CN111545200A - 一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法 - Google Patents

一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法 Download PDF

Info

Publication number
CN111545200A
CN111545200A CN202010438200.0A CN202010438200A CN111545200A CN 111545200 A CN111545200 A CN 111545200A CN 202010438200 A CN202010438200 A CN 202010438200A CN 111545200 A CN111545200 A CN 111545200A
Authority
CN
China
Prior art keywords
tio
antibacterial material
nano composite
composite antibacterial
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010438200.0A
Other languages
English (en)
Inventor
张舒婷
万成
吕奎霖
吕玉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Pharmaceutical University
Original Assignee
Shenyang Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Pharmaceutical University filed Critical Shenyang Pharmaceutical University
Priority to CN202010438200.0A priority Critical patent/CN111545200A/zh
Publication of CN111545200A publication Critical patent/CN111545200A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了一种Ce‑Ag‑TiO2纳米复合抗菌材料及其制备方法,所述纳米复合抗菌材料以TiO2为无机载体材料,掺杂有无机抗菌材料Ag和稀土元素Ce,其中:Ce的掺杂量为TiO2质量的0.5~5%,Ag的掺杂量为TiO2质量的0.5~2%。本发明采用将银纳米材料与具有抗菌性能的无机载体材料TiO2和稀土Ce离子结合起来的方法,一方面改善了银纳米材料的缺陷,一方面降低了抗菌材料的成本。本发明制备的纳米复合抗菌材料具有较好的抗菌性,适用于陶瓷、纺织品、涂料、生物医疗、水净化、塑料、农业、交通、环保、建筑、卫生等领域。

Description

一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法
技术领域
本发明涉及一种纳米复合抗菌材料及其制备方法,具体涉及一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法。
背景技术
稀土元素因其特殊的电子层结构使其具有优异的发光性能,稀土配合物是稀土功能材料研究以及配合物研究中最重要的且最具有现实研究意义的领域之一。由于各种配体的加入,使稀土配合物结构繁多,其在配位场的修饰下展现出了其他材料无法比拟的光、点、磁的优越性能,被广泛应用于新兴领域,如抗菌材料、电磁材料、荧光探针、环境材料、纳米材料、超导材料和分子工程等。
二氧化钛(TiO2)是N型半导体材料,具有光致杀菌作用。尤其在紫外线(UV)存在下特性更加突出。在紫外线照射下,TiO2产生活性氧,例如超氧化物、氧自由基和氢氧自由基,它们会破坏细菌细胞壁和阻碍它们的呼吸系统,导致细菌死亡。但因TiO2带隙较宽不能利用大部分太阳光,所以其催化活性不够高,以至于抗菌效果产生了一定的局限。而单一的银纳米材料存在不稳定、易团聚、成本高等缺陷。
发明内容
本发明针对TiO2和单一银纳米材料自身存在的缺陷,提供了一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法,通过双掺杂的方式对TiO2进行改性,使其抗菌能力得到提高。
本发明的目的是通过以下技术方案实现的:
一种Ce-Ag-TiO2纳米复合抗菌材料,以TiO2为无机载体材料,掺杂有无机抗菌材料Ag和稀土元素Ce,其中:Ce的掺杂量为TiO2质量的0.5~5%,Ag的掺杂量为TiO2质量的0.5~2%。
一种Ce-Ag-TiO2纳米复合抗菌材料的制备方法,包括如下步骤:
步骤1:将20~40mL钛酸四丁酯和20~40mL无水乙醇混合后剧烈的搅拌,然后滴加100~150mL无水乙醇、20~40mL硝酸铈溶液、20~40mL硝酸银、4~8mL浓硝酸,混合液开始水解,持续搅拌0.5~1.5h,有Ce-Ag-TiO2溶胶析出;
步骤2:取溶胶放入反应釜中,在温度为160~180℃的条件下进行水热反应5~8h;
步骤3:反应结束后,取出反应釜,倒上清液,离心分离,用去离子水洗涤至滤液为中性,再用无水乙醇洗涤2~4次;
步骤4:产物放在烘箱中干燥,控制温度为60~80℃,得前驱体产物;
步骤5:将前驱体产物放在400~500℃马弗炉内煅烧3~5h,得到掺杂Ag和Ce离子的二氧化钛纳米颗粒。
本发明采用溶胶-水热法制备纳米二氧化钛抗菌剂,该方法具有操作简便、产物纯净度高等优点,其制备原理如下:
溶解在溶剂中的前体化合物,它发生的溶剂和溶质的醇解和水解反应是通过溶胶颗粒的堆积形成,干燥凝胶,通过加热处理,得到了样品晶体。其中,以钛酸四丁酯为原料制备二氧化钛,无水乙醇为溶剂,浓硝酸作为催化剂和进行第二次蒸馏的水参与反应。
相比于现有技术,本发明具有如下优点:
1、本发明采用将银纳米材料与具有抗菌性能的无机载体材料TiO2和稀土Ce离子结合起来的方法,一方面改善了银纳米材料的缺陷,一方面降低了抗菌材料的成本。
2、本发明采用稀土化合物与银纳米材料复合的方法制备出新型抗菌材料,在抗菌材料的制备过程中加入稀土元素Ce,将大大提高材料的杀菌率。
3、本发明制备的纳米复合抗菌材料具有较好的抗菌性,适用于陶瓷、纺织品、涂料、生物医疗、水净化、塑料、农业、交通、环保、建筑、卫生等领域。
具体实施方式
下面对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
一种Ce-Ag-TiO2纳米复合抗菌材料的制备方法,所述方法包括如下步骤:
步骤1:将30mL钛酸四丁酯和30mL无水乙醇混合后剧烈的搅拌,然后慢慢的滴加120mL无水乙醇、30mL硝酸铈溶液、30mL硝酸银、6mL浓硝酸,混合液开始水解,持续搅拌1h,有Ce-Ag-TiO2溶胶析出。
步骤2:取40mL溶胶放入反应釜中进行水热反应,控制水热温度为170℃,反应时间6h。
步骤3:反应结束后,取出反应釜,倒上清液,离心分离,用去离子水洗涤至滤液为中性,再用无水乙醇洗涤3次。
步骤4:产物放在烘箱中干燥,控制温度为70℃,得前驱体产物。
步骤5:将前驱体产物放在450℃马弗炉内煅烧4h,得到掺杂Ag和Ce离子的二氧化钛纳米颗粒。
抑菌原理:
本发明制备的双元素掺杂的Ce-Ag-TiO2抗菌剂融合了光催化材料和银的抗菌机理。
(1)接触反应:细菌与Ag+直接作用,Ag+通过结合细胞膜蛋白,破坏细胞的成分,使细胞质外漏,多余的Ag+进入细胞内部,与细胞器反应,使其丧失活性。
(2)催化反应:在光的作用下,Ag+本身能起到催化活性中心的作用,从环境中吸收能量,激活空气中的氧和水,生成羟基自由基和活性氧离子,它们迅速摧毁细菌增殖,导致细胞死亡,从而达到抗菌作用。从上面的银离子抗菌机理可知,银离子是通过细菌的直接接触发挥作用,所以具有耐用、高效、抗广谱的优点。
(3)银为灭菌活性金属,纳米二氧化钛掺杂银的颗粒,很大的比表面积及非常高的表面活性增大了抗菌剂和细菌的接触的面积,具有抗菌性能更长久、效果更明显、更受高温、抗菌谱广等优点,可以相应的减少抗菌剂的使用量。
(4)稀土铈作为镧系金属中自然丰度最高的一种,是一种活泼的灰色金属,主要储于独居石及氟碳铈矿里,也储于铀、钍、钚的裂变产物中,常用为合金增添剂。Ce离子的加入大幅地增加了样品协同作用的抗菌特性。首先,由于Ce的加入,改性纳米二氧化钛的量子尺寸效应,并有更多的羟基自由基,光催化,从而赋予更高的光催化活性;第二,银离子的缓释协同杀菌作用,达到较好的抗菌效果。
抗菌试验:
用无菌棉签浸在细菌培养液,均匀的表面滴在营养琼脂的3倍。盖上盖子,室温干燥放置3 min。在培养基的表面上打两个板的小距边缘是不小于15毫米的直径为5毫米的孔,两个孔之间的间隔不少于24毫米,在小孔内分别注入不同比例的抗菌剂0.2 ml,然后置于37℃温箱孵育24 h。抑菌圈宽度公式:W=(D-T)/2,W是抑菌圈宽度,D是抑菌区的直径,T是孔的直径。
表1 热处理550℃后的双元素掺杂纳米TiO2紫外光照条件下的抗菌性能
Figure DEST_PATH_IMAGE001
表2 热处理550℃后的双元素掺杂纳米TiO2无光照条件下的抗菌性能
Figure 295629DEST_PATH_IMAGE002
对比表1和表2可知,在紫外光照射条件下,Ce-Ag-TiO2型抗菌性能明显高于Ag-TiO2型,随着越来越多的Ce离子的含量,抑菌圈直径显著增加。

Claims (8)

1.一种Ce-Ag-TiO2纳米复合抗菌材料,其特征在于所述纳米复合抗菌材料以TiO2为无机载体材料,掺杂有无机抗菌材料Ag和稀土元素Ce,其中:Ce的掺杂量为TiO2质量的0.5~5%,Ag的掺杂量为TiO2质量的0.5~2%。
2.根据权利要求1所述的Ce-Ag-TiO2纳米复合抗菌材料,其特征在于所述Ag的掺杂量为TiO2质量的2%。
3.根据权利要求1所述的Ce-Ag-TiO2纳米复合抗菌材料,其特征在于所述Ce的掺杂量为TiO2质量的0.5%、2%或5%。
4.一种权利要求1-3任一项所述Ce-Ag-TiO2纳米复合抗菌材料的制备方法,其特征在于所述方法包括如下步骤:
步骤1:将20~40mL钛酸四丁酯和20~40mL无水乙醇混合后剧烈的搅拌,然后滴加100~150mL无水乙醇、20~40mL硝酸铈溶液、20~40mL硝酸银、4~8mL浓硝酸,混合液开始水解,持续搅拌0.5~1.5h,有Ce-Ag-TiO2溶胶析出;
步骤2:取溶胶放入反应釜中进行水热反应;
步骤3:反应结束后,取出反应釜,倒上清液,离心分离,用去离子水洗涤至滤液为中性,再用无水乙醇洗涤;
步骤4:产物放在烘箱中干燥,得前驱体产物;
步骤5:将前驱体产物放在马弗炉内煅烧,得到掺杂Ag和Ce离子的二氧化钛纳米颗粒。
5.根据权利要求4所述的Ce-Ag-TiO2纳米复合抗菌材料的制备方法,其特征在于所述水热反应温度为160~180℃,时间为5~8h。
6.根据权利要求4所述的Ce-Ag-TiO2纳米复合抗菌材料的制备方法,其特征在于所述洗涤次数为2~4次。
7.根据权利要求4所述的Ce-Ag-TiO2纳米复合抗菌材料的制备方法,其特征在于所述干燥温度为60~80℃。
8.根据权利要求4所述的Ce-Ag-TiO2纳米复合抗菌材料的制备方法,其特征在于所述煅烧温度为400~500℃,时间为3~5h。
CN202010438200.0A 2020-05-21 2020-05-21 一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法 Pending CN111545200A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010438200.0A CN111545200A (zh) 2020-05-21 2020-05-21 一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010438200.0A CN111545200A (zh) 2020-05-21 2020-05-21 一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111545200A true CN111545200A (zh) 2020-08-18

Family

ID=71998971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010438200.0A Pending CN111545200A (zh) 2020-05-21 2020-05-21 一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111545200A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149678A (zh) * 2021-02-21 2021-07-23 罗焕焕 一种高性能抗菌日用陶瓷及其制备方法
CN116425418A (zh) * 2023-06-05 2023-07-14 佛山市陶莹新型材料有限公司 一种抗菌卫生陶瓷

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631163A (zh) * 2004-11-15 2005-06-29 攀钢集团攀枝花钢铁研究院 一种锐钛型纳米TiO2复合无机抗菌剂及其制备方法
CN1772375A (zh) * 2005-10-27 2006-05-17 南京大学 掺杂纳米氧化锌及其制备方法和光催化降解有机物和抗菌的应用
CN102909009A (zh) * 2012-11-16 2013-02-06 厦门大学 一种结晶银负载TiO2纳米颗粒的制备方法
CN104437457A (zh) * 2014-11-05 2015-03-25 上海纳米技术及应用国家工程研究中心有限公司 全光谱太阳光催化剂的制备方法
CN107803193A (zh) * 2017-09-19 2018-03-16 浙江工业大学 氧化铝负载改性纳米二氧化钛颗粒的复合材料及其制备方法和应用
CN108993488A (zh) * 2018-07-08 2018-12-14 启东祥瑞建设有限公司 一种Ag/TiO2催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631163A (zh) * 2004-11-15 2005-06-29 攀钢集团攀枝花钢铁研究院 一种锐钛型纳米TiO2复合无机抗菌剂及其制备方法
CN1772375A (zh) * 2005-10-27 2006-05-17 南京大学 掺杂纳米氧化锌及其制备方法和光催化降解有机物和抗菌的应用
CN102909009A (zh) * 2012-11-16 2013-02-06 厦门大学 一种结晶银负载TiO2纳米颗粒的制备方法
CN104437457A (zh) * 2014-11-05 2015-03-25 上海纳米技术及应用国家工程研究中心有限公司 全光谱太阳光催化剂的制备方法
CN107803193A (zh) * 2017-09-19 2018-03-16 浙江工业大学 氧化铝负载改性纳米二氧化钛颗粒的复合材料及其制备方法和应用
CN108993488A (zh) * 2018-07-08 2018-12-14 启东祥瑞建设有限公司 一种Ag/TiO2催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴静等: "改性掺银二氧化钛对甲基橙的光催化降解研究", 《应用化工》 *
葛金龙等: "银掺杂TiO_2光催化剂的制备及光催化性能研究", 《化工新型材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149678A (zh) * 2021-02-21 2021-07-23 罗焕焕 一种高性能抗菌日用陶瓷及其制备方法
CN116425418A (zh) * 2023-06-05 2023-07-14 佛山市陶莹新型材料有限公司 一种抗菌卫生陶瓷

Similar Documents

Publication Publication Date Title
Li et al. Er-doped g-C3N4 for photodegradation of tetracycline and tylosin: high photocatalytic activity and low leaching toxicity
Al-Zaqri et al. Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: characterization, photocatalytic degradation and antibacterial activities
CN100574615C (zh) 一种沸石基复合抗菌材料及其制备方法
CN108822838B (zh) 铜掺杂碳量子点的制备方法及应用
CN111545200A (zh) 一种Ce-Ag-TiO2纳米复合抗菌材料及其制备方法
CN110051837B (zh) 一种CuO/ZnO/Au纳米粒子及其制备方法和应用
CN110063340B (zh) 一种掺银二氧化钛纳米抗菌剂及其制备方法
CN108686658B (zh) 一种C-QDs-Fe2O3/TiO2复合光催化剂及其制备方法
CN108636395A (zh) 一种弱可见光响应的复合光催化剂及其制备和应用
CN114848818B (zh) 黄连素衍生物-金属络合物纳米材料及其制备方法和应用
CN106824233B (zh) 光催化抗菌或降解有机物的方法
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
Li et al. Embedding defective tin oxide quantum dots into flake Bi4O5I2 for antibacterial and degradation by LED light irradiation
Amir et al. In vitro antibacterial response of ZnO‐MgO nanocomposites at various compositions
Bachvarova-Nedelcheva et al. Synthesis, characterization and properties of ZnO/TiO2 powders obtained by combustion gel method
CN109794289B (zh) 一种手碟型草酸氧钛盐光催化剂及其制备方法
CN101869854A (zh) 一种可吸收太阳能的半导体复合光催化剂的制备方法
Yasin et al. Alcohothermal synthesis and characterization of chitosan supported nickel cobaltite composite for enhanced photocatalytic and antibacterial activity
CN114534758B (zh) 铁酸铋/石墨相氮化碳复合材料及其制备方法与应用
CN107774284B (zh) 水性纳米抗菌光催化钛氧化物复合溶胶的制备方法
CN110586146A (zh) 一种黑色二氧化钛/磷酸银复合光催化剂及其制备方法和应用
CN1220185A (zh) 二氧化钛光催化剂及其制法
Somu et al. Multifunctional biogenic Al-doped zinc oxide nanostructures synthesized using bioreductant chaetomorpha linum extricate exhibit excellent photocatalytic and bactericidal ability in industrial effluent treatment
CN1239254C (zh) 一种用于制造光催化抗菌陶瓷的喷涂液
CN106944052A (zh) Cu2+1O/Cu2Cl(OH)3/TiO2三元复合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination