CN111606322B - 一种铁磁薄膜外延单层石墨烯及其制备方法 - Google Patents

一种铁磁薄膜外延单层石墨烯及其制备方法 Download PDF

Info

Publication number
CN111606322B
CN111606322B CN202010456103.4A CN202010456103A CN111606322B CN 111606322 B CN111606322 B CN 111606322B CN 202010456103 A CN202010456103 A CN 202010456103A CN 111606322 B CN111606322 B CN 111606322B
Authority
CN
China
Prior art keywords
thin film
ferromagnetic
graphene
film
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010456103.4A
Other languages
English (en)
Other versions
CN111606322A (zh
Inventor
潘孟春
邱伟成
胡佳飞
李裴森
彭俊平
胡悦国
张琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202010456103.4A priority Critical patent/CN111606322B/zh
Publication of CN111606322A publication Critical patent/CN111606322A/zh
Application granted granted Critical
Publication of CN111606322B publication Critical patent/CN111606322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene

Abstract

本发明公开了铁磁薄膜外延单层石墨烯的制备方法,通过高温退火使得铁磁薄膜单晶化,结合碳成核、扩散和析出过程调控,诱导石墨烯在单晶铁磁表面的自我终止生长,实现单层石墨烯的外延制备。本发明可解决高溶碳金属材料上生长单层石墨烯的困难,同时保证了制备的铁磁金属/石墨烯界面晶格外延特性,界面结构稳定,可大幅提高相关石墨烯电子器件的性能。

Description

一种铁磁薄膜外延单层石墨烯及其制备方法
技术领域
本发明涉及自旋电子学、薄膜材料制备技术等领域,具体涉及一种在单晶铁磁薄膜材料上利用化学气相沉积(CVD)法制备与衬底晶向一致的铁磁薄膜外延单层石墨烯及其制备方法。
背景技术
石墨烯是一种由单层碳原子组成的蜂窝状二维晶体,具有特别优异的电学、光学、热学、力学等性能,在微电子、光电子、新能源、传感、航天等领域具有广泛的应用前景。石墨烯功能器件往往涉及到石墨烯与不同金属材料的结合,在不同的金属衬底上生长石墨烯成为了其器件集成工艺的核心技术。特别的是石墨烯与铁磁材料相结合,可构成的Ni/石墨烯/Ni、Co/石墨烯/Co等隧道结器件,展现出优异磁电阻性能,如何实现在高溶碳铁磁金属薄膜上生长高质量石墨烯是器件制备的关键技术之一。目前,采用化学气相沉积(CVD)技术在低溶碳铜或铜合金等金属基底上可以生长高质量单层石墨烯。然而,对于高溶碳铁磁金属材料,在降温阶段会有大量碳从金属中析出,石墨烯层厚及均匀性往往难以把控,现有方法并不适用于高溶碳铁磁金属。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种铁磁薄膜外延单层石墨烯及其制备方法。
为解决上述技术问题,本发明采用以下技术方案:
一种铁磁薄膜外延单层石墨烯的制备方法,包括以下步骤:
S1、在绝缘基底上生长具有正六角晶格属性的铁磁薄膜,所述绝缘基底和铁磁薄膜晶格属性相匹配;
S2、将铁磁薄膜置于化学气相沉积系统中,通入氢气和惰性气体,升温至900~950℃,对铁磁薄膜进行退火处理,得到单晶薄膜;
S3、通入碳源气体,所述碳源气体、氢气和惰性气体的流量比为1∶10~50∶50,保温,使碳在单晶薄膜上外延成核;
S4、停止通入碳源气体和氢气,保温,使碳在单晶薄膜上扩散;
S5、以150~200℃/min的降温速率降温冷却,使石墨烯在单晶薄膜上析出,得到铁磁薄膜外延单层石墨烯。
作为对上述技术方案的进一步改进:
所述步骤S2中,所述退火处理的时间为1~2h;所述升温的速率为20~30℃/min。
所述步骤S3中,所述保温的时间为35~45min。
所述步骤S4中,所述保温时间为30~60min。
所述步骤S3中,所述碳源气体为甲烷。
所述步骤S1中,所述绝缘基底为Al2O3(0001)或YSZ(111)。
所述步骤S1中,所述铁磁薄膜为镍金属薄膜或钴金属薄膜。
所述步骤S1中,采用电子束蒸发法或磁控溅射法在绝缘基底上生长铁磁薄膜。
作为一个总的发明构思,本发明还提供一种铁磁薄膜外延单层石墨烯,根据前述的制备方法制备得到,所述铁磁薄膜上表面生长有单层石墨烯层。
与现有技术相比,本发明的优点在于:
1、本发明的铁磁薄膜外延单层石墨烯的制备方法,选取具有六角对称性晶格属性的铁磁薄膜,与石墨烯晶格匹配较好,利用石墨烯/铁磁薄膜晶格匹配界面的强耦合作用,阻止界面下碳的析出,通过铁磁薄膜单晶化对后续CVD法石墨烯的生长形成表面势能诱导以及催化作用,通过控制退火、成核、扩散的温度以及降温冷却时的降温速率,达到控制碳外延成核、扩散、析出过程,构建铁磁薄膜表层石墨烯的生长自我终止机制,诱导石墨烯在单晶薄膜表面的自我终止生长,控制碳的析出量,对石墨烯在铁磁薄膜上生长进行干预和调控,解决了高溶碳铁磁金属材料上生长单层石墨烯的困难。
2、本发明制备得到的铁磁薄膜外延单层石墨烯,保证了界面晶格外延特性,与单晶铁磁金属薄膜晶格匹配高,增强了石墨烯-铁磁金属界面的自旋过滤效应;铁磁/石墨烯之间界面具有强的原子轨道耦合作用,界面结构稳定,能够大幅提高石墨烯相关电子器件的性能,可直接用于后续石墨烯高性能电子器件的制备。
附图说明
图1为本发明实施例1中从镍金属薄膜退火单晶化到石墨烯生长的全过程示意图。
图2为本发明实施例1中退火后的单晶镍金属薄膜XRD表征。
图3为本发明实施例1中退火后的单晶镍金属薄膜AFM表征(不同放大倍数)。
图4为本发明实施例1中的铁磁薄膜外延单层石墨烯的AFM表征。
图5为本发明实施例1中的石墨烯转移前后的光学显微镜表征。
图6为本发明实施例1中的转移后石墨烯拉曼表征。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。除非特殊说明,本发明采用的仪器或材料为市售。
本发明实施例中,铁磁材料和绝缘基底分别选用Ni和α-Al2O3(0001)。
本发明镍金属薄膜退火单晶化到石墨烯生长的全过程示意图如图1所示,主要包括以下几部分:①升温;②镍金属薄膜退火单晶化;③成核生长;④高温下碳的扩散;⑤降温析出石墨烯等过程。本发明的制备方法,通过高温退火使得铁磁金属薄膜单晶化,结合碳成核、扩散和析出过程调控,诱导石墨烯在单晶铁磁表面的自我终止生长,实现铁磁薄膜外延单层石墨烯的制备。
本实施例的一种铁磁薄膜外延单层石墨烯的制备方法,具体包括如下步骤:
(1)铁磁薄膜的制备:以α-Al2O3(0001)基片为绝缘基底,采用电子束蒸发(或磁控溅射方法)在300~480℃(本实施例为480℃)温度下,以0.05~0.5 nm/s(本实施例为0.2nm/s)的沉积速率在α-Al2O3(0001)基片上蒸镀镍金属薄膜,薄膜厚度为300nm,其具有初步的六角对称晶格取向。
在其他实施例中,采用YSZ(111)基片作为绝缘基底也可取得相同或相似的技术效果。
在其他实施例中,采用钴金属薄膜也可取得相同或相似的技术效果。
钴金属薄膜或镍金属薄膜是具有六角对称性晶格属性的铁磁薄膜,与石墨烯晶格匹配较好,能够诱导生长与基底取向一致的石墨烯薄膜。利用石墨烯/铁磁薄膜晶格匹配界面的强耦合作用,阻止界面下碳的析出。
(2)CVD管式炉清洁。将镍薄膜置于化学气相沉积系统的加热炉中心位置,开启机械泵,打开真空阀,对石英管抽真空至0.1Pa;然后关闭真空阀,通氩气直至充满石英管后关闭氩气气阀,如此反复三次。
(3)镍金属薄膜退火单晶化。对石英管抽真空至极限压强0.1Pa,通入流速分别为10sccm、50sccm的氢气和氩气;运行加热炉升温程序,以20℃/min的速率升温至950℃,维持1小时,对镍金属薄膜进行退火单晶化并清除表面杂质,得到Ni(111)单晶薄膜,表征结果如图2和图3所示。
在本实施例中,镍金属薄膜在石英管升温过程中一并完成了表面还原处理。
从图2的XRD表征结果可知,θ-2θ扫描曲线具有唯一的Ni(111)峰,而φ扫描曲线中只有一套具有三重对称性的衍射峰,说明实现了Ni(111)单晶薄膜。
图3的AFM表征图显示Ni(111)单晶薄膜表面具有超高洁净度和原子级平整度,且不存在任何畴界,证明了薄膜的高质量。
本实施例中,单晶化后的铁磁薄膜(即单晶薄膜),对后续CVD法石墨烯的生长形成表面势能诱导以及催化作用。
在其他实施例中,退火处理的温度为900~950℃可取得相同或相似的技术效果,能够同时满足铁磁薄膜退火单晶化以及构建石墨烯在表面生长自我终止机制的温度要求。
(4)成核生长。在上一步的基础上再通入1sccm的甲烷作为石墨烯生长的碳源,温度保持950℃,在常压下生长时间38min。
在本实施例中,甲烷、氢气和氩气中甲烷分压低,甲烷、氢气和氩气的流量比为1∶10~50∶50,调控碳在单晶薄膜表面的成核密度,提高石墨烯生长的均匀性。
在其他实施例中,成核生长温度为900~950℃可取得相同或相似的技术效果,保证铁磁金属具有足够催化活性。
(5)高温下碳的扩散。关闭甲烷、氢气,保留氩气以50sccm速率通入,温度保持950℃,溶碳过程时间为1小时。
(6)降温析出石墨烯。以200℃/min进行快速降温,控制催化金属(本实施例为镍)的碳析出量,冷却至室温后将样品取出,降温过程保持氩气通入,得到铁磁薄膜基底外延单层石墨烯。
通过调控碳成核、扩散和析出过程,构建铁磁薄膜表层石墨烯的生长自我终止机制,诱导石墨烯在单晶铁磁薄膜表面的自我终止生长。
本实施例制备的铁磁薄膜基底外延单层石墨烯样品AFM表征结果如图4所示,表面洁净、平整、粗糙度低,且能明显分辨出薄膜原子级台阶形貌,具有与镍金属薄膜相同的晶格属性和取向。
铁磁薄膜外延单层石墨烯转移前后的光学显微镜表征结果和拉曼结果如图5和图6所示,表明本发明的石墨烯为层厚均匀的单层石墨烯。
本发明的铁磁薄膜外延单层石墨烯的CVD制备方法行之有效,解决了高溶碳金属基底上生长单层石墨烯的困难,为后续石墨烯相关自旋电子器件的开发提供了技术支持。
降温速率会影响降温过程中碳原子的析出量,150~200℃/min是较为合适用于外延生长单层石墨烯的降温速率。同样,生长温度的高低也会影响镍金属表面碳成核生长和体相内碳溶解-偏析生长过程,进而影响石墨烯的制备。当生长温度过低时(<900℃),石墨烯生长同时包含表面碳成核生长和体相内碳溶解-偏析生长过程,容易导致石墨烯成双层、甚至多层非均匀生长,或金属催化活性极弱难以在金属表面生长石墨烯;生长温度过高时(>950℃),镍金属容易产生蒸发、形变等影响石墨烯生长质量。
虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (7)

1.一种铁磁薄膜外延单层石墨烯的制备方法,其特征在于:包括以下步骤:
S1、在绝缘基底上生长具有正六角晶格属性的铁磁薄膜,所述绝缘基底和铁磁薄膜晶格属性相匹配;
S2、将铁磁薄膜置于化学气相沉积系统中,通入氢气和惰性气体,升温至900~950℃,对铁磁薄膜进行退火处理,得到单晶薄膜;
S3、通入碳源气体,所述碳源气体、氢气和惰性气体的流量比为1∶10~50∶50,升温至900~950℃保温,使碳在单晶薄膜上外延成核;所述碳源气体为甲烷;
S4、停止通入碳源气体和氢气,保温,使碳在单晶薄膜上扩散;
S5、以150~200℃/min的降温速率降温冷却,使石墨烯在单晶薄膜上析出,得到铁磁薄膜外延单层石墨烯。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤S2中,所述退火处理的时间为1~2h;所述升温的速率为20~30℃/min。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤S3中,所述保温的时间为35~45min。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤S4中,所述保温时间为30~60min。
5.根据权利要求1至3任一项所述的制备方法,其特征在于:所述步骤S1中,所说绝缘基底为Al2O3(0001)或YSZ(111)。
6.根据权利要求1至3任一项所述的制备方法,其特征在于:所述步骤S1中,所述铁磁薄膜为镍金属薄膜或钴金属薄膜。
7.根据权利要求1至3任一项所述的制备方法,其特征在于:所述步骤S1中,采用电子束蒸发法或磁控溅射法在绝缘基底上生长铁磁薄膜。
CN202010456103.4A 2020-05-26 2020-05-26 一种铁磁薄膜外延单层石墨烯及其制备方法 Active CN111606322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010456103.4A CN111606322B (zh) 2020-05-26 2020-05-26 一种铁磁薄膜外延单层石墨烯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010456103.4A CN111606322B (zh) 2020-05-26 2020-05-26 一种铁磁薄膜外延单层石墨烯及其制备方法

Publications (2)

Publication Number Publication Date
CN111606322A CN111606322A (zh) 2020-09-01
CN111606322B true CN111606322B (zh) 2022-02-08

Family

ID=72194420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010456103.4A Active CN111606322B (zh) 2020-05-26 2020-05-26 一种铁磁薄膜外延单层石墨烯及其制备方法

Country Status (1)

Country Link
CN (1) CN111606322B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641484B2 (ja) * 2009-08-31 2014-12-17 国立大学法人九州大学 グラフェン薄膜とその製造方法
CN102134067B (zh) * 2011-04-18 2013-02-06 北京大学 一种制备单层石墨烯的方法
KR101701237B1 (ko) * 2013-05-21 2017-02-03 한양대학교 산학협력단 대면적의 단결정 단일막 그래핀 및 그 제조방법
CN108447773A (zh) * 2018-03-26 2018-08-24 北京石墨烯研究院 石墨烯单晶薄膜及其制备方法

Also Published As

Publication number Publication date
CN111606322A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
JP6303001B2 (ja) 局所的炭素供給装置及び局所的炭素供給によるウェハーレベルのグラフェン単結晶製造方法
CN108193276B (zh) 制备大面积单一取向六方氮化硼二维原子晶体的方法
CN106868469B (zh) 一种在硅基上无金属催化剂制备石墨烯的方法
TWI466823B (zh) 雪花型石墨烯及其製備方法
CN111088523B (zh) 一种大尺寸单晶金刚石异质外延生长的方法
CN109205599B (zh) 一种低温制备石墨烯单晶晶圆的方法
JP5962332B2 (ja) グラフェンの成長方法
JP2012232860A (ja) グラフェンの製造方法
CN112831766B (zh) 一种利用磁控溅射在硅衬底上制备金属锆薄膜的方法及应用
US20140162021A1 (en) Method for producing graphene, and graphene produced by the method
CN111573658A (zh) 一种大面积直接生长的扭角双层石墨烯及其制备方法
CN111606322B (zh) 一种铁磁薄膜外延单层石墨烯及其制备方法
CN111519186B (zh) 一种铁磁/石墨烯外延界面及其低温制备方法
CN114107941B (zh) 一种在单晶铁磁薄膜基底上生长层厚可控石墨烯的方法
CN109867276B (zh) 在衬底上直接制备石墨烯的方法
CN113981542B (zh) 一种调控腔体压强制备高质量单晶畴二维材料的方法
CN116856050A (zh) 适用于单晶石墨烯晶圆生长的合金衬底
CN116516476B (zh) 单晶金刚石基板的制备方法及生长单晶金刚石的基材
CN116791199A (zh) 无孪晶单晶金属晶圆的制备方法
CN111647942B (zh) 一种铁磁/石墨烯/铁磁异质外延薄膜及其制备方法
CN111809149B (zh) 一种3C-SiC薄膜的制备方法
CN116988162B (zh) 一种降低铱衬底异质外延单晶金刚石表面缺陷的方法
KR101210958B1 (ko) 강자성체 단결정의 제조방법
CN111621845A (zh) 一种英寸级单晶薄膜的制备方法及单晶薄膜
Zhu et al. Effect of large C/Si ratio on Morphology and Magnetic Property of 3C-SiC

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant