术,将碳纳米管分散液与涂层骨架前体均匀混合形成涂层前体,将涂层前体均匀涂覆在目标电极表面,干燥处理后在高温下进行热分解反应,最终形成电极表面的碳纳米管涂层。所述碳纳米管涂层包含碳纳米管和金属骨架并在电极表面构成,碳纳米管涂层前体包括金属盐溶液、表面功能化的碳纳米管以及有机溶剂,利用热分解反应生成金属与碳基材料电极表面碳纳米管涂层。
其制备方法包括如下步骤:S1:提供纳表面功能化的碳纳米管、金属盐溶液、有机溶剂、聚乙烯醇、去离子水和目标电极。其中所述金属盐溶液包括钛酸四丁酯、氯铂酸、异丙醇铝和醋酸锌等金属盐的任一种或其组合,所述碳纳米管为等离子体处理后的功能化碳纳米管,所述有机溶剂为乙醇、异丙醇、正丁醇和丁原醇等有机醇的任一种或其组合,所述目标电极为金属与碳基材料电极;S2:将所述碳纳米管均匀分散在有机溶剂中,并进行超声处理使溶液中的碳纳米管进一步分散。其中碳纳米管分散液中的碳纳米管的质量分数为20%~45%;S3:将所述金属盐溶液和去离子水混合,并添加一定比例的聚乙烯醇,在室温下磁力搅拌,形成涂层骨架前体。其中,所述涂层骨架前体中聚乙烯醇的添加质量分数为5%~20%,磁力搅拌的时间为2~5 h;S4:将所述碳纳米管分散液与所述涂层骨架前体在室温搅拌下均匀混合,得到涂层前体。其中所述的涂层前体中碳纳米管分散液和涂层骨架前体的质量比为(1~3):1。S5:将所述涂层前体涂覆在目标电极表面,放在烘箱中进行干燥处理和管式炉中进行热分解反应,得到所述电极表面碳纳米管涂层。其中所述干燥处理温度的为100 ℃,处理时间为1~3 h。热分解反应的温度为300~500℃,反应时间为3~5 h。
以此制备电极表面的碳纳米管涂层,比表面积大,充分发挥了碳纳米管的吸附性能和催化作用。但是,在溶液干燥过程中,碳纳米管存在团聚状况,使得碳纳米管出色的催化性能尚未得到最大化。因此,对功能化的碳纳米管的分散工艺显得尤为重要,为了进一步提高功能化的碳纳米管在溶液中的分散情况,申请人通过共价修饰碳纳米管,但是发现共价修饰后对碳纳米管的原始结构破坏较大,严重影响了碳纳米管的吸附性能和催化作用,而且其制备过程繁琐。因此需要选择一种合适的、非共价作用的分散剂,即提高碳纳米管的分散性,同时对碳纳米管的性能影响较小。
在进一步实施过程中,申请人利用碳纳米管的吸附能力吸附分散剂,以进行分散剂功能化碳纳米管,其制备方法包括如下步骤:步骤一、纯化,将碳纳米管与硝酸溶液混合,在80~100℃的温度下搅拌回流24~48h,去除上层清液和悬浮固形物,然后通过聚碳酸酯薄膜过滤,得到黑色残余固体,用去离子水清洗至中性,并干燥待用;步骤二、氧化,将上述纯化后的碳纳米管分散于强酸溶液中,在40~50℃的温度下搅拌氧化2~4h,然后静置分层,去除上层清液,然后通过聚碳酸酯薄膜过滤,用去离子水清洗至中性,并干燥、研磨待用;步骤三、功能化,将氧化碳纳米管分散于焦棓酚红溶液中,超声波分散3~5h,离心去除未分散的碳纳米管,然后通过聚碳酸酯薄膜过滤,用去离子水清洗至中性,并干燥待用。同时通过红外谱图分析,发现分散剂功能化碳纳米管对应的官能团与分散剂的吸收峰相同,没有发生波峰的移动,因此可以证明分散剂与功能化碳纳米管的之间通过物理吸附,没有发生化学反应。
通过本发明中分散剂功能化碳纳米管、热分解制备的碳纳米管涂层,虽然牺牲了碳纳米管的吸附能力,但是大大提高了碳纳米管比表面积,提高了碳纳米管的催化效率。
下面结合实施例,对本发明作进一步说明,所述的实施例的示例旨在解释本发明,而不能理解为对本发明的限制。
实施例1
将2.0 g碳纳米管均匀分散在10 g的无水乙醇中,超声处理30min;将5.35 g钛酸四丁酯、12.25 g异丙醇和0.45 g去离子水混合均匀,缓慢加入2.23 g聚乙烯醇,室温搅拌2h得到涂层骨架前体;将分散好的碳纳米管分散液和涂层骨架前体以质量比1:1的比例均匀混合,室温搅拌1 h左右,得到碳纳米管涂层前体;将所述前体溶液涂覆在目标电极表面,在100 ℃的烘箱中干燥处理1 h左右取出,放入430℃的管式炉里发生热分解反应3 h左右得到所述电极表面的碳纳米管涂层。
实施例2
将3.0 g碳纳米管均匀分散在10 g的无水乙醇中,超声处理30min;将8.14g氯铂酸、12.25 g异丙醇和0.45 g去离子水混合均匀,缓慢加入4.51 g聚乙烯醇,室温搅拌4 h得到涂层骨架前体;将分散好的碳纳米管分散液和涂层骨架前体以质量比3:1的比例均匀混合,室温搅拌1 h左右,得到碳纳米管涂层前体;将所述前体溶液涂覆在目标电极表面,在100 ℃的烘箱中干燥处理2h左右取出,放入500℃的管式炉里发生热分解反应3 h左右得到所述电极表面的碳纳米管涂层。
实施例3
将4.5g碳纳米管均匀分散在10 g的无水乙醇中,超声处理30min;将2.88g醋酸锌、12.25 g异丙醇和0.45 g去离子水混合均匀,缓慢加入3.53 g聚乙烯醇,室温搅拌5 h得到涂层骨架前体;将分散好的碳纳米管分散液和涂层骨架前体以质量比2:1的比例均匀混合,室温搅拌1 h左右,得到碳纳米管涂层前体;将所述前体溶液涂覆在目标电极表面,在100℃的烘箱中干燥处理3h左右取出,放入320℃的管式炉里发生热分解反应3 h左右得到所述电极表面的碳纳米管涂层。
实施例4
将5.0g市售碳纳米管与2L浓度为200g/L的硝酸溶液混合,在85℃的温度下搅拌回流36h,冷却静置2h,然后去除上层清液和悬浮固形物,并通过0.45um的聚碳酸酯薄膜过滤,得到黑色残余固体,用去离子水清洗至中性,并干燥待用;将上述纯化后的碳纳米管分散于浓硝酸中,在40℃的温度下超声波搅拌氧化3h,然后静置分层,去除上层清液,并通过0.45um的聚碳酸酯薄膜过滤,用去离子水清洗至中性,并干燥、研磨待用;将氧化碳纳米管分散于500mL浓度为2.0g/L焦棓酚红溶液中,超声波分散4h,离心去除未分散的碳纳米管,并通过0.45um的聚碳酸酯薄膜过滤,用去离子水清洗至中性,并干燥待用。
将2.56 g分散剂功能化的碳纳米管均匀分散在10 g的无水乙醇中,超声处理30min;将5.35 g钛酸四丁酯、12.25 g异丙醇和0.45 g去离子水混合均匀,缓慢加入2.23 g聚乙烯醇,室温搅拌2 h得到涂层骨架前体;将分散好的碳纳米管分散液和涂层骨架前体以质量比1:1的比例均匀混合,室温搅拌1 h左右,得到碳纳米管涂层前体;将所述前体溶液涂覆在目标电极表面,在100 ℃的烘箱中干燥处理1 h左右取出,放入430℃的管式炉里发生热分解反应3 h左右得到所述电极表面的碳纳米管涂层。
总之,热分解反应的制备电极表面的碳纳米管涂层,比表面积大,充分发挥了碳纳米管的吸附性能和催化作用。相较于传统行业的电极涂层技术,本发明的成本低,适合工业化生产。另外,通过本发明中分散剂功能化碳纳米管、热分解制备的碳纳米管涂层,虽然牺牲了碳纳米管的吸附能力,但是大大提高了碳纳米管比表面积,提高了碳纳米管的催化效率。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (7)

1.一种金属与碳基材料电极表面碳纳米管涂层的制备方法,其特征在于,所述碳纳米管涂层包含碳纳米管和金属骨架并在电极表面构成,碳纳米管涂层前体包括金属盐溶液、表面功能化的碳纳米管以及有机溶剂,利用热分解反应生成金属与碳基材料电极表面碳纳米管涂层;
所述制备方法包括如下步骤:
S1、提供表面功能化的碳纳米管、金属盐溶液、有机溶剂、聚乙烯醇、去离子水和目标电极;所述表面功能化的碳纳米管为等离子体处理后的功能化碳纳米管;所述金属盐溶液为钛酸四丁酯、氯铂酸、异丙醇铝和醋酸锌中任一种或其组合;
S2、将所述碳纳米管均匀分散在有机溶剂中,并进行超声处理使溶液中的碳纳米管进一步分散;
S3、将所述金属盐溶液和去离子水混合,并添加一定比例的聚乙烯醇,在室温下磁力搅拌,形成涂层骨架前体;
S4、将碳纳米管分散液与所述涂层骨架前体在室温搅拌下均匀混合,得到涂层前体;
S5、将所述涂层前体涂覆在目标电极表面,放在烘箱中进行干燥处理和管式炉中进行热分解反应,得到所述电极表面碳纳米管涂层;干燥处理温度为100 ℃,热分解反应的温度为300~500 ℃,反应时间为3~5 h。
2.根据权利要求1所述的金属与碳基材料电极表面碳纳米管涂层的制备方法,其特征在于,所述有机溶剂为乙醇、异丙醇、正丁醇和丁原醇的任一种或其组合。
3.根据权利要求1所述的金属与碳基材料电极表面碳纳米管涂层的制备方法,其特征在于,所述S2中所制备的碳纳米管分散液中,碳纳米管在分散液中的质量分数为20%~45%。
4.根据权利要求1所述的金属与碳基材料电极表面碳纳米管涂层的制备方法,其特征在于,所述涂层骨架前体中聚乙烯醇的添加质量分数为5%~20%。
5.根据权利要求1所述的金属与碳基材料电极表面碳纳米管涂层的制备方法,其特征在于,所述S4的涂层前体中,碳纳米管分散液和涂层骨架前体的质量比为(1~3):1。
6.根据权利要求1所述的金属与碳基材料电极表面碳纳米管涂层的制备方法,其特征在于,功能化碳纳米管为分散剂改性的碳纳米管,其制备方法包括如下步骤:
步骤一、纯化
将碳纳米管与硝酸溶液混合,在80~100℃的温度下搅拌回流24~48h,去除上层清液和悬浮固形物,然后通过聚碳酸酯薄膜过滤,得到黑色残余固体,用去离子水清洗至中性,并干燥待用;
步骤二、氧化
将上述纯化后的碳纳米管分散于强酸溶液中,在40~50℃的温度下搅拌氧化2~4h,然后静置分层,去除上层清液,然后通过聚碳酸酯薄膜过滤,用去离子水清洗至中性,并干燥、研磨待用;
步骤三、功能化
将氧化碳纳米管分散于焦棓酚红溶液中,超声波分散3~5h,离心去除未分散的碳纳米管,然后通过聚碳酸酯薄膜过滤,用去离子水清洗至中性,并干燥待用。
7.一种基于权利要求1至6任一项所述的金属与碳基材料电极表面碳纳米管涂层的制备方法得到的碳纳米管涂层。
CN202010387179.6A 2020-05-09 2020-05-09 一种金属与碳基材料电极表面碳纳米管涂层及其制备方法 Active CN111545437B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010387179.6A CN111545437B (zh) 2020-05-09 2020-05-09 一种金属与碳基材料电极表面碳纳米管涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010387179.6A CN111545437B (zh) 2020-05-09 2020-05-09 一种金属与碳基材料电极表面碳纳米管涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN111545437A CN111545437A (zh) 2020-08-18
CN111545437B true CN111545437B (zh) 2022-08-05

Family

ID=71999550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010387179.6A Active CN111545437B (zh) 2020-05-09 2020-05-09 一种金属与碳基材料电极表面碳纳米管涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN111545437B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200585A (zh) * 2021-05-24 2021-08-03 南京微米电子产业研究院有限公司 一种污染水体高效处理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774538A (zh) * 2010-01-04 2010-07-14 中国科学院过程工程研究所 一种碳纳米管与金属纳米粒子复合材料的制备方法
KR101250587B1 (ko) * 2010-04-20 2013-04-03 연세대학교 산학협력단 전이금속 산화물/탄소나노튜브 복합체 제조 방법 및 그 복합체
CN103151495B (zh) * 2013-03-20 2015-03-25 河南师范大学 一种锂离子电池复合负极材料的制备方法
CN106486661A (zh) * 2015-09-01 2017-03-08 南京中储新能源有限公司 基于金属氧化物和碳纳米管的复合正极、制备方法和铝离子电池

Also Published As

Publication number Publication date
CN111545437A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
Hu et al. Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes
Gan et al. Electrochemical sensors based on graphene materials
Wen et al. N-doped reduced graphene oxide/MnO2 nanocomposite for electrochemical detection of Hg2+ by square wave stripping voltammetry
Bordbar et al. Preparation of MWCNT/TiO2–Co nanocomposite electrode by electrophoretic deposition and electrochemical study of hydrogen storage
CN106496554B (zh) 一种石墨烯/Fe3O4/聚苯胺三元吸波复合材料的制备方法
CN107252696B (zh) 一种剑麻碳纤维光催化剂的制备方法
CN107163686B (zh) 一种石墨烯复合导电油墨的制备方法及其应用
CN104528707A (zh) 一种高导电率石墨烯膜的制备方法
TW201527209A (zh) 單壁碳納米管均勻分散的方法
KR101888743B1 (ko) 다공성 그래핀 및 탄소질을 포함하는 복합체
CN111545437B (zh) 一种金属与碳基材料电极表面碳纳米管涂层及其制备方法
CN107497177A (zh) 一种石墨烯改性的活性炭空气滤材的制备方法
CN108299652B (zh) 一种具有高手性选择性的石墨烯纳米材料及其制备与应用
CN107402247A (zh) 一种电化学传感器用纳米石墨烯/壳聚糖复合膜修饰电极的制备方法
CN114453578A (zh) 一种改性铜粉及其改性方法和导电浆料
Xiong et al. Grafting TiO2 nanoparticles onto carbon fiber via “thiol-ene” click chemistry and its photodegradation performance for methyl orange
CN108314024B (zh) 一种石墨烯透明导电薄膜的等离子体制备方法
CN109369974A (zh) 一种还原氧化石墨烯-二茂铁-壳聚糖复合材料的制备方法
CN103145116B (zh) 制备选择性还原氧化石墨烯及电存储器的方法
CN100400714C (zh) 处理有机废水的碳纳米管电催化电极的制造方法
CN107601487A (zh) 一种改性石墨烯及其制备方法
CN111686810A (zh) 一种层层自组装GQDs/3D-G/PANI复合薄膜的制备方法
Kurys et al. Electrochemical synthesis of multilayered graphene and its use in Co–N–C electrocatalysts of oxygen reduction and hydrogen evolution
CN110801826A (zh) 一种光电催化石墨毡材料及其制备方法和应用
CN108314022B (zh) 一种离子液体直接剥离制备石墨烯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221011

Address after: 201700 Room A3, Floor 1-3, No. 217-225, Hongcao South Road, Xuhui District, Shanghai

Patentee after: SHANGHAI JINDUO YUCHEN WATER ENVIRONMENT ENGINEERING Co.,Ltd.

Address before: Room 448, 4th floor, building 9, xingzhihui business garden, 19 Xinghuo Road, Jiangbei new district, Nanjing City, Jiangsu Province, 210043

Patentee before: Jiangsu Yunchao Environmental Protection Technology Co.,Ltd.

Patentee before: SHANGHAI JINDUO YUCHEN WATER ENVIRONMENT ENGINEERING Co.,Ltd.

TR01 Transfer of patent right