CN111519186B - 一种铁磁/石墨烯外延界面及其低温制备方法 - Google Patents

一种铁磁/石墨烯外延界面及其低温制备方法 Download PDF

Info

Publication number
CN111519186B
CN111519186B CN202010456078.XA CN202010456078A CN111519186B CN 111519186 B CN111519186 B CN 111519186B CN 202010456078 A CN202010456078 A CN 202010456078A CN 111519186 B CN111519186 B CN 111519186B
Authority
CN
China
Prior art keywords
ferromagnetic
graphene
film
single crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010456078.XA
Other languages
English (en)
Other versions
CN111519186A (zh
Inventor
潘孟春
邱伟成
胡佳飞
李裴森
彭俊平
吴瑞楠
胡悦国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202010456078.XA priority Critical patent/CN111519186B/zh
Publication of CN111519186A publication Critical patent/CN111519186A/zh
Application granted granted Critical
Publication of CN111519186B publication Critical patent/CN111519186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种铁磁/石墨烯外延界面的低温制备方法,包括以下步骤:S1、在绝缘基底上生长具有六角对称性晶格属性的铁磁薄膜,绝缘基底为与铁磁薄膜晶格对称性一致的基底;S2、对铁磁薄膜依次进行退火处理和表面还原处理,得到活性单晶薄膜;S3、将活性单晶薄膜置于等离子体化学气相沉积系统中,控制温度、等离子功率等生长模式,结合表面势能诱导在活性单晶薄膜上外延生长石墨烯,关闭等离子体和停止前驱体的通入,降温冷却,得到铁磁/石墨烯外延界面。本发明制备得到的铁磁/石墨烯外延界面的界面结合力强。

Description

一种铁磁/石墨烯外延界面及其低温制备方法
技术领域
本发明涉及自旋电子学、传感器技术、材料制备等领域,尤其涉及一种用于石墨烯自旋电子器件的铁磁/石墨烯外延界面及其低温制备方法。
背景技术
石墨烯(Graphene)是由碳原子sp2杂化形成的六角蜂窝状二维材料,具有高载流子迁移率、高热导率、高透光性、结构稳定等诸多优异物理化学性质,在材料学、光电子学、自旋电子学等领域具有广泛的应用价值。理论研究表明,镍、钴等铁磁材料/石墨烯外延界面具有完美自旋过滤效应,其构建的石墨烯磁隧道结磁阻变化率高达105%远大于传统MgO隧道结。高质量的铁磁/石墨烯外延界面制备是实现该效应的关键技术。目前,基于转移石墨烯制备的铁磁/石墨烯界面,晶体取向不一致,且界面原子无法形成强的耦合作用,难以获得理论预期的自旋过滤效应。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种界面结合力强的铁磁/石墨烯外延界面及其低温制备方法。
为解决上述技术问题,本发明采用以下技术方案:
一种铁磁/石墨烯外延界面的低温制备方法,包括以下步骤:
S1、在绝缘基底上生长具有六角对称晶格属性的铁磁薄膜,所述绝缘基底为与铁磁薄膜晶格对称性一致的基底;
S2、对铁磁薄膜依次进行退火处理和表面还原处理,得到活性单晶薄膜;
S3、将活性单晶薄膜置于等离子体化学气相沉积系统中,通入含有碳源的前驱体,在550~850℃、等离子功率为50~100W的条件下,借助活性单晶薄膜表面势能的诱导,在活性单晶薄膜上外延生长石墨烯,关闭等离子体和停止前驱体的通入,降温冷却,得到铁磁/石墨烯外延界面。
作为对上述技术方案的进一步改进:
所述步骤S3中,所述含有碳源的前驱体为甲烷与氢气的混合气体,所述甲烷和氢气的流速比为1∶1;外延生长石墨烯的压强为1~10Pa。
外延生长石墨烯的时间为15~60s。
所述步骤S1中,所述铁磁薄膜为镍薄膜或钴薄膜。
所述绝缘基底为Al2O3(0001)或YSZ(111)。
采用电子束蒸发法或磁控溅射法在绝缘基底上生长铁磁薄膜。
所述步骤S2中,所述退火处理的温度为800~1000℃。
所述步骤S2中,所述表面还原处理的气体为氢气或氢气和惰性气体的混合气体。
作为一个总的发明构思,本发明还提供一种铁磁/石墨烯外延界面,所述铁磁/石墨烯外延界面根据前述低温制备方法制备得到,所述铁磁/石墨烯外延界面上石墨烯的层数为1~10层。
与现有技术相比,本发明的优点在于:
1、本发明的铁磁/石墨烯外延界面的低温制备方法,铁磁薄膜具有六角对称性晶格属性与石墨烯晶格属性匹配性好,催化生成高取向的石墨烯,所述绝缘基底为与铁磁薄膜晶格对称性一致的基底,诱导铁磁薄膜晶格取向,利用等离子辅助裂解碳源,降低石墨烯生长温度,并通过调整温度、等离子功率等参数对石墨烯在铁磁薄膜上生长模式进行干预和调控,借助单晶铁磁薄膜表面势场直接诱导外延生长石墨烯,直接制备高质量铁磁/石墨烯外延界面,与以往通过转移石墨烯形成范德华力耦合的石墨烯-铁磁界面相比,本发明采用等离子体化学气相沉积法在活性单晶薄膜上直接生长石墨烯形成的界面作用力为共价键,界面结合力强、晶体取向一致,有效增强了铁磁/石墨烯界面自旋过滤效应,能够大幅提升相关石墨烯自旋电子器件的性能。
2、本发明的铁磁/石墨烯外延界面的低温制备方法,与常规CVD高温制备方法相比,生长温度低,能耗更少、速度更快、对铁磁薄膜衬底保护性更好,且无需转移石墨烯,可将外延铁磁/石墨烯界面直接应用于石墨烯自旋电子器件的制备。
附图说明
图1为本发明实施例1的PECVD系统的示意图。
图2为本发明实施例1从金属薄膜蒸镀、石墨烯PECVD生长到器件制备的全过程示意图。
图3为本发明实施例1中Al2O3(0001)的AFM结果。
图4为本发明实施例1中Ni(111)单晶薄膜的AFM结果。
图5为本发明实施例1中Ni(111)单晶薄膜的XRD结果。
图6为本发明实施例1、2、3制得的铁磁/石墨烯外延界面的AFM结果。
图7为本发明实施例1、4、5制得的铁磁/石墨烯外延界面的AFM结果。
图8为本发明实施例1制得的铁磁/石墨烯外延界面的石墨烯拉曼结果图。
图例说明:1、进气阀;2、石英管线圈;3、前驱气体等离子体;4、可滑动式加热炉;5、出气阀。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。除非特殊说明,本发明采用的仪器或材料为市售。
实施例1:
本实施例通过控制沉积气压、温度、甲烷氢气流量比等生长参数,调整石墨烯的成核密度、生长速率以及成键方式,从而干预和调控石墨烯在铁磁薄膜上的生长模式,使得碳原子间以sp2方式均匀成键,实现铁磁/石墨烯外延界面的低温制备。
如图1所示,本实施例等离子体化学气相沉积系统(PECVD系统)包括进气控制系统、射频等离子体产生系统、可滑动式加热炉4、真空泵、真空计以及真空阀。进气控制系统与石英管相连通用于向石英管内通入气体,包括分别连接于石英管两端的进气阀1和出气阀5,进气控制系统通过多路气体流量计控制进气的流速和比例,石英管内放置样品,石英管外缠绕有石英管线圈2,可滑动式加热炉4位于石英管外并相对于石英管可滑动,用于给样品加热以及实现快速降温功能,真空泵以及真空计则是维持和显示系统压强,通过调整真空阀可以实现压强大小的调节。
如图2所示,本实施例的一种铁磁/石墨烯外延界面的低温制备方法包括以下步骤:
1)绝缘基底的清洁。以Al2O3(0001)为绝缘基底(在其他实施例中,YSZ(111)为绝缘基底可取得相同或相似的技术效果),将绝缘基底先分别进行丙酮、异丙醇、去离子水超声清洗5~10min(本实施例为5min),然后在1200℃进行高温灼烧清洁,清除超声清洗无法去除的粘附性较强的污染物和羟基(OH)。
图3为Al2O3(001)高温灼烧后(不同放大倍数)的AFM表征结果,从图3可以看出,基底表面十分洁净,台阶明显,具有原子级平整度。本实施例采用的绝缘基底能够诱导铁磁薄膜的六角对称性晶格取向。
2)活性单晶薄膜的制备。通过电子束蒸发法(或磁控溅射法)在300~480℃(本实施例为480℃)温度下在绝缘基底上以0.05~0.5 nm/s(本实施例为0.2 nm/s)的沉积速率生成镍金属薄膜(即铁磁薄膜),然后利用超高真空腔在10-6 Torr极低压下,以20 ℃/min的速率升温到900℃,维持1小时,对镍金属薄膜行高温退火,形成取向一致的单晶Ni(111)薄膜。
在其他实施例中,退火温度为800~1000℃均可取得相同或相似的技术效果。
在其他实施例中,也可以利用PECVD系统中石英管式炉,在氢气和氩气混合气氛下,对镍金属薄膜进行800~1000℃高温退火,获得Ni(111)单晶薄膜(即单晶镍薄膜)。
在其他实施例中,钴金属薄膜作为铁磁薄膜也可取得相同或相似的技术效果。铁磁薄膜与石墨烯晶格匹配性好,催化生成高取向的石墨烯。
本实施例Ni(111)单晶薄膜的AFM结果(不同放大倍数)如图4所示,XRD结果如图5所示。从图4中可知,单晶薄膜表面洁净,呈现原子级台阶,没有任何畴界形成。同时,5中可知,θ~2θ扫描曲线具有唯一的Ni(111)峰,扫描曲线中衍射峰具有三重对称性,说明本实施例实现了高质量的Ni(111)单晶薄膜。
3)PECVD系统设备清洁。将单晶镍薄膜放置石英管中心位置,开启机械泵,打开真空阀,对石英管抽真空至0.1Pa;然后关闭真空阀,通Ar气直至充满石英管时,最后关闭Ar气阀,如此反复三次。
4)单晶镍薄膜表面还原处理。对石英管抽真空至极限压强0.1Pa,通入H2,并运行可滑动式加热炉4的加热程序,升温至石墨烯外延生长温度(本实施例为700℃),对单晶镍薄膜的氧化表面进行还原处理,处理时间35~45分钟(本实施例为35分钟)。
在其他实施例中,还可以适当开启氢等离子体对单晶镍薄膜的氧化表面进行还原处理。采用氢气和惰性气体的混合气体作为表面预处理的保护气氛可取得相同或相似的技术效果。
5)石墨烯外延生长过程。使用真空阀调节压强为1Pa,以甲烷和氢气的混合气体为前驱体,设置流量计气氛比例CH4/H2=1∶1,开启等离子体功率50W,在700℃温度下计时50s,借助活性单晶薄膜表面势场的诱导,在活性单晶薄膜上外延生长石墨烯。
在其他实施例中,等离子功率为50~100W,温度为550~850℃,均可取得相同或相似的技术效果,既能够有效保证碳裂解效应,又能避免对铁磁薄膜的损伤。
本实施例中,前驱体中甲烷和氢气为低流速比,提供的碳源量低。
6)降温过程。关闭等离子体,停止CH4和H2的流入,滑开可滑动式加热炉4对样品进行快速降温冷却(本实施例的快速降温冷却指的是没有其他降温辅助,划开可滑动式加热炉4后让其自然降温),得到铁磁/石墨烯外延界面。
本发明的铁磁/石墨烯外延界面在石墨烯自旋电子器件应用时,无需转移石墨烯,将外延铁磁/石墨烯界面按预设需求直接应用制备成石墨烯自旋电子器件。
实施例2:
本实施例与实施例1大致相同,不同之处在于:本实施例石墨烯外延生长温度为600℃。
实施例3:
本实施例与实施例1大致相同,不同之处在于:本实施例石墨烯外延生长温度为800℃。
实施例4:
本实施例与实施例1大致相同,不同之处在于:本实施例石墨烯外延生长压强为3Pa。
实施例5:
本实施例与实施例1大致相同,不同之处在于:本实施例石墨烯外延生长压强为10Pa。
对本发明制得的铁磁/石墨烯外延界面进行AFM表征测试,AFM结果图分别如图6和图7所示,其中图6a为实施例2,6b为实施例1,6c为实施例3,7a为实施例1,7b为实施例4,7c为实施例5。在具有活性单晶薄膜的绝缘衬底上,利用PECVD方法实现了较宽生长温度范围内的石墨烯的外延生长,由于所选择的活性单晶薄膜与石墨烯晶格匹配性好,所制备的样品AFM结果能明显体现出活性单晶薄膜的原子台阶形貌,具有表面平整、高晶格取向等优异特点。
拉曼结果表明石墨烯为1~3层,如图8所示。
综合以上结果可知,石墨烯外延生长压强在1~10Pa范围内,随着系统气压的增强,等离子体对前驱体裂解的空间均匀性会有所下降,所制备的样品随着气压的上升,表面粗糙度逐渐变大,质量降低。在石墨烯外延生长温度在600~800℃范围内,随着温度的上升,吸附在活性单晶薄膜表面的碳原子能量增加,迁移活性增强,有利于进一步提高石墨烯质量。
虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (8)

1.一种铁磁/石墨烯外延界面的低温制备方法,其特征在于:包括以下步骤:
S1、在绝缘基底上生长具有六角对称晶格属性的铁磁薄膜,所述绝缘基底为与铁磁薄膜晶格对称性一致的基底;
S2、对铁磁薄膜依次进行退火处理和表面还原处理,得到活性单晶薄膜;所述退火处理的温度为800~1000℃;
S3、将活性单晶薄膜置于等离子体化学气相沉积系统中,通入含有碳源的前驱体,在550~850℃、等离子功率为50~100W的条件下,借助活性单晶薄膜表面势能的诱导,在活性单晶薄膜上外延生长石墨烯,关闭等离子体和停止前驱体的通入,降温冷却,得到铁磁/石墨烯外延界面。
2.根据权利要求1所述的低温制备方法,其特征在于:所述步骤S3中,所述含有碳源的前驱体为甲烷与氢气的混合气体,所述甲烷和氢气的流速比为1∶1;外延生长石墨烯的压强为1~10Pa。
3.根据权利要求2所述的低温制备方法,其特征在于:外延生长石墨烯的时间为15~60s。
4.根据权利要求1至3中任一项所述的低温制备方法,其特征在于:所述步骤S1中,所述铁磁薄膜为镍薄膜或钴薄膜。
5.根据权利要求4所述的低温制备方法,其特征在于:所述绝缘基底为Al2O3(0001)或YSZ(111)。
6.根据权利要求5所述的低温制备方法,其特征在于,采用电子束蒸发法或磁控溅射法在绝缘基底上生长铁磁薄膜。
7.根据权利要求4所述的低温制备方法,其特征在于:所述步骤S2中,所述表面还原处理的气体为氢气或氢气和惰性气体的混合气体。
8.一种铁磁/石墨烯外延界面,其特征在于:所述铁磁/石墨烯外延界面根据权利要求1至7中任一项所述低温制备方法制备得到,所述铁磁/石墨烯外延界面上石墨烯的层数为1~10层。
CN202010456078.XA 2020-05-26 2020-05-26 一种铁磁/石墨烯外延界面及其低温制备方法 Active CN111519186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010456078.XA CN111519186B (zh) 2020-05-26 2020-05-26 一种铁磁/石墨烯外延界面及其低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010456078.XA CN111519186B (zh) 2020-05-26 2020-05-26 一种铁磁/石墨烯外延界面及其低温制备方法

Publications (2)

Publication Number Publication Date
CN111519186A CN111519186A (zh) 2020-08-11
CN111519186B true CN111519186B (zh) 2022-06-14

Family

ID=71908052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010456078.XA Active CN111519186B (zh) 2020-05-26 2020-05-26 一种铁磁/石墨烯外延界面及其低温制备方法

Country Status (1)

Country Link
CN (1) CN111519186B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203326B (zh) * 2021-12-13 2024-04-30 中国核动力研究设计院 石墨烯封装超薄镍-63辐射源薄膜及其制备方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025045A1 (ja) * 2009-08-31 2011-03-03 独立行政法人科学技術振興機構 グラフェン薄膜とその製造方法
CN106449968A (zh) * 2016-11-21 2017-02-22 北京大学 一种产生自旋极化的石墨烯器件及其制备方法
CN108447773A (zh) * 2018-03-26 2018-08-24 北京石墨烯研究院 石墨烯单晶薄膜及其制备方法
CN108767107A (zh) * 2018-06-01 2018-11-06 厦门大学 一种电场调控的二维自旋电子器件及其制备方法
CN109962157A (zh) * 2017-12-25 2019-07-02 中国人民解放军国防科技大学 一种自旋电子器件及其制备方法
CN111092150A (zh) * 2018-10-23 2020-05-01 中国科学院化学研究所 一种基于水溶层的复合磁性电极、其转移方法和在有机自旋阀中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932673B2 (en) * 2012-04-26 2015-01-13 Vikram Patil Methods of fabricating large-area graphene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025045A1 (ja) * 2009-08-31 2011-03-03 独立行政法人科学技術振興機構 グラフェン薄膜とその製造方法
CN106449968A (zh) * 2016-11-21 2017-02-22 北京大学 一种产生自旋极化的石墨烯器件及其制备方法
CN109962157A (zh) * 2017-12-25 2019-07-02 中国人民解放军国防科技大学 一种自旋电子器件及其制备方法
CN108447773A (zh) * 2018-03-26 2018-08-24 北京石墨烯研究院 石墨烯单晶薄膜及其制备方法
CN108767107A (zh) * 2018-06-01 2018-11-06 厦门大学 一种电场调控的二维自旋电子器件及其制备方法
CN111092150A (zh) * 2018-10-23 2020-05-01 中国科学院化学研究所 一种基于水溶层的复合磁性电极、其转移方法和在有机自旋阀中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire;Hiroki Ago et al.;《ACS NANO》;20101124;第4卷(第12期);第7407页右栏第3段,第7408页右栏第2段,第7409页第2段,第7412页左栏第2-3段,第7413页左栏最后一段和右栏最后一段以及图SI-1 *

Also Published As

Publication number Publication date
CN111519186A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
CN111206280B (zh) 一种高质量大尺寸单晶金刚石外延生长的方法
CN102849733B (zh) 双温区控制低温直接制备石墨烯的方法及双温区管式炉
CN105177705A (zh) 金刚石膜的制造方法
WO2013013419A1 (zh) 一种在绝缘基底上制备石墨烯纳米带的方法
CN108193276B (zh) 制备大面积单一取向六方氮化硼二维原子晶体的方法
CN112359421B (zh) 一种反向气流法制备层状铋氧硒半导体薄膜的方法
CN111088523B (zh) 一种大尺寸单晶金刚石异质外延生长的方法
JP2011233932A (ja) 炭化珪素半導体エピタキシャル基板の製造方法
CN108101028A (zh) 一种在6H/4H-SiC硅面上利用复合金属辅助生长石墨烯的方法
GB2592513A (en) Method for efficiently eliminating graphene wrinkles formed by chemical vapor deposition
CN108314019B (zh) 一种层数均匀的大面积高质量石墨烯薄膜的制备方法
WO2016149934A1 (zh) 石墨烯的生长方法
CN111519186B (zh) 一种铁磁/石墨烯外延界面及其低温制备方法
CN110629184B (zh) 介质衬底上直接生长二维六方氮化硼的方法
CN109852944A (zh) 基于微波等离子体化学气相沉积的石墨烯制备方法
CN111573658A (zh) 一种大面积直接生长的扭角双层石墨烯及其制备方法
CN112831766A (zh) 一种利用磁控溅射在硅衬底上制备金属锆薄膜的方法及应用
CN113584458B (zh) 一种利用微波等离子体化学气相沉积技术在钽铌酸钾晶体上制备金刚石薄膜的方法
CN111139526A (zh) 一种利用离子束溅射沉积获得单晶氮化硼薄膜的方法
CN107244666B (zh) 一种以六方氮化硼为点籽晶生长大晶畴石墨烯的方法
CN113322522B (zh) 一种外延大单畴大面积单层二硫化钨薄膜的制备方法
CN108183064B (zh) 碳化硅热解制备石墨烯的衬底可控台阶形貌预处理方法
CN111606322B (zh) 一种铁磁薄膜外延单层石墨烯及其制备方法
CN113981542B (zh) 一种调控腔体压强制备高质量单晶畴二维材料的方法
CN111074234A (zh) 一种基于推拉小车的方式生长二维材料的装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant