CN111511205B - 室内性的属于斑螟亚科的蛾的成虫的捕捉方法、光源装置及捕捉器 - Google Patents

室内性的属于斑螟亚科的蛾的成虫的捕捉方法、光源装置及捕捉器 Download PDF

Info

Publication number
CN111511205B
CN111511205B CN201880083953.5A CN201880083953A CN111511205B CN 111511205 B CN111511205 B CN 111511205B CN 201880083953 A CN201880083953 A CN 201880083953A CN 111511205 B CN111511205 B CN 111511205B
Authority
CN
China
Prior art keywords
light
test
striped rice
attracting
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880083953.5A
Other languages
English (en)
Other versions
CN111511205A (zh
Inventor
岩本启秀
今井利宏
高桥竜太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Publication of CN111511205A publication Critical patent/CN111511205A/zh
Application granted granted Critical
Publication of CN111511205B publication Critical patent/CN111511205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/14Catching by adhesive surfaces
    • A01M1/145Attracting and catching insects using combined illumination or colours and adhesive surfaces
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/02Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
    • A01M1/04Attracting insects by using illumination or colours
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/08Attracting and catching insects by using combined illumination or colours and suction effects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/10Catching insects by using Traps
    • A01M1/106Catching insects by using Traps for flying insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/22Killing insects by electric means
    • A01M1/223Killing insects by electric means by using electrocution
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/02Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
    • A01M1/026Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects combined with devices for monitoring insect presence, e.g. termites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catching Or Destruction (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

根据本发明的一个方式,斑螟成虫的捕捉方法是属于斑螟亚科的蛾的成虫即室内性的斑螟成虫的捕捉方法,其中,以规定的光通量密度将引诱光射出规定的时间以上,在比上述引诱光的射出端的高度靠下侧且具有比上述规定的光通量密度小的光通量密度的区域内形成将上述斑螟成虫引导至上述射出端的附近的引导路径,在上述引导路径内捕捉被上述引诱光引诱的上述斑螟成虫。

Description

室内性的属于斑螟亚科的蛾的成虫的捕捉方法、光源装置及 捕捉器
技术领域
本发明涉及室内性的属于斑螟亚科的蛾的成虫的捕捉方法、光源装置及捕捉器。
背景技术
室内性的属于斑螟亚科的昆虫(蛾,蛾)统称为斑螟。斑螟包含烟草粉斑螟、印度谷螟、粉斑螟蛾以及地中海斑螟。斑螟在全世界广泛分布,且作为食品·谷类等的储粮害虫被已知。室内性斑螟成虫在食品工厂、仓库、普通家庭内产生。因此,室内性斑螟成虫的防治中,杀虫剂的使用受到限制,期望通过非化学的防治措施进行解决。作为非化学的防治措施之一,相对于大多害虫具备光源的捕捉器(光线陷阱)广泛普及。
这样,关于斑螟成虫,在实验室内阐明了对引诱光的引诱性(例如专利文献1及非专利文献1),强烈期望对光线陷阱的充分利用。另一方面,例如非专利文献2中公开了,在仓库等的实用空间中,光线陷阱的捕虫效果显著降低,实际上不能捕捉。
现有技术文献
专利文献
专利文献1:国际公开第2008/067678号
非专利文献
非专利文献1:Thomas Cowan and Gerhard Gries,Ultraviolet and violetlight:attractive orientation cues for the Indian meal moth,Plodiainterpunctella,Entomologia Experimentalis et Applicata,131(2):148-158(2009).
非专利文献2:平尾素一、羽原政明、樱井仁、各种陷井产生的贮藏食品害虫捕捉反应的比较,、Pestology学报、11(1):24-28(1996).
发明内容
发明所要解决的课题
本发明的目的在于,提供将室内性的属于斑螟亚科的蛾的成虫通过引诱光引诱并能够捕捉的捕捉方法、能够引诱的光源装置及通过引诱光引诱并能够捕捉的捕捉器。
用于解决课题的方案
根据本发明的一个方式,提供斑螟成虫的捕捉方法,是属于斑螟亚科的蛾的成虫即室内性的斑螟成虫的捕捉方法,其中,以规定的光通量密度将引诱光射出规定的时间以上,在比所述引诱光的射出端的高度靠下侧且具有比所述规定的光通量密度小的光通量密度的区域内形成将所述斑螟成虫引导至所述射出端的附近的引导路径,在所述引导路径内捕捉被所述引诱光引诱的所述斑螟成虫。
根据本发明的一个方式,提供烟草粉斑螟成虫的捕捉方法,其中,以规定的光通量密度将引诱光射出规定的时间以上,在比所述引诱光的射出端的高度靠下侧且具有比所述规定的光通量密度小的光通量密度的区域内形成将所述烟草粉斑螟成虫引导至所述射出端的附近的引导路径,且在所述引导路径内捕捉被所述引诱光引诱的所述烟草粉斑螟成虫。
根据本发明的一个方式,提供用于引诱斑螟成虫的光源装置,其中,以规定的光通量密度射出引诱光,通过所述引诱光的射出,在比所述引诱光的射出端的高度靠下侧且具有比所述规定的光通量密度小的光通量密度的区域内形成将属于斑螟亚科的蛾的成虫即室内性的斑螟成虫引导至所述射出端的附近的引导路径。
根据本发明的一个方式,提供斑螟成虫的捕捉器,其中,具备:所述光源装置;捕捉部,其配置于所述引导路径内,能够捕捉被所述引诱光引诱的所述斑螟成虫。
发明效果
根据本发明,能够提供将室内性的属于斑螟亚科的蛾的成虫通过引诱光引诱并能够捕捉的捕捉方法、能够引诱的光源装置及通过引诱光引诱并能够捕捉的捕捉器。
附图说明
图1是关于第一实施方式的捕捉器的结构例的概略将主视图(左)和侧视图(右)并排表示的示意图。
图2是用于说明第一实施方式的引诱光的射出特性的图。
图3是关于第二实施方式的捕捉器的结构例的概略将主视图(左)和侧视图(右)并排表示的示意图。
图4是表示第一变形例的光源部的结构例的概略的示意图。
图5是关于第三实施方式的捕捉器的结构例的概略将主视图(左)和侧视图(右)并排表示的示意图。
图6是表示试验例1的试验区域的结构的概略的示意图。
图7是表示试验例1的捕捉器的结构的概略的示意图。
图8是表示试验例1的比较例的捕捉器的结构的概略的示意图。
图9是表示引诱光的光通量密度与烟草粉斑螟的捕虫数的关系的图。
图10是表示引诱光的光通量密度与印度谷螟的捕虫数的关系的图。
图11是表示试验例2的试验区域的结构的概略的示意图。
图12是表示引诱光的光通量密度与烟草粉斑螟的活动停止比例的关系的图。
图13是从上方观察试验例3的试验区域(仓库)的结构的俯视图。
图14是关于试验例3的捕捉器的结构的概略将主视图(上)和侧视图(下)并排表示的示意图。
图15是表示试验例3的捕虫分布的图。
图16是表示试验例3的比较例的捕虫分布的图。
图17是用于说明试验例4-1的图。
图18是表示试验例4-1的捕捉器具备的第四光源射出的引诱光的分光分布的图。
图19是表示试验例4-1的烟草粉斑螟的捕虫比例的图。
图20是表示试验例4-2的印度谷螟的捕虫比例的图。
图21是表示试验例4-2的粉斑螟蛾的捕虫比例的图。
图22是表示试验例4-2的地中海斑螟的捕虫比例的图。
图23是表示试验例5-1的捕捉器射出的引诱光的分光分布和试验例5-1的比较例的捕捉器射出的引诱光的分光分布的图。
图24是表示试验例5-1的捕捉器射出的引诱光的指向特性和试验例5-1的比较例的捕捉器射出的引诱光的指向特性的图。
图25是关于试验例5-1的比较例的捕捉器的结构的概略将主视图(左)和侧视图(右)并排表示的示意图。
图26是表示试验例5-1的比较例的捕捉器射出的引诱光的分光分布的图。
图27是表示试验例5-1的捕捉器及试验例5-1的比较例的捕捉器产生的烟草粉斑螟的捕虫比例的图。
图28是表示试验例5-1的捕捉器及试验例5-1的比较例的捕捉器产生的印度谷螟的捕虫比例的图。
图29是从上方观察试验例5-2的试验区域(仓库)的结构的俯视图。
图30是表示试验例5-2的捕捉器及试验例5-2的比较例的捕捉器产生的粉斑螟蛾的捕虫比例的图。
图31是表示试验例5-2的捕捉器及试验例5-2的比较例的捕捉器产生的地中海斑螟的捕虫比例的图。
图32是从上方观察试验例6的试验区域(仓库)的结构的俯视图。
图33是表示试验例6的捕捉器产生的烟草粉斑螟的捕虫比例的图。
图34是表示上方观察试验例7的试验区域(仓库)的结构的俯视图。
图35是表示试验例7的捕捉器产生的烟草粉斑螟的捕虫比例与牧放角度的关系的图。
图36是表示试验例7的捕捉器产生的印度谷螟的捕虫比例与牧放角度的关系的图。
图37是表示相对于试验例8的捕捉器射出的由减光部件减光之后的引诱光的波长的放射强度分布图。
图38是表示试验例8的捕捉器产生的烟草粉斑螟的捕虫比例的图。
图39是表示试验例8的捕捉器产生的印度谷螟的捕虫比例的图。
具体实施方式
参照附图对本发明的实施方式进行说明。此外,附图是示意性的附图,长度及大小的比率等不限于附图所示。另外,以下的说明中的水平、垂直、垂直、正交等的记载不限于严格地表示水平、垂直、垂直、正交等的情况。水平、垂直、垂直、正交等的记载分别可包含大致水平、大致垂直、大致垂直、大致正交等的内容。
此外,以下的说明中,将属于昆虫鳞翅目螟蛾科斑螟亚科的昆虫(蛾,蛾)记载为斑螟(Phycitinae)。室内性的斑螟至少包含:烟草粉斑螟(英名:Tobacco moth,学名:Ephestia elutella)、印度谷螟(英名:Indian meal moth,学名:Plodiainterpunctella)、粉斑螟蛾(英名:Dried currant moth,学名:Cadra cautella)、以及地中海斑螟(英名:Mediterranean flourmoth,学名:Ephestia kuehniella)。
就斑螟而言,性信息素的研究不断发展。利用了性信息素的斑螟成虫的捕捉器(信息素陷阱)用于成虫产生的监视。但是,性信息素在雄的成虫中是有效的,但在雌的成虫中是无效的,因此,即使使用信息素陷阱,通过捕杀的防治效果不能期待。
室内性斑螟成虫在食品工厂、仓库、普通家庭内产生。因此,室内性斑螟成虫的防治中,杀虫剂的使用受到限制,期望通过非化学的防治措施进行解决。通常已知,大多昆虫不管雌雄均被光引诱。因此,作为非化学的防治措施之一,相对于大多害虫具备光源的捕捉器(光线陷阱)广泛普及。另一方面,关于斑螟成虫已知,虽然在实验室内观察到对引诱光的引诱性,但在仓库等宽阔的空间(实际环境),对现有的光线陷阱的捕捉性显著较低。
为了查明在实验室内呈现引诱性的光源在实际环境中不呈现引诱性的现象的原因,详细地解析了斑螟成虫相对于光的行动。本解析的结果表明,光中具有由于光通量密度(放射照度)的不同诱发斑螟成虫的引诱和行动抑制的相反的行动的性质。根据本解析,低光通量密度的光源相对于斑螟成虫呈现引诱性。另一方面,高光通量密度的光源呈现抑制斑螟成虫的行动的效果。即,可知现有的光线陷阱中,在陷井附近对被光引诱的斑螟成虫实施行动抑制,因此,不能捕捉。
另外,观察斑螟成虫向光源的接近路径(移动路径,移动区域)。本观察的结果可知,斑螟成虫在地面附近飞行或步行后向光源接近。
根据这些情况表示,通过将向光源下方的光量限制成低于对斑螟成虫实施行动抑制的光量,能够有效地捕捉斑螟成虫。以下,对基于这些见解的引诱斑螟成虫的引诱方法及光源装置和引诱并捕捉斑螟成虫的捕捉方法及捕捉器进行详细地说明。
以下的说明中,将对斑螟成虫实施行动抑制的引诱光的光量,即斑螟成虫中产生行动抑制的光通量密度的值记载为行动抑制光量。将引诱光的光通量密度的值为行动抑制光量以上的区域记载为行动抑制区域。将引诱光的光通量密度的值低于行动抑制光量的区域记载为非行动抑制区域。另外,将行动抑制区域与非行动抑制区域的边界(行动抑制光量的阈值)记载为行动抑制边界面。行动抑制边界面也能够表达为表示光通量密度的值为行动抑制光量的位置的点的集合(面)。另外,将被引诱光引诱的斑螟成虫向射出引诱光的射出端的附近移动的路径记载为移动路径(接近路径),将可成为移动路径的区域记载为移动区域。另外,将移动区域与移动区域外的边界记载为移动边界面。
以下的说明中,将使斑螟成虫引导至引诱光的射出端的附近的区域记载为引导路径。在此,引导路径是光源(射出端)高度与地面之间的区域中、斑螟的“移动区域内”且“非行动抑制区域内”的区域。此外,引导路径可具有为“移动区域内的非行动抑制区域”的情况和为“非行动抑制区域内的移动区域”的情况。另外,将引导路径与引导路径外的区域的边界作为基准面记载。在此,引导路径为“移动区域内的非行动抑制区域”时,基准面为行动抑制边界面。引导路径为“非行动抑制区域内的移动区域”时,基准面为移动边界面。
[第一实施方式]
<结构>
关于本实施方式的捕捉器1的结构例的概略将主视图(左)和侧视图(右)并排并作为示意图在图1中表示。另外,将用于说明从捕捉器1射出的引诱光的图在图2中表示。
如图1所示,本实施方式的捕捉器1具备光源部10、捕捉部20、支承部件30。光源部10和捕捉部20配置于支承部件30。捕捉器1以例如支承部件30的下端(捕捉器1的下端)与地面相接的方式配置。捕捉器1以例如支承部件30的背面(X-侧的面)与壁面相接的方式配置。
以下,为了说明的简单,将重力方向定义为Z-方向,将与Z方向垂直且相对于捕捉器1射出引诱光的侧的方向定义为X+方向,将与Z方向及X方向垂直的方向定义为Y方向。
光源部10以能够将引诱光通过规定的射出特性射出的方式构成。射出特性包含引诱光的放射强度、放射角度、波长等的各种特性。图2中表示用于说明本实施方式的引诱光的射出特性的图。图2中,作为例子表示具有指向性的引诱光从光源部10的射出端向水平方向(X+方向)射出的情况合。图2中,为了简单,仅示出了比引诱光的射出端的高度(引诱光的光轴)靠下侧。本实施方式的光源部10以规定的放射强度(光通量密度)将引诱光连续地射出规定的时间。本实施方式以及以下的各实施方式及变形例中,引诱光也可以是连续光或任意频率的闪烁光,规定的放射强度的调整中也可以使用任意方法。规定的时间也可以是数分钟~数小时、数小时~几天、或数天~几个月、任意的时间间隔,即使是任意的时间间隔,也可确认到一定的捕虫效果。
在图2所示的情况下,行动抑制边界面IB位于光源部10的比射出引诱光的光轴靠垂直方向的下侧(Z-侧,以下简称为下侧),是行动抑制区域SA与非行动抑制区域WA的边界。此时,行动抑制边界面IB通过引诱光中、从光轴离开规定的角度以上的引诱光即光通量密度降低至行动抑制光量的引诱光形成。因此,例如如图2所示,具有指向性的引诱光射出成圆锥状时,该行动抑制边界面IB为该圆锥的外周面的一部分。此外,行动抑制边界面IB的角度、位置、面积、形状等可根据行动抑制区域SA和非行动抑制区域WA的形状等适当决定。此外,光源部10也能够表达为在比行动抑制边界面IB靠垂直方向的上侧(Z+侧,以下简称为上侧),以规定的放射强度(光通量密度)将引诱光连续地射出规定的时间。
光源部10射出的引诱光是具有能够引诱斑螟的成虫(斑螟成虫)的性质的光。引诱光是否能够引诱斑螟依赖于例如光(引诱光)的强度、波长等。本实施方式的引诱光是以375~380nm为中心波长的紫外光,但不限于此。引诱光只要是能够引诱斑螟成虫的波长的光即可。引诱光也可以包含紫外区域以外的波长成分。
光源部10的引诱光的放射强度优选为捕捉部20的附近(图2所示的测量位置MP)的引诱光的放射照度[μW/cm2]成为0.1~5的放射强度。另外,同位置的引诱光的光通量密度[photons/m2/s]优选为0.1×1014~10×1014
如图1所示,光源部10具备光源11。在此,如图2所示,将光源11的光轴与行动抑制边界面IB构成的角定义为光源11的配光角(θ/2)。光源11以能够射出较窄的配光角即窄角配光角(θn/2)的光线(引诱光)的方式构成。例如,射出的引诱光的窄角配光角θn/2为满足L×tan(θn/2)<H的关系的范围的角度。在此,L为以规定的光通量密度射出的引诱光的光通量密度的值在大气中衰减至低于行动抑制光量的距离,H为光源11的射出端的高度。如果光源11的高度H为30cm,则优选光源11的窄角配光角(θn/2)例如为0°~53°(极限配光角θc/2)。本实施方式的光源11的窄角配光角(θn/2)为15°。本实施方式的光源11为能够射出紫外光(引诱光)的发光二极管(LED),但不限于此。光源11例如也可以为荧光灯、白炽灯泡、氖灯、水银灯、卤素灯等。
捕捉部20以能够捕捉被引诱光引诱的斑螟的方式构成。捕捉部20例如配置于光源部10的附近。捕捉部20配置例如引诱光的光通量密度低于规定的值的区域(引导路径)内。捕捉部20在X+侧的面具备捕捉部件。捕捉部件只要能够捕捉与捕捉部件接触的斑螟即可。捕捉部件也可以是例如粘合片(捕捉纸)等的粘合部件、电击杀虫器那样对接触的斑螟施加电压进行捕捉的部件、上表面(入口)形成为漏斗状且在内部具备水或杀虫剂的部件、吸引式的捕捉部件、水盘等,也可以是它们的组合。另外,捕捉部20也可以在引导路径内具备多个捕捉部件,也可以包含配置于引导路径外的区域的捕捉部件。
如图1所示,本实施方式的捕捉部20具备下侧捕捉部21和上侧捕捉部22。下侧捕捉部21配置于光源11的附近且下侧(Z-侧)。上侧捕捉部22配置于光源11的附近且上侧(Z+侧)。下侧捕捉部21及上侧捕捉部22的捕捉部件例如为可更换的粘合片。
支承部件30支承光源部10和捕捉部20。本实施方式的支承部件30为矩形的板状,但不限于此。支承部件30只要是能够以规定的位置及角度支承光源部10和捕捉部20的形状、材质即可。此外,光源部10和捕捉部20也可以不一体地构成。
<作用>
如图2所示,光源部10通过引诱光的射出在比行动抑制边界面IB1靠上侧(Z+侧)形成行动抑制区域SA1。即,引诱光的放射强度、放射角度等的光源部10的射出特性以射出的引诱光能够形成行动抑制区域的方式设定。另外,如图2所示,光源部10通过引诱光的射出在比行动抑制边界面IB1靠下侧(Z-侧)形成非行动抑制区域WA1。即,引诱光的放射强度、放射角度等的光源部10的射出特性以射出的引诱光能够进一步形成引导路径的方式设定。
行动抑制区域SA1是引诱光的放射照度(光通量密度)的值为使斑螟成虫产生行动抑制的比例(行动抑制比例)较高时的值(行动抑制光量)以上的区域。引诱光的放射照度(光通量密度)的值根据光源部10的射出特性与光源部10的射出端的相对位置进行变化。例如,活动的斑螟成虫的行动抑制比例为80%以上时,能够表达为行动抑制比例较高。
非行动抑制区域WA1是引诱光的放射照度(光通量密度)的值低于行动抑制比例较低时的值(行动抑制光量)的区域。因此,非行动抑制区域WA1能够表达为用于将被引诱光引诱的斑螟引导至捕捉部20的区域。例如,活动的斑螟成虫的行动抑制比例低于80%时,能够表达为行动抑制比例较低。
此外,行动抑制边界面IB1位于比光源部10的射出引诱光的光轴靠下侧(Z-侧),是行动抑制区域SA1与非行动抑制区域WA1的边界。
此外,引导路径至少形成于比行动抑制边界面IB靠下侧(Z-侧)。这是基于,被引诱光引诱的斑螟成虫移动至配置于光源部10附近的捕捉部20的移动路径(移动区域)为相对于引诱光的光轴从下侧(Z-侧)朝向引诱光的射出端的路径的倾向较高。因此,引导路径至少形成于行动抑制区域SA与地面3之间。
此外,如上述,本实施方式的捕捉方法及捕捉器1通过引诱光的射出形成引导路径,且将被引诱光引诱的斑螟成虫通过引导路径引导至光源11(引诱光的射出端)的附近,并捕捉斑螟成虫。即,本实施方式的光源部10也能够表达为引诱斑螟成虫的光源装置。一样,本实施方式的技术包含引诱斑螟成虫的引诱方法。
<效果>
根据本实施方式的引诱方法、捕捉方法、光源部10(光源装置)、捕捉器1,可以如下所述。
本实施方式的斑螟成虫的引诱方法是属于斑螟亚科的蛾的成虫即室内性的斑螟成虫的引诱方法,其中,以规定的光通量密度将引诱光射出规定的时间以上,在比引诱光的射出端(光源11)的高度靠下侧且具有比规定的光通量密度小的光通量密度的区域内形成将烟草粉斑螟成虫引导至射出端的附近的引导路径。另外,本实施方式的用于引诱斑螟成虫的光源装置(光源部10)以规定的光通量密度射出引诱光,通过引诱光的射出,在比引诱光的射出端(光源11)的高度靠下侧且具有比规定的光通量密度小的光通量密度的区域内形成将属于斑螟亚科的蛾的成虫即室内性的斑螟成虫引导至射出端的附近的引导路径。
根据该方法及结构,通过引诱光的射出在比引诱光的射出端靠下侧的区域内形成引导路径,且能够将斑螟成虫引诱至引诱光的射出端的附近。另一方面,引导路径以外的区域中,也可以是规定的光通量密度。即,如果能够形成引导路径,则照射于引导路径以外的区域的引诱光的光通量密度没有限制。因此,根据该方法及结构,保持宽阔的斑螟成虫的引诱范围,且通过引导路径能够引诱斑螟成虫。
本实施方式的斑螟成虫的捕捉方法除了上述的引诱方法之外,还在引导路径内捕捉被引诱光引诱的斑螟成虫。另外,本实施方式的斑螟成虫的捕捉器1具备上述的光源部10、配置于引导路径内且可捕捉被引诱光引诱的斑螟成虫的捕捉部20。
根据该方法及结构,在通过引诱光的射出形成的引导路径中将斑螟成虫引诱至引诱光的射出端的附近并能够捕捉。此外,捕捉只要在引导路径内进行即可,捕捉部20只要至少配置于引导路径内即可。
上述的引诱方法、捕捉方法、光源装置及捕捉器1中,引导路径处于射出端的高度与地面之间的区域内的、引诱光的光通量密度的值低于使上述斑螟成虫产生行动抑制的光通量密度的值(行动抑制光量)的非行动抑制区域内。根据该方法及结构,能够将引导路径内设为使斑螟成虫不产生行动抑制或产生行动抑制的比例较低的区域,因此,降低使斑螟成虫不产生行动抑制或产生行动抑制的比例,且能够引诱或捕捉大范围的斑螟成虫。
上述的引诱方法、捕捉方法、光源装置及捕捉器1中,引导路径处于射出端的高度与地面之间的区域内的、引诱光的光通量密度的值低于使上述斑螟成虫产生行动抑制的光通量密度的值(行动抑制光量)的非行动抑制区域内,且被引诱光引诱的斑螟成虫移动至射出端的附近的移动区域内。在此,也可以在被引诱光引诱的斑螟成虫的移动区域内具有非行动抑制区域,也可以在非行动抑制区域内具有移动区域。根据该方法及结构,引导路径是被引诱光引诱的斑螟成虫的移动区域,是使斑螟成虫不产生行动抑制或产生行动抑制的比例较低的区域(非行动抑制区域),因此,能够提高斑螟成虫的引诱比例及捕捉比例。
上述的引诱方法及捕捉方法中,引诱光的射出射出具有指向性的引诱光。另外,上述的光源装置及捕捉器1中,引诱光具有指向性。根据该方法及结构,能够简单地形成上述的引导路径。例如,配光角θ/2满足0°≦θ/2≦53°的关系。
上述的引诱方法、捕捉方法、光源装置及捕捉器1中,引导路径是与地面大致平行地距配置有射出端的面为15cm以内的区域及来自地面的高度为30cm以内的区域。根据该方法及结构,降低使斑螟成虫不产生行动抑制或产生行动抑制的比例,且能够引诱或捕捉大范围的斑螟成虫。也就是,能够适当引诱或捕捉从比引诱光的光轴靠下侧向引诱光的射出端移动的斑螟成虫。
上述的引诱方法、捕捉方法、光源装置及捕捉器1中,引诱光的射出朝向水平方向进行,引导路径内的引诱光的光通量密度d[photons/m2/s]是满足0<d<2×1014或0<d≦0.1×1014的关系的值。根据该方法及结构,降低使斑螟成虫不产生行动抑制或产生行动抑制的比例,且能够引诱或捕捉斑螟成虫。
上述的引诱方法及捕捉方法中,引诱光由至少一个发光二极管(LED)射出。另外,上述的光源装置及捕捉器1具备射出引诱光的至少一个LED。根据该方法及结构,能够降低引诱或捕捉的耗电量。另外,光源装置及捕捉器1的结构的简化及小型化、低成本化、长寿命化变得容易。LED具有通过注入有LED的树脂或玻璃等的罩(光学系),构成为以窄角配光放射光线的指向特性的LED,能够容易地实现指向性强的窄角配光的引诱光。
上述的捕捉方法中,捕捉通过在引导路径内的射出端附近配置捕捉部件而进行。另外,上述的捕捉器1中,捕捉部20配置于引导路径内的射出端附近。根据该方法及结构,能够适当捕捉被引诱光引诱的斑螟成虫。
上述的捕捉方法中,捕捉通过在引导路径内的地面上配置捕捉部件而进行。另外,上述的捕捉器1中,捕捉部20配置于引导路径内的地面上。根据该方法及结构,即使是移动至光源11的附近的中途也能够适当捕捉被引诱光引诱的斑螟成虫。
[第二实施方式]
以下,参照附图对本实施方式的捕捉器1进行说明。在此,主要说明与第一实施方式的不同点,对相同的部分标注相同的符号并省略其说明。
<结构>
关于本实施方式的捕捉器1的结构的概略,将主视图(左)和侧视图(右)并排并作为示意图在图3中表示。第一实施方式中,对使用能够射出具有指向性的引诱光的光源11,在比光源11的高度靠下侧能够形成非行动抑制区域WA1(WA)及引导路径的捕捉器1进行了说明。另一方面,引诱光也可以由于光源11的特性以外调整成窄角。因此,本实施方式中,对具备将光源11放射的光线(引诱光)调整成窄角的引诱光的光学元件12的捕捉器1进行说明。
如图3所示,本实施方式的捕捉器1的光源部10除了光源11之外,还具备光学元件12。光学元件12配置于光源11的X+侧。
本实施方式的光源11是例如可放射紫外光的荧光管,但不限于此。光源11只要是以能够引诱斑螟成虫的波长及强度能够放射引诱光的光源即可,也可以是发光二极管(LED)、白炽灯泡、氖灯、水银灯、卤素灯等。
光学元件12以从光源11放射的光线(引诱光)通过规定的射出特性从光源部10的射出端射出的方式,调整引诱光的强度、指向特性、波长等。如图3所示,本实施方式的光源部10作为光学元件12具备光圈13。光圈13覆盖光源11的一部分,限制光源11放射引诱光的面积(放射面积)。光圈13的开口部的形状也可以是圆形,也可以是三角形,也可以是四边形或四边形以上的多边形等。即,光圈13也可以是例如限定针孔等的孔的周围的部分,也可以是限定狭缝周围的部分,也可以是覆盖光源11的罩。光圈13也可以使用能够减光减光学滤光片(ND滤镜)等的引诱光的部件(减光部件),也可以使用能够100%减光铝箔等的金属、树脂、液晶等的引诱光的减光部件,即能够遮光引诱光的部件(遮光部件)。光圈13的开口部的形状、面积、材料可适当设计。
本实施方式的捕捉器1具备的捕捉部20具备中央捕捉部23。中央捕捉部23配置于光源11的X+侧的附近。中央捕捉部23的捕捉部件配置于中央捕捉部23的X+侧。捕捉部件的结构与第一实施方式一样。在中央捕捉部23的中心设置有光圈13。本实施方式的中央捕捉部23的捕捉部件的形状为矩形,但不限于此。捕捉部件的形状如果是能够捕捉斑螟成虫的形状,则也可以是任意形状。
<作用·效果>
本实施方式的捕捉器1中,通过利用光圈13限制光源11的放射面积,将引诱光的放射角度(指向特性)调整成窄角。由此,本实施方式的捕捉器1与第一实施方式的捕捉器1一样,能够射出窄角配光的引诱光(具有指向性的引诱光)。即,本实施方式的捕捉器1与第一实施方式的捕捉器1一样,在比光源11的高度靠下侧形成非行动抑制区域WA并能够形成引导路径。
根据本实施方式的捕捉器1,可以如下所述。
上述的引诱方法及捕捉方法中,具有指向性的引诱光(窄角配光的引诱光)的射出利用光学元件12将从光源11入射的光线作为具有指向性的引诱光射出而进行。另外,上述的光源装置及捕捉器1具备光源11和将从光源11入射的光线作为具有指向性的引诱光进行射出的光学元件12。根据该方法及结构,可得到与第一实施方式的引诱方法、捕捉方法、光源装置以及捕捉器1一样的效果。另外,除了第一实施方式的捕捉器1的效果之外,还具有对能够作为光源11选择的光源减小限制的效果。例如,本实施方式的光源11也可以不构成为窄角配光。
上述的引诱方法及捕捉方法中,具有指向性的引诱光(窄角配光的引诱光)的射出通过在与光源11对置的位置配置包含孔部或狭缝的光圈(光圈13)而进行。另外,上述的光源装置及捕捉器1中,光学元件12是包含配置于与光源11对置的位置的孔部或狭缝的光圈13。根据该方法及结构,不准备聚光镜等的光学系,通过简单的方法或结构能够射出具有指向性的引诱光(窄角配光的引诱光)。
此外,光学元件12也可以利用聚光镜、准直仪等的光学部件构成。另外,在光源11放射的光线(引诱光)包含紫外区域以外的波长成分的情况下,光学元件12也可以包含仅透射特定的波长范围的光线,或仅反射特定的波长范围的光线那样的波长选择板。在该情况下,光源的选择性进一步提高。此外,光学元件12也可以不设置于捕捉部20。
此外,本实施方式的中央捕捉部23能够适用于第一实施方式的捕捉器1。也就是,第一实施方式的捕捉器1只要具备下侧捕捉部21及中央捕捉部23中的至少一个即可。另外,本实施方式的捕捉器1也可以具备第一实施方式的下侧捕捉部21或上侧捕捉部22中的至少一个,也可以还具备配置于地面上的捕捉部件。另外,本实施方式的捕捉器1的捕捉部20也可以仅为配置于地面上的捕捉部件。在任意情况下,只要至少一个捕捉部件配置于引导路径内,且在引导路径内进行捕捉即可。
[第一变形例]
以下,参照附图对构成本变形例的捕捉器1的光源部10(光源装置)进行说明。在此,主要说明与第一实施方式或第二实施方式的不同点,对相同的部分标注相同的符号并省略其说明。
第一实施方式及第二实施方式中,对通过射出具有指向性的引诱光(窄角配光的引诱光),在行动抑制边界面IB的下侧(Z-侧)形成非行动抑制区域及引导路径的引诱方法、捕捉方法、光源装置以及捕捉器1进行了说明。上述的窄角配光的引诱光如果是引诱光的光轴方向,则能够一边逐渐衰减一边到达。另一方面,上述的窄角配光的引诱光在水平方向(X方向或Y方向)上也为窄角。因此,存在相对于从处于水平方向上脱离引诱光的射出方向(光轴)的方向的牧放地点牧放的斑螟的引诱性及捕捉比例较低的课题。因此,本实施方式的技术通过射出在水平方向上为广角配光,且在重力方向(Z方向)上为窄角配光的具有指向性的引诱光,而形成非行动抑制区域及引导路径。
<结构>
将本变形例的光源部10的结构的概略作为示意图在图4中表示。如图4所示,本实施方式的光源部10具备多个第一实施方式的光源11。如图4所示,多个光源11以放射状地射出引诱光的方式放射状地配置于支承部件30。即,多个光源11隔开规定的间隔地(例如等间隔地)配置于半圆柱形的支承部件30的外周面构成的圆弧上。此外,支承部件30的形状不限于半圆柱形,例如也可以为半球状。
<效果>
根据本变形例的捕捉器1,可以如下所述。
上述的引诱方法、捕捉方法、光源装置及捕捉器1中,具有指向性的引诱光(窄角配光的引诱光)的射出关于水平方向放射状地进行。根据该方法及结构,除了第一实施方式或第二实施方式的引诱方法、捕捉方法、光源装置以及捕捉器1中得到的效果之外,还形成水平方向上广角的行动抑制区域SA,能够引诱更大范围的斑螟。另外,引导路径在水平方向上也能够形成于大范围,因此,具有能够捕捉更大范围的斑螟成虫的效果。
此外,以多个第一实施方式的光源11放射状地配置的情况为例进行了说明,但不限于此。例如,第二实施方式的光源部10也可以设置多个。即使是该方法及结构,也可得到与上述一样的效果。
此外,本变形例的光源装置及捕捉器1也可以具备例如至少一个广角配光的光源11和放射状地配置的多个光学元件12。根据使用了这些元件的方法及结构,能够降低光源11的数,因此,可得到使捕捉器1的结构简单,或能够降低能耗的效果。
此外,本变形例的光源装置及捕捉器1也可以具备例如至少一个广角配光的光源11和放射状地设置有多个光圈13或狭缝的光学元件12。根据使用了这些元件的方法及结构,能够降低光源11及光学元件12的数,因此,除了捕捉器1的能耗的降低之外,还可得到能够降低制造成本的效果。
此外,本变形例中,以多个光源11放射状地配置的情况为例进行了说明,但不限于此。例如,多个光源11也可以以引诱光的射出方向相互不同的方式,在同一平面上大致直线状地配置。另外,光学元件12也可以具备开口向水平方向的狭缝。即使是使用了这些元件的方法及结构,也可得到与上述一样的效果。
[第三实施方式]
以下,参照附图说明本实施方式的捕捉器1。在此,主要说明与第一实施方式、第二实施方式或第一变形例的不同点,对相同的部分标注相同的符号并省略其说明。
<结构>
关于本实施方式的捕捉器1的结构的概略,将主视图(左)和侧视图(右)并排并作为示意图在图5中表示。第一实施方式、第二实施方式及第一变形例中,对通过向至少一个方向射出窄角配光的引诱光(具有指向性的引诱光),能够形成非行动抑制区域WA及引导路径的技术进行了说明,但引诱光不限于窄角配光的引诱光。例如,即使是以下说明那样的具有指向性的引诱光,也同样能够形成非行动抑制区域WA及引导路径。
如图5所示,本实施方式的光源部10具备光源11和光学元件12。光学元件12配置于光源11的X+侧。
本实施方式的光源11是例如可放射紫外光的荧光管,但不限于此。光源11只要是能够以能够引诱斑螟成虫的波长及强度放射引诱光的光源即可,也可以是发光二极管(LED)、白炽灯泡、氖灯、水银灯等。
如图5所示,本实施方式的光源部10作为光学元件12具备减光部件14。减光部件14是以通过减光部件14的引诱光的放射照度(光通量密度)的值在非行动抑制区域低于行动抑制光量的方式减光引诱光的部件。减光部件14使用例如减光学滤光片(ND滤镜)等的能够减光引诱光的部件。此外,作为减光部件,也可以使用铝箔等的金属、树脂、液晶等的能够100%减光引诱光即能够遮光引诱光的部件(遮光部件)。即使在遮光的情况下,通过衍射光稍微射入遮光部件的背后(下侧),因此,形成引导路径(非行动抑制区域)。减光部件14配置于光源11的下侧(Z-侧)且下侧捕捉部21的上侧(Z+侧)的位置。例如,引诱光的光通量密度经由减光部件14从行动抑制光量以上成为低于行动抑制光量时,配置有减光部件14的面为本实施方式的行动抑制边界面。另一方面,引诱光的光通量密度有时也可在被减光部件14减光之后,进一步衰减且成为低于行动抑制光量。此时,行动抑制边界面为引诱光的光通量密度衰减且成为低于行动抑制光量的位置。
<作用·效果>
本实施方式的减光部件14降低从光源11放射的引诱光中、朝向比减光部件14靠下侧的引诱光的强度,并形成行动抑制比例较低的低于引诱光的强度(非行动抑制光量)的区域。另一方面,向比减光部件14靠上侧射出的引诱光的强度未减光。这样,本实施方式的光源装置及捕捉器1在比减光部件14靠上侧以较高的放射强度射出引诱光,在比减光部件14靠下侧射出减光的较低的放射强度的引诱光。即使是这种具有指向性的引诱光,也与第一实施方式、第二实施方式及第一变形例一样,引诱大范围的斑螟,且能够形成非行动抑制区域WA及引导路径。
根据本实施方式的捕捉器1,可以如下所述。
上述的引诱方法及捕捉方法中,引诱光的射出通过将降低引诱光的光通量密度的减光部件14配置于射出端的下侧而进行,减光部件14将规定的光通量密度设为在引导路径内使斑螟成虫产生行动抑制的低于光通量密度的值(行动抑制光量)。另外,上述的光源装置及捕捉器1具备配置于射出端的下侧,且将规定的光通量密度设为在引导路径内使斑螟成虫产生行动抑制的低于光通量密度的值(行动抑制光量)的减光部件14。上述的斑螟成虫的引诱方法、捕捉方法、光源装置以及捕捉器1中,减光部件14沿水平方向延伸。即,减光部件14与地面平行地配置,且从射出端配置的面沿引诱光的射出方向延伸设置。此外,减光部件14也可以是100%减光引诱光的遮光部件。
根据这些方法及结构,在行动抑制边界面IB的上侧射出能够引诱更大范围的斑螟的行动抑制光量以上的引诱光,在行动抑制边界面IB的下侧,光源11放射的引诱光被减光部件14减光之后射出。因此,根据本实施方式的方法及结构,与上述的实施方式及变形例一样,能够一边具有较大的引诱范围,一边在减光部件14的下侧形成非行动抑制区域及引导路径,因此,不管光源11的射出特性,均能够引诱或捕捉斑螟成虫。另外,与第一实施方式及第二实施方式的捕捉器1相比,本实施方式的光源装置及捕捉器1还具有容易增大在斑螟的引诱上有效的行动抑制区域的效果。另外,即使在蛾(蛾)的飞行路径中产生弯曲的情况下,也能够物理性地阻碍蛾向行动抑制区域SA侧移动。由此,通过移动至行动抑制区域SA侧的蛾被行动抑制,能够防止产生捕捉数降低的不良情况。
[第二变形例]
以下,对本变形例的捕捉器1进行说明。在此,主要说明与上述的实施方式及变形例的不同点,对相同的部分标注相同的符号并省略其说明。
上述的实施方式及变形例中,对射出引诱光,且通过引诱光引诱斑螟成虫的捕捉器1进行了说明,但不限于此。捕捉器1也可以除了引诱光之外,还具备引诱光以外的引诱措施。
上述的引诱方法及捕捉方法中,还包含使用斑螟成虫用的引诱物质(斑螟成虫用的性信息素)引诱上述斑螟成虫。另外,上述的光源装置及捕捉器1还具备构成为可将斑螟成虫用的引诱物质扩散至周围的药剂收纳部。药剂收纳部配置于例如捕捉部20的附近,但性信息素等的化学物质如果是以能够在引导路径内扩散的方式构成,则也可以配置于行动抑制区域SA内。根据该方法及结构具有如下效果,除了形成行动抑制区域SA的引诱光之外,还通过性信息素等的引诱斑螟成虫的化学物质进一步提高捕捉器1相对于斑螟成虫的引诱性。
此外,被性信息素等引诱的斑螟成虫也能够通过引导路径引导至捕捉部20。即,还具有能够实现目前困难的光线陷阱与信息素陷阱的组合的效果。此外,本变形例的技术也能够适用于上述的任意实施方式及变形例的捕捉器1。
此外,也可以通过根据光源11的配光角(θ/2)决定引诱光的射出角度,而形成非行动抑制区域和引导路径。在该情况下,只要以行动抑制边界面与地面不接触的方式向上侧调整射出角度即可。即使是这种方法及结构,也可得到与上述的实施方式及变形例一样的效果。
实施例
[试验例1]
首先,对通过引诱光引诱斑螟,且将引诱的斑螟在引诱光的射出端附近捕捉时要求的引诱光的射出特性进行了研究。本试验例中,对引诱光的放射照度(光通量密度)与斑螟的引诱(捕捉)效果的关系进行了研究。
图6中将本试验例的试验区域的结构例的概略作为示意图表示。如图6所示,本试验例的试验区域的深度(X方向)为3.6m,宽度(Y方向)为1.8m,高度(Z方向)为1.8m。在试验区域的X-侧的壁面,可沿X+方向射出引诱光地配置有本试验例的第一试验用捕捉器1a。如图6所示,第一试验用捕捉器1a以捕捉器的下端与地面接触的方式配置。本试验区域的试验昆虫的牧放地点R0是X+侧的壁面的中央且地面上。此外,试验区域以不从试验区域外入射光的方式构成。
图7中将本试验中使用的第一试验用捕捉器1a的结构的概略作为示意图表示。第一试验用捕捉器1a具备:具备光源11的光源部10、具备下侧捕捉部21的捕捉部20、支承部件30。如图7所示,第一试验用捕捉器1a具有在光源11的附近且下侧(Z-侧)配置有下侧捕捉部21的结构。第一试验用捕捉器1a的光源11(第一光源11a)是能够放射紫外光的发光二极管(48元件,NS375L-3RLQ,Nitride Semiconductors株式会社制造)。第一试验用捕捉器1a构成为可调整通过输入电压的调整而射出的光的光强度。第一光源11a放射的光线(引诱光)的中心波长为375~380nm。下侧捕捉部21的捕捉部件配置于下侧捕捉部21的X+侧。捕捉部件是可更换的粘合纸。
在本试验之前,测量第一光源11a放射的光线(引诱光)的放射照度。第一光源11a进行的引诱光的放射照度对多个第一光源11a的放射强度均测量。放射照度在与引诱光的射出端正对且分离15cm的位置(图2所示的测量位置MP)测量。放射照度的测定中使用朝日分光株式会社制造的HSU-100S。在此,放射照度[W/m2]的大小表示每单位面积入射的放射束(引诱光的光束)的量,与从光源部10射出时的引诱光的放射强度的大小相关。另外,放射照度能够使用光线的波长[m]并作为光通量密度[photons/m2/s]表达。在此,光通量密度是表示每单位时间及每单位面积的光子数的值。
本试验中使用的试验对象(测试昆虫)是烟草粉斑螟及印度谷螟。本试验中,产生两天后的雌雄各25只烟草粉斑螟及印度谷螟用作测试昆虫。
说明本试验的顺序。首先,向捕捉部20安装粘合纸。然后,将测试昆虫100只,从上述的牧放地点同时牧放于试验区域内。牧放后,使光源部10以规定的放射强度射出引诱光。在23小时后回收粘合纸,计数捕捉于粘合纸的测试昆虫的只数。
本试验将上述的顺序均按照多个放射强度实施。多个放射强度是分别如上述那样算出的光通量密度的值成为0、0.1×1014、2×1014、10×1014、20×1014、40×1014、60×1014、75×1014、100×1014的放射强度。此外,粘合纸每次试验进行更换。
图9及图10中表示本试验的结果。图9及图10分别表示烟草粉斑螟的捕虫数和印度谷螟的捕虫数。图9及图10中,横轴表示光通量密度[photons/m2/s],纵轴表示捕虫数。
如图9所示可知,例如光通量密度的值为比0大且低于20×1014的范围时,烟草粉斑螟的捕虫数变高。烟草粉斑螟的捕虫数较高的光通量密度的范围不限于比0大且低于20×1014的范围,包含:比0大且低于10×1014、比0大且低于2×1014、比0大且低于0.1×1014、0.1×1014以上且低于20×1014、0.1×1014以上且低于10×1014、0.1×1014以上且低于2×1014、2×1014以上且低于20×1014、2×1014以上且低于10×1014、或10×1014以上且低于20×1014的范围。另外,烟草粉斑螟的捕虫数较高的光通量密度的值包含0.1×1014、2×1014、10×1014的值。另一方面可知,例如光通量密度的值为20×1014以上的值时,烟草粉斑螟的捕虫数变低。
如图10所示可知,例如光通量密度的值为比0大且低于40×1014的范围时,印度谷螟的捕虫数变大。印度谷螟的捕虫数较高的光通量密度的范围不限于比0大且低于40×1014的范围,包含:比0大且低于20×1014、比0大且低于10×1014、比0大且低于2×1014、比0大且低于0.1×1014、0.1×1014以上且低于40×1014、0.1×1014以上且低于20×1014、0.1×1014以上且低于10×1014、0.1×1014以上且低于2×1014、2×1014以上且低于40×1014、2×1014以上且低于20×1014、2×1014以上且低于10×1014、10×1014以上且低于40×1014、10×1014以上且低于20×1014、或20×1014以上且低于40×1014的范围。印度谷螟的捕虫数较高的光通量密度的值还包含0.1×1014、2×1014、10×1014、20×1014的值。另一方面可知,例如光通量密度的值为40×1014以上的值时,印度谷螟的捕虫数变小。
另外,本试验中,作为比较例,进行使用市售的捕虫器(ムシポン:注册商标,MP-301,Benhar株式会社制造,第二试验用捕捉器1b)的试验。图8中将本试验中使用的第二试验用捕捉器1b的结构的概略作为示意图表示。此外,第二试验用捕捉器1b除了光源11和支承部件30的形状不同以外,与第一试验用捕捉器1a一样。第二试验用捕捉器1b的光源11(第二光源11b)是额定耗电量为30W,且能够放射紫外光的捕虫器用荧光管(捕虫用荧光灯,FL30SBL,Toshiba Lighting株式会社制造)。另外,第二试验用捕捉器1b的放射强度是上述那样算出的光通量密度的值成为50×1014的放射强度。图9及图10中将本试验的结果与第一试验例的试验结果一起表示。如图9及图10所示,若是市售品的光通量密度的值成为50×1014的放射强度,则确认到烟草粉斑螟及印度谷螟的捕虫数较小。
根据以上内容,在放射照度(光通量密度)的值较低的情况下,容易捕捉斑螟,但在放射照度(光通量密度)的值较高的情况下,难以捕捉斑螟。另外,第一试验用捕捉器1a及第二试验用捕捉器1b中,捕捉部20配置于光源部10的附近。因此,本试验的结果也能够评价为,在捕捉部20的附近存在较高的放射照度(光通量密度)的区域即行动抑制区域时,斑螟的捕虫数减少。将斑螟成虫通过引诱光引诱,并利用配置于引诱光的射出端的附近的捕捉部件捕捉时,优选将照射于斑螟成虫的引诱光的强度设为比0大且低于40×1014、比0大且低于20×1014、比0大且低于10×1014、比0大且低于2×1014、比0大且低于0.1×1014、0.1×1014以上且低于40×1014、0.1×1014以上且低于20×1014、0.1×1014以上且低于10×1014、0.1×1014以上且低于2×1014、2×1014以上且低于40×1014、2×1014以上且低于20×1014、2×1014以上且低于10×1014、10×1014以上且低于40×1014、10×1014以上且低于20×1014、或20×1014以上且低于40×1014的范围中的任一范围。进一步优选为:比0大且低于20×1014、比0大且低于10×1014、比0大且低于2×1014、比0大且低于0.1×1014、0.1×1014以上且低于20×1014、0.1×1014以上且低于10×1014、0.1×1014以上且低于2×1014、2×1014以上且低于20×1014、2×1014以上且低于10×1014、或10×1014以上且低于20×1014的范围中的任一范围。另外,捕捉部件的附近的光通量密度的值包含0.1×1014、2×1014、10×1014、20×1014中的任一值,优选包含0.1×1014、2×1014、10×1014中的任一值。
[试验例2]
如试验例1的试验的结果所示,光源部10以较高的放射强度射出引诱光时,即存在较高的放射照度(光通量密度)的区域时,斑螟的捕虫数减少。因此,本试验中,为了使放射照度(光通量密度)的大小与斑螟的活动的关系明确,观察多个放射照度(光通量密度)的环境下的斑螟的举动。
图11表示本试验的试验区域的概要。如图11所示,试验区域中设置有:配置测试昆虫的观察区域、向该观察区域照射引诱光(紫外光)的光源11、向该观察区域照射照明光的照明装置50。作为照明装置50,使用了装配有防紫外线袖套(UV Guard,Fujifilm株式会社制造)的荧光管(Panasonic株式会社制造,FL20WS)。试验区域以不从试验区域外入射光的方式构成。
观察区域中,为了将测试昆虫配置于观察区域内,而配置有培养皿。培养皿为高度1.5cm、直径4cm的圆形,在上部设置有盖。培养皿在观察区域内以在离开光源11的方向上成为5列、在与离开光源的方向正交的方向上成为4列的方式配置。
光源11配置于距观察区域的一端离开5cm,且距观察区域的底面高10cm的位置。另外,光源11的射出端(射出面)与观察区域的中心的距离为15cm。作为光源11,试验例1中使用了上述的第一光源11a。
照明装置50配置于观察区域的上方。照明装置50射出的照明光为模拟日光的白色光。通过照明装置50射出的照明光,能够将观察区域设为明期或设为暗期。
本试验中,进行视频拍摄,并观察配置于各个培养皿内的斑螟的举动。烟草粉斑螟的活动在暗期成为活跃,因此,不限于明期,即使在暗期也进行拍摄。暗期中的拍摄使用高灵敏度摄像头(WAT-232,Watec株式会社制造)和红外线投光器(SM-104-850,HOGA株式会社制造)进行。
本试验中使用的测试昆虫是产生24小时以内,且交配的烟草粉斑螟的雌雄各10只。试验昆虫是在明期14小时及暗期10小时的饲养条件下饲养至成为成虫的烟草粉斑螟。测试昆虫逐一配置于培养皿的内部。
在此,说明本试验的顺序。首先,在试验区域配置放入烟草粉斑螟的培养皿。配置后,在暗期开始之前开始试验,并开始视频拍摄。视频拍摄继续进行至第四天。试验开始之后设为暗期。从暗期开始10小时后,再次设为明期。明期条件通过将照明光照射至观察区域整体而实现。此外,明期中,照明装置照射于观察区域的照明光的照度[lux]的值为200~250。从明期开始14小时后,停止照明光向观察区域的照射并再次设为暗期。这些明暗条件根据饲养条件设定。这样,在本试验的期间,反复进行明期和暗期。从试验开始第三天的暗期开始1小时后,将紫外光向观察区域整体照射10秒钟。然后,使用视频拍摄的结果,计数直到将紫外光向观察区域照射的10秒之前活动的个体中、多少只个体在紫外光的照射后停止活动。
图12中表示本试验的结果。图12是表示紫外光(引诱光)的强度与烟草粉斑螟的活动停止比例的关系的度数分布。图12中所示的图表中,纵轴表示活动停止比例,横轴表示光通量密度。在此,活动停止比例是紫外光的照射后停止活动的个体(活动停止个体)占据直到将紫外光向观察区域照射的10秒之前活动的个体(之前活动个体)的比例。
如图12所示,就活动停止比例(活动停止个体数/之前活动个体数)而言,光通量密度的值为0.1×1014时是(6/16),2×1014、10×1014、20×1014、40×1014、60×1014、75×1014、100×1014时,分别是(8/10)、(6/9)、(7/8)、(11/12)、(10/11)、(10/11)、(14/14)。这样可知,烟草粉斑螟在光通量密度的值为20×1014以上的情况下,约90%的个体由于紫外光(引诱光)而停止活动。
根据以上内容,包含烟草粉斑螟的斑螟在规定的值以上的放射照度(光通量密度)的环境(行动抑制区域)中抑制行动。这样表示,斑螟具有被引诱光引诱的性质和在行动抑制区域产生行动抑制的性质。行动抑制区域中的光通量密度的值的范围例如为20×1014以上。
另一方面,表示包含烟草粉斑螟的斑螟在低于规定值的放射照度(光通量密度)的环境(非行动抑制区域)下抑制行动。即,如果直到被引诱光引诱的斑螟成虫到达捕捉部件的移动路径上的区域(移动区域)处于非行动抑制区域内,或如果非行动抑制区域处于移动区域内,则启示能够捕捉斑螟成虫的可能性。在此,引诱光的射出端的高度与地面之间的区域内中,当将处于非行动抑制区域内且移动区域内的区域设为引导路径时,本试验的结果能够表达为,如果为引导路径内,则启示使用光线陷阱能够捕捉斑螟成虫的可能性。根据本试验结果,非行动抑制区域的光通量密度的值的范围是例如比0大且低于20×1014、比0大且低于10×1014、比0大且低于2×1014、比0大且低于0.1×1014、0.1×1014以上且低于20×1014、0.1×1014以上且低于10×1014、0.1×1014以上且低于2×1014、2×1014以上且低于20×1014、2×1014以上且低于10×1014、10×1014以上且低于20×1014的范围中的任一范围。另外,非行动抑制区域的光通量密度的值包含0.1×1014、2×1014、10×1014中的任一值。
[试验例3]
一般而言,斑螟的灾害成为问题的仓库等大多为较宽阔的空间。因此,在仓库等中要引诱并捕捉分布于大范围的斑螟的情况下,需要以引诱光到达至远处的方式,以较高的放射强度射出引诱光。另一方面,在以较高的放射强度射出引诱光的情况下,在被引诱光引诱的斑螟的移动路径上可产生行动抑制区域。在移动区域处于行动抑制区域内的情况下,斑螟的捕捉变得困难。因此,为了使形成引导路径时要求的引诱光的射出特性明确,对被引诱光引诱的斑螟的移动路径(移动区域)进行了研究。
图13表示将本试验中使用的第一试验区域A1(仓库)的结构从上方观察的俯视图。如图13所示,第一试验区域A1的深度(X方向)为22.5m,地面面积约为425m2。在第一试验区域A1的X-侧的壁面,可沿X+方向射出引诱光地配置有捕捉器。第一试验区域A1为没有窗户的空的仓库,是不会从试验区域外入射光的结构。在从配置有捕捉器的位置向X+方向(引诱光的射出方向)离开5m的位置设置有第一牧放地点R1。同样,在从捕捉器1向X+方向离开10m、20m的位置分布设置有第二牧放地点R2、第三牧放地点R3。
本试验通过在上述的第一试验区域A1配置第三试验用捕捉器1c而进行。第三试验用捕捉器1c以捕捉器的下端与地面接触的方式配置。
在此,关于第三试验用捕捉器1c的结构的概略,将主视图(上)和侧视图(下)并排并作为示意图在图14中表示。第三试验用捕捉器1c具备:具备光源11及光圈13(光学元件12)的光源部10、具备中央捕捉部23的捕捉部20、支承部件30。如图14所示,第三试验用捕捉器1c具有在光源11的附近且周围(Y-Z面)配置有中央捕捉部23的结构。中央捕捉部23的捕捉部件配置于中央捕捉部23的X+侧。捕捉部件是1m角的可更换的粘合纸。第三试验用捕捉器1c具备的第三光源11c(光源11)是能够放射紫外光的荧光管(20W,FL20SBL,ToshibaLighting株式会社制造)。第三光源11c放射的光线(引诱光)的中心波长为375~380nm。第三试验用捕捉器1c具备的光圈13(第一光圈13a)覆盖光源11,使光源11放射的引诱光的放射面成为狭缝状。作为第一光圈13a,使用了铝箔。第一光圈13a的狭缝(开口部)的宽度为1cm,并朝向X+方向。
本试验中使用的试验对象(测试昆虫)为雌雄各50只烟草粉斑螟。
说明本试验的顺序。首先,向捕捉部20安装粘合纸。然后,将测试昆虫100只从第一试验区域A1的第二牧放地点R2同时牧放。牧放后,使光源部10以规定的放射强度射出引诱光。规定时间后回收粘合纸,并计数被粘合纸捕捉的测试昆虫的只数。此外,本试验中,进行在牧放后第二天回收的顺序的试验和在牧放后第三天回收的顺序的试验。
另外,本试验中,作为比较例,在同条件下进行使用了第四试验用捕捉器1d的试验。第四试验用捕捉器1d除了不具备光圈13(第一光圈13a)以外,与第三试验用捕捉器1c一样。
图15及图16中表示本试验的结果。图15及图16分别表示使用了第三试验用捕捉器1c的情况和使用了第四试验用捕捉器1d的情况下的烟草粉斑螟的捕虫数的分布。
如图15所示,捕虫分布在光源11的引诱光的放射端的下侧具有不均。另一方面,如图16所示,在不存在抑制放射照度的区域的情况下,捕虫数较低,且捕虫分布中看不到不均。
根据以上启示被引诱光引诱的斑螟(烟草粉斑螟)的移动路径是相对于引诱光的射出端(光源11)从下侧(Z-侧)向引诱光的射出端飞行的路径的可能性。
[试验例4]
[试验例4-1]
根据试验例3的试验结果,启示斑螟(烟草粉斑螟)在光源(射出端)的眼前从射出端的下侧向射出端上升(飞行)的可能性。另一方面,直到光源(射出端)的眼前的移动路径(移动区域)还未阐明。因此,为了使形成引导路径时要求的引诱光的射出特性明确,对被引诱光引诱的斑螟的移动路径(移动区域)进一步进行了研究。
图17是用于说明本试验的图。如图17所示,本试验例的试验区域是试验例1中使用的试验区域。参照图3,本试验例的第五试验用捕捉器1e具备:与上述的第二实施方式的捕捉器1一样的结构、具备捕捉部件的卧式捕捉部24。第五试验用捕捉器1e与第二实施方式的捕捉器1的光学元件12(光圈13)的结构和光源11的配置均不同。第五试验用捕捉器1e以下端的高度距地面成为90cm的方式配置于试验区域的中央。
第五试验用捕捉器1e具备的第四光源11d(光源11)是额定耗电量为4W,且能够放射紫外光的荧光管(FL4BLB,东芝制造)。图18中表示第四光源11d的分光分布。图18中所示的图表的纵轴为每个波长的放射照度[μW/cm2/nm],横轴为波长[nm]。图18所示的放射照度是在不设置光学元件12的状态下在图2所示的测量位置MP测量的值。如图18所示,第四光源11d放射的光线(引诱光)的中心(峰值)波长约为350nm。与第四光源11d放射的光线(引诱光)的射出端正对且分离15cm的测量位置MP的光通量密度为42.3×1014photons/m2/s。由于第四光源11d为直管形的荧光管,第四光源11d放射的光线(引诱光)的指向特性沿着第四光源11d的周向一样(Z方向上全向)。第四光源11d与第二实施方式的捕捉器1不同,配置于中央捕捉部23的X+侧。
第五试验用捕捉器1e具备的第二光圈13b(针孔,光学元件12)为设置有开口部的铝箔。第二光圈13b以覆盖第四光源11d的方式配置。第二光圈13b的开口部的形状为大致圆形。第二光圈13b的开口部的面积为3mm2。由第二光圈13b覆盖的第四光源11d以开口部成为中央捕捉部23的中心的方式配置于中央捕捉部的X+侧的面。
第五试验用捕捉器1e具备的中央捕捉部23的捕捉部件配置于中央捕捉部23的X+侧。捕捉部件是50cm角的可更换的粘合纸。第五试验用捕捉器1e具备的卧式捕捉部24的捕捉部件配置于卧式捕捉部24的Z+侧。捕捉部件是50cm角的可更换的粘合纸。第五试验用捕捉器1e具备的卧式捕捉部24配置于中央捕捉部23的下方、地面上。
本试验例的第六试验用捕捉器1f除了卧式捕捉部24的捕捉部件配置于距地面30cm的高度以外,与第五试验用捕捉器1e相同。
本试验例的第七试验用捕捉器1g除了卧式捕捉部24的捕捉部件配置于距地面50cm的高度以外,与第五试验用捕捉器1e相同。
本试验例的第八试验用捕捉器1h除了卧式捕捉部24的捕捉部件配置于距地面80cm的高度以外,与第五试验用捕捉器1e相同。
本试验中使用的试验对象(测试昆虫)为雌雄各50只烟草粉斑螟。
说明本试验的顺序。首先,向捕捉部20安装粘合纸。然后,将测试昆虫100只从牧放地点R0同时牧放。牧放后,使光源部10以规定的放射强度射出引诱光。在引诱光的射出开始23小时后回收粘合纸,并计数被粘合纸捕捉的测试昆虫的只数。此外,本试验中,分别以上述的顺序对第五试验用捕捉器1e、第六试验用捕捉器1f、第七试验用捕捉器1g及第八试验用捕捉器1h的每个捕捉器进行试验。
图19中表示本试验的结果。图19表示烟草粉斑螟的捕虫数与卧式捕捉部24的捕捉部件的高度的关系。图19中,横轴表示捕捉面的高度,纵轴表示捕虫比例。
如图19所示,卧式捕捉部24的捕捉部件的高度为0cm时的捕虫比例是卧式捕捉部24的捕捉部件的高度为30cm、50cm及80cm时的捕虫比例的约2倍。根据以上启示,包含烟草粉斑螟的斑螟被引诱光引诱且飞向射出端时,在地面与距地面30cm的高度之间的区域移动(飞行或步行)。还启示了,在距地面30cm的范围移动至射出端的下方附近之后,向射出端飞行(移动)。在此,第五试验用捕捉器1e具备的卧式捕捉部24的捕捉部件的X+侧的端为从射出端的正下方向X+侧25cm的位置,因此,可以说上述的射出端的下方附近为与地面平行地距射出端25cm以内的范围。根据以上能够表达为,斑螟的移动区域是与地面大致平行地距配置有射出端的面25cm以内的区域及距地面的高度为30cm以内的区域。
[试验例4-2]
试验例4-1中,作为斑螟的一例,对与烟草粉斑螟相关的移动路径(移动区域)进行了研究。另一方面,斑螟不限于烟草粉斑螟,包含印度谷螟、粉斑螟蛾、地中海斑螟。因此,本试验例中,对与印度谷螟、粉斑螟蛾及地中海斑螟相关的移动路径(移动区域)进一步研究。
本试验例的各种的试验条件除了试验昆虫的种类及每个试验的只数不同以外,与试验例4-1相同。本试验中使用的试验对象(测试昆虫)是雌雄各25只印度谷螟、粉斑螟蛾及地中海斑螟。本试验涉及印度谷螟、粉斑螟蛾及地中海斑螟各自进行。
图20中表示与印度谷螟相关的本试验的结果。图20表示印度谷螟的捕虫数与卧式捕捉部24的捕捉面的高度的关系。图20中,横轴表示捕捉面的高度,纵轴表示捕虫比例。如图20所示,卧式捕捉部24的捕捉面的高度为0cm时的捕虫比例是卧式捕捉部24的捕捉面的高度为30cm、50cm及80cm时的捕虫比例的约3倍。根据以上启示了,印度谷螟被引诱光引诱且飞向射出端时,在地面与距地面30cm的高度之间的区域移动(飞行或步行)。还启示了,在距地面30cm的范围移动至射出端的下方附近之后,向射出端飞行(移动)。在此,第五试验用捕捉器1e具备的卧式捕捉部24的捕捉部件的X+侧的端为从射出端的正下方向X+侧25cm的位置,因此,可以说上述的射出端的下方附近为与地面平行地距射出端25cm以内的范围。根据以上能够表达为,印度谷螟的移动区域是与地面大致平行地距配置有射出端的面25cm以内的区域及距地面的高度为30cm以内的区域。
图21中表示与粉斑螟蛾相关的本试验的结果。图21表示粉斑螟蛾的捕虫数与卧式捕捉部24的捕捉面的高度的关系。图21中,横轴表示捕捉面的高度,纵轴表示捕虫比例。如图21所示,卧式捕捉部24的捕捉面的高度为0cm时的捕虫比例是卧式捕捉部24的捕捉面的高度为30cm、50cm及80cm时的捕虫比例各自的1.25倍、2.5倍及5倍。换言之,该捕捉面的高度为0cm或30cm时的捕虫比例是该捕捉面的高度为50cm及80cm时的捕虫比例的2倍以上。另外,该捕捉面的高度为0cm时的捕虫比例比该捕捉面的高度为30cm时的捕虫比例更大。根据这些表示了,与烟草粉斑螟及印度谷螟一样,粉斑螟蛾的移动区域包含与地面大致平行地距配置有射出端的面25cm以内的区域及距地面的高度为30cm以内的区域。
在此,如图17所示,捕捉面高度为30cm时,与地面大致平行地距配置有射出端的面25cm以内的区域为捕捉面与地面之间的区域。当然,包含粉斑螟蛾的斑螟由于物理的干涉不能通过设置的捕捉面。也就是,满足该捕捉面的高度为30cm时,距地面的高度为30cm以内和与地面大致平行地距配置有射出端的面25cm以内中至少一方的区域被捕捉面分断。这样,与粉斑螟蛾相关的本试验中,捕捉面的高度为0cm或30cm时的捕虫比例是该捕捉面的高度为50cm及80cm时的捕虫比例的2倍以上。也就是,与粉斑螟蛾相关的本试验中,除了该捕捉面的高度为0cm时,该捕捉面的高度为30cm时,捕虫比例也较大。根据这些表示了,设置于30cm的高度的卧式捕捉部24未将被引诱光引诱且向引诱光的射出端飞行(移动)的粉斑螟蛾的移动区域分断。这样,根据与粉斑螟蛾相关的本试验的结果表示了,设置于0cm及30cm的高度的卧式捕捉部24未将向射出端飞行(移动)的粉斑螟蛾的移动区域分断成地面侧的区域和射出端侧的区域。换言之,表示了设置于50cm及80cm的高度的卧式捕捉部24将向射出端飞行(移动)的粉斑螟蛾的移动区域分断成地面侧的区域和射出端侧的区域。
如上述,被引诱光引诱的斑螟从射出端的高度更下方向射出端飞行(移动)。也就是,根据通过本试验例表示,关于粉斑螟蛾启示了以下。
启示了粉斑螟蛾例如被引诱光引诱且飞向射出端时,在地面与距地面50cm的高度之间的区域移动(飞行或步行)。或,启示了粉斑螟蛾例如被引诱光引诱且飞向射出端时,在地面与距地面30cm的高度之间的区域移动(飞行或步行),或距地面的高度为30cm~50cm之间的区域移动(飞行)。也就是,根据本考察,认为被引诱光引诱的粉斑螟蛾在距地面50cm的范围移动至射出端的下方附近后,向射出端飞行(移动)。此时,能够表达为粉斑螟蛾的移动区域是与地面大致平行地距配置有射出端的面25cm以内的区域及距地面的高度为50cm以内的区域。换言之,粉斑螟蛾的移动区域包含烟草粉斑螟及印度谷螟的移动区域和距地面的高度为30cm~50cm之间的区域。
另外,例如,启示了被引诱光引诱的粉斑螟蛾从比烟草粉斑螟及印度谷螟靠跟前(牧放地点R0侧)向射出端飞行(移动)。具体而言,认为粉斑螟蛾从比与地面大致平行地距配置有射出端的面25cm靠跟前(牧放地点R0侧)向射出端飞行(移动)。在此,为了简单,被引诱光引诱且飞向射出端的粉斑螟蛾向射出端大致直线性地飞行(移动)。另外,将被引诱光引诱且飞向射出端的粉斑螟蛾的上升角(上升梯度)设为上升角CA1。此时,能够表达为粉斑螟蛾的移动区域还包含根据设置于50cm的高度的捕捉面的X+侧的边和粉斑螟蛾的上升角CA1决定的区域。具体而言,粉斑螟蛾的移动区域还包含通过设置于50cm的高度的捕捉面的X+侧的边,且比与该捕捉面构成的角与上升角CA1相等的面(根据上升角CA1的面)靠下方的区域。此外,关于根据上升角CA1的面上的任意的点,距地面的高度随着朝向X-侧而变高。由于以上,根据本考察,能够表达为粉斑螟蛾的移动区域是包含与地面大致平行地距配置有射出端的面25cm以内的区域、距地面的高度为30cm以内的区域、由上升角CA1限定的区域的区域。换言之,粉斑螟蛾的移动区域包含烟草粉斑螟及印度谷螟的移动区域和由上升角CA1限定的区域。
图22中表示与地中海斑螟相关的本试验的结果。图22表示地中海斑螟的捕虫数与卧式捕捉部24的捕捉面的高度的关系。图22中,横轴表示捕捉面的高度,纵轴表示捕虫比例。如图22所示,卧式捕捉部24的捕捉面的高度为0cm时的捕虫比例是卧式捕捉部24的捕捉面的高度为30cm及50cm时的捕虫比例的各自5倍及2倍。根据以上内容了,与烟草粉斑螟、印度谷螟及粉斑螟蛾一样,地中海斑螟的移动区域包含与地面大致平行地距配置有射出端的面25cm以内的区域及距地面的高度为30cm以内的区域。
在此,如图17所示,捕捉面高度为80cm时,与地面大致平行地距配置有射出端的面25cm以内的区域是捕捉面与地面之间的区域。当然,包含地中海斑螟的斑螟由于物理性的干涉而不能通过设置的捕捉面。也就是,满足该捕捉面的高度为80cm时,距地面的高度为30cm以内和与地面大致平行地距配置有射出端的面25cm以内中至少一方的区域被捕捉面分断。这样,与地中海斑螟相关的本试验中,捕捉面的高度为80cm时的捕虫比例比该捕捉面的高度为0cm时的捕虫比例更高。具体而言,捕捉面的高度为80cm时的捕虫比例是捕捉面的高度为0cm时的捕虫比例的1.3倍。也就是,与地中海斑螟相关的本试验中,除了该捕捉面的高度为0cm时,该捕捉面的高度为80cm时,捕虫比例也较大。根据这些表示了,设置于80cm的高度的卧式捕捉部24不分断被引诱光引诱且向引诱光的射出端飞行(移动)的地中海斑螟的移动区域。这样,根据与地中海斑螟相关的本试验的结果表示了,设置于80cm以下的高度的卧式捕捉部24未将向射出端飞行(移动)的地中海斑螟的移动区域分断成地面侧的区域和射出端侧的区域。
如上述,被引诱光引诱的斑螟从射出端的高度更下方向射出端飞行(移动)。也就是,根据通过本试验例表示,关于地中海斑螟启示以下。
启示了地中海斑螟例如被引诱光引诱且飞向射出端时,在地面与距地面80cm的高度之间的区域移动(飞行或步行)。也就是,根据本考察,认为被引诱光引诱的地中海斑螟在距地面80cm的范围移动至射出端的下方附近之后,向射出端飞行(移动)。此时,能够表达为地中海斑螟的移动区域是与地面大致平行地距配置有射出端的面25cm以内的区域及距地面的高度为80cm以内的区域。换言之,地中海斑螟的移动区域包含烟草粉斑螟及印度谷螟的移动区域和距地面的高度为30cm~80cm的区域。
此外,捕捉面的高度为80cm时,成为最高的捕虫比例和射出端的高度为115cm,因此,也可以表达为地中海斑螟的移动区域是与地面大致平行地距配置有射出端的面25cm以内的区域及距地面的高度为115cm以内的区域。
此外,捕捉面的高度为30cm或50cm时的捕虫比例是该捕捉面的高度为0cm及80cm时的捕虫比例的0.5倍以下。根据以上启示了,被引诱光引诱的地中海斑螟例如被引诱光引诱且飞向射出端时,在地面与距地面30cm的高度之间的区域移动(飞行或步行),或在距地面50cm以上的高度移动(飞行)。也就是,也可以表达为地中海斑螟的移动区域是与地面大致平行地距配置有射出端的面25cm以内的区域、距地面的高度为30cm以内的区域、距地面的高度为50cm以上80cm或115cm以下的区域。
另外,启示了例如被引诱光引诱的地中海斑螟从比烟草粉斑螟及印度谷螟靠跟前(牧放地点R0侧)向射出端飞行(移动)。具体而言,认为地中海斑螟从比与地面大致平行地距配置有射出端的面25cm靠跟前(牧放地点R0侧)向射出端飞行(移动)。在此,为了简单,被引诱光引诱且飞向射出端的地中海斑螟向射出端大致直线性地飞行(移动)。另外,将被引诱光引诱且飞向射出端的地中海斑螟的上升角(上升梯度)设为上升角CA2。此时,能够表达为地中海斑螟的移动区域还包含根据地中海斑螟的上升角CA2决定的区域。由于以上,根据本考察,能够表达为地中海斑螟的移动区域是包含与地面大致平行地距配置有射出端的面25cm以内的区域、距地面的高度为30cm以内的区域、由上升角CA2限定的区域的区域。换言之,地中海斑螟的移动区域包含烟草粉斑螟及印度谷螟的移动区域和由上升角CA2限定的区域。在此,例如如果粉斑螟蛾的上升角CA1与地中海斑螟的上升角CA2为同程度,则启示被引诱光引诱的地中海斑螟从比粉斑螟蛾靠跟前(牧放地点R0侧)向射出端飞行(移动)。
如以上进行的说明,根据与试验例4相关的考察,斑螟的移动区域至少包含与地面大致平行地距配置有射出端的面25cm以内的区域及距地面的高度为30cm以内的区域。另外,关于斑螟,捕捉部件例如只要配置于引导路径内的地面上或距地面30cm以下的高度即可。
另外,根据与试验例4相关的考察,如果以不分断斑螟的移动区域的方式配置捕捉部件,则能够提高捕虫比例。换言之,斑螟成虫的引诱或捕捉中要求的引诱光的射出特性(要求射出特性)包含以斑螟的移动区域不被捕捉部件分断的方式形成引导路径。
另外,根据与试验例4相关的考察,认为粉斑螟蛾及地中海斑螟在比烟草粉斑螟及印度谷螟靠上方(距地面的高度较高的区域)向射出端飞行(移动)。换言之,粉斑螟蛾及地中海斑螟的移动区域还包含距地面的高度比烟草粉斑螟及印度谷螟的移动区域高的区域。
具体而言,粉斑螟蛾的移动区域除了烟草粉斑螟及印度谷螟的移动区域之外,还包含距地面的高度为30cm~50cm之间的区域。也就是,关于粉斑螟蛾,捕捉部件例如只要配置于引导路径的地面上或距地面50cm以下的高度即可。优选捕捉部件只要配置于地面上和距地面30cm的高度即可。另外,具体而言,地中海斑螟的移动区域除了烟草粉斑螟及印度谷螟的移动区域之外,还包含距地面的高度为30cm~115cm的区域。更优选为,地中海斑螟的移动区域除了烟草粉斑螟及印度谷螟的移动区域之外,还包含距地面的高度为30cm~80cm的区域或距地面的高度为50cm~115cm的区域。更优选为,地中海斑螟的移动区域除了烟草粉斑螟及印度谷螟的移动区域之外,还包含距地面的高度为50cm~80cm的区域。也就是,关于地中海斑螟,捕捉部件例如只要配置于引导路径内的地面上或距地面50cm以上且80cm以下的高度即可。此外,这些捕捉部件配置的距地面的高度只要根据斑螟的移动区域的高度适当选择即可。
另外,根据与试验例4相关的考察,认为例如,粉斑螟蛾及地中海斑螟从比烟草粉斑螟及印度谷螟靠跟前(牧放地点R0侧)向射出端飞行(移动)。因此,认为捕捉粉斑螟蛾及地中海斑螟时,不限于大致平行地距配置有射出端的面25cm以内的地面,在跟前(牧放地点R0侧)的地面进一步设置捕捉部件是有效的。此时,捕捉部件也可以具有一个较大的捕捉面,也可以具有多个捕捉面。
[试验例5]
[试验例5-1]
如试验例1~试验例4的试验结果所示,斑螟成虫的引诱或捕捉中要求的引诱光的射出特性(要求射出特性)包含在比光源11的高度靠下侧形成引导路径。进一步优选要求射出特性还包含能够引诱大范围的斑螟成虫。本试验例中,对使用射出具有指向性的引诱光(窄角配光的引诱光)的第一实施方式的捕捉器1(第九试验用捕捉器1i)实施的捕捉试验进行说明。
本试验例的试验区域是参照图13说明的第一试验区域A1。本试验例的试验通过在上述的第一试验区域A1的X-侧的壁面可向X+方向射出引诱光地配置第九试验用捕捉器1i(捕捉器1)而进行。第九试验用捕捉器1i以捕捉器的下端与地面接触的方式配置。
参照图1,第九试验用捕捉器1i具有上述的第一实施方式的捕捉器1的结构。如图1所示,光源部10具备光源11(第五光源11e)。以第五光源11e的支承部件30的下端(第九试验用捕捉器1i的下端)为基准的高度为20cm。第五光源11e是能够射出紫外光(引诱光)的发光二极管(NS375L-5RLO,Nitride Semiconductors株式会社制造)。
图23中表示第五光源11e的分光分布(放射强度的波长依赖性)。图23中所示的图表的纵轴为每个波长的放射照度[μW/cm2/nm],横轴为波长[nm]。图23所示的放射照度是在与第五光源11e的射出端正对且分离15cm的位置(图2所示的测量位置MP)测量的值。如图23中由实线所示,第五光源11e放射的光线(引诱光)的中心波长(峰值波长)为375~380nm。第五光源11e产生的测量位置MP的光通量密度[photons/m2/s]的值为18.9×1014
图24中表示第五光源11e的指向特性。如图24中由实线所示,第五光源11e放射的光线(引诱光)的半值角约为15°(窄角配光)。在此,半值角为光轴与相对于光轴上的放射照度(光通量密度)成为50%的放射照度(光通量密度)的光线方向构成的角度。
捕捉部20配置于光源部10的附近,捕捉被引诱光引诱的斑螟。捕捉部20配置于引导路径内。如图1所示,本试验例的捕捉部20具备下侧捕捉部21和上侧捕捉部22。下侧捕捉部21配置于第五光源11e(光源11)的附近且下侧(Z-侧)。下侧捕捉部21的中心配置于距第九试验用捕捉器1i的下端10cm的高度。上侧捕捉部22配置于第五光源11e的附近且上侧(Z+侧)。上侧捕捉部22的中心配置于距第九试验用捕捉器1i的下端30cm的高度。在下侧捕捉部21及上侧捕捉部22的X+侧的面,作为捕捉部件配置有可更换的粘合片。
另外,本试验例中,作为比较例,进行使用了射出广角配光的引诱光的第十试验用捕捉器1j及第十一试验用捕捉器1k的试验。第十试验用捕捉器1j除了光源11使用第六光源11f以外,与第九试验用捕捉器1i相同。图25是关于第十一试验用捕捉器1k的结构的概略将主视图(左)和侧视图(右)并排表示的示意图。如图25所示,第十一试验用捕捉器1k除了在光源11使用第七光源11g以外,与第九试验用捕捉器1i相同。
第六光源11f是构成为能够射出紫外光(引诱光)的广角配光的发光二极管(NS375L-5RFS,Nitride Semiconductors株式会社制造)。如图23中由虚线所示,第六光源11f放射的光线(引诱光)的中心波长(峰值波长)为375~380nm。另外,在第六光源11f的测量位置MP测量的光线(引诱光)的光通量密度为19.9×1014photons/m2/s。如图24中由虚线所示,第六光源11f放射的光线(引诱光)的指向特性是半值角约为65°的广角配光。
第七光源11g是额定耗电量为30W,且能够射出紫外光(引诱光)的捕虫器用荧光管(捕虫用荧光灯,FL30SBL,Toshiba Lighting株式会社制造)。在此,第七光源11g是与第二光源11b相同的荧光管。另一方面,为了驱动(引诱光的射出)而施加的电力值不同。因此,第二光源11b和第七光源11g作为不同的光源11记载。图26中表示第七光源11g的分光分布。图26中所示的图表的纵轴为每个波长的放射照度[μW/cm2/nm],横轴为波长[nm]。图26所示的放射照度是在图2所示的测量位置MP测量的值。如图26所示,第七光源11g放射的光线(引诱光)的中心(峰值)波长约为350nm。第七光源11g产生的测量位置MP的光通量密度[photons/m2/s]的值为37.5×1014。就第七光源11g放射的光线(引诱光)的指向特性而言,第七光源11g为直管形的荧光管,因此,沿第七光源11g的周向一样(Z方向上全向)。
本试验中使用的测试昆虫为雌雄各60只烟草粉斑螟及印度谷螟。测试昆虫从第一牧放地点R1、第二牧放地点R2及第三牧放地点R3每雌雄各20只牧放。在试验之前,为了能够判别从哪个牧放地点牧放,在各个牧放地点使用不同颜色的荧光颜料对测试昆虫施加印记。
在此,说明本试验的顺序。首先,向捕捉部20安装粘合纸。然后,将测试昆虫120只从各个牧放地点同时牧放。牧放后,使光源部10以规定的放射强度射出引诱光10小时。在开始引诱光的射出后10小时后回收粘合纸,并计数被粘合纸捕捉的测试昆虫的只数。相对于第九试验用捕捉器1i、第十试验用捕捉器1j及第十一试验用捕捉器1k,按照每个捕捉器实施这些顺序。
图27及图28中表示本试验的结果。图27及图28分别表示牧放地点其它的烟草粉斑螟的捕虫比例及牧放地点其它的印度谷螟的捕虫比例。图27及图28中,横轴表示牧放位置的距引诱光的射出端(捕捉器1)的距离,纵轴表示捕虫比例。
如图27及图28所示,第十试验用捕捉器1j及第十一试验用捕捉器1k的捕虫比例不管牧放位置及斑螟种类,均表示较低的倾向。另一方面,第九试验用捕捉器1i的捕虫比例比其它的捕捉器高。另外,相对于在接近捕捉器的第一牧放地点R1牧放的斑螟,第九试验用捕捉器1i的捕虫比例呈现特别高的值。
在此,参照图2更详细地说明通过从第九试验用捕捉器1i射出的引诱光形成的行动抑制区域、非行动抑制区域及引导路径。此外,图2中,将第五光源11e和第六光源11f的配光角θ/2分别表示为窄角配光角θn/2和广角配光角θw/2。在此,配光角是光轴与引诱光的放射照度(光通量密度)成为行动抑制光量的光线方向构成的角度。
如图2所示,光源部10的射出端(光源11)以距地面3为20cm的高度配置于壁面2。图2中表示与光源部10的射出端正对且分离15cm的放射照度的测量位置MP和测量位置MP的地面3上的投影位置IP。也能够表达为投影位置IP是以引诱光的放射端为基准,处于从引诱光(光源部10)的光轴向Z-方向偏离53°的方向的地面3上的点。
如图24中由实线所示,第五光源11e放射的光线(引诱光)的放射照度(光通量密度)低于0.5(低于50%)的放射角度(半值角)为15°以上。另外,投影位置IP的放射照度(光通量密度)相对于在测量位置MP测量的放射照度(光通量密度)为0.05倍程度。另一方面,如图24中由虚线所示,第六光源11f放射的光线(引诱光)的放射照度(光通量密度)低于0.5(低于50%)的放射角度(半值角)为60°(广角配光角θw/2)以上。另外,投影位置IP的放射照度相对于在测量位置MP测量的放射照度为0.7倍程度。
在此,在测量位置MP测量的第五光源11e及第六光源11f的光通量密度均约为20×1014photons/m2/s。另外,使斑螟成虫产生行动抑制的比例较低的光通量密度低于20×1014photons/m2/s,例如为10×1014photons/m2/s以下。此外,如参照图26进行的上述,第七光源11g放射的光线的在测量位置MP测量的光通量密度约为40×1014photons/m2/s,也不具有指向性。
因此,如图4的行动抑制区域SA1那样,从第五光源11e的光轴偏离15°(窄角配光角θn/2)以内的区域中,成为光通量密度的值为10×1014photons/m2/s以上的行动抑制区域SA。另一方面,如图2的非行动抑制区域WA1那样,以引诱光的放射端为基准,从第五光源11e的光轴偏离15°(窄角配光角θn/2)以上的投影位置IP的光通量密度的值成为低于10×1014photons/m2/s。同样,从第六光源11f的光轴偏离60°以上的、通过测量位置MP和投影位置IP的直线上的区域中,光通量密度的值成为10×1014photons/m2/s以下。此外,从第六光源11f的光轴偏离53°(极限配光角θc/2)以上时,引诱光形成的行动抑制区域与地面3接触。
即,投影位置IP是第九试验用捕捉器1i形成的行动抑制区域SA1的区域外,且第十试验用捕捉器1j形成的行动抑制区域SA2及第十一试验用捕捉器1k形成的行动抑制区域的区域内。同样,投影位置IP是第九试验用捕捉器1i形成的非行动抑制区域WA1的区域内,且第十试验用捕捉器1j形成的非行动抑制区域WA2及第十一试验用捕捉器1k形成的非行动抑制区域的区域外。即,第九试验用捕捉器1i能够满足上述的要求射出特性,在行动抑制边界面IB的上侧形成行动抑制区域,且在下侧形成非行动抑制区域。另一方面,第十试验用捕捉器1j及第十一试验用捕捉器1k不满足上述的要求射出特性,不能在行动抑制边界面IB的下侧形成引导路径。
根据以上内容,能够满足上述的要求射出特性,且在比光源的高度靠下侧形成引导路径的捕捉器1在斑螟成虫的引诱及捕捉上是有效的。另外,第一捕捉器在行动抑制边界面的上侧形成行动抑制区域,能够引诱大范围的斑螟成虫。
[试验例5-2]
试验例5-1中,作为斑螟的一例,对关于烟草粉斑螟及印度谷螟,使用具有指向性的引诱光实施的捕捉试验进行了说明。另一方面,斑螟不限于烟草粉斑螟及印度谷螟,包含粉斑螟蛾及地中海斑螟。因此,本试验例中,对关于粉斑螟蛾及地中海斑螟,使用射出具有指向性的引诱光(窄角配光的引诱光)的第一实施方式的捕捉器1(第九试验用捕捉器1i)实施的捕捉试验进行说明。
本试验例的各种的试验条件除了试验区域、试验昆虫的种类及只数、牧放后的引诱光的照射时间不同以外,与试验例5-1相同。
图29表示将本试验例中实施捕捉试验的试验例5-2的试验区域A1′的结构从上方观察的俯视图。如图29所示,试验例5-2的试验区域A1′的深度(X方向)为30m,地面面积为450m2。在从捕捉器1向X+方向(引诱光的射出方向)分离5m的位置设置有试验例5-2的第一牧放地点R1′。同样,在从捕捉器1向X+方向分离15m及25m的位置分别设置有试验例5-2的第二牧放地点R2′及试验例5-2的第三牧放地点R3′。在试验例5-2的试验区域A1′的X-侧的壁面,可向X+方向射出引诱光地配置有第九试验用捕捉器1i(捕捉器1)。第九试验用捕捉器1i以捕捉器的下端与地面接触的方式配置。另外,本试验例中,作为比较例,也进行使用了射出广角配光的引诱光的第十试验用捕捉器1j及第十一试验用捕捉器1k的试验。
本试验中使用的测试昆虫是雌雄各75只粉斑螟蛾及地中海斑螟。本试验关于粉斑螟蛾及地中海斑螟同时进行。测试昆虫分别从试验例5-2的第一牧放地点R1′、试验例5-2的第二牧放地点R2′及试验例5-2的第三牧放地点R3′每雌雄各25只牧放。在试验之前,为了能够判别从哪个牧放地点牧放,在各个牧放地点使用不同的颜色的荧光颜料对测试昆虫施加印记。此外,捕捉的试验昆虫是粉斑螟蛾和地中海斑螟中哪一种能够从外表容易地判别。
在此,说明本试验的顺序。首先,向捕捉部20安装粘合纸。然后,将测试昆虫300只从各个牧放地点同时牧放。牧放后,使光源部10以规定的放射强度射出引诱光24小时。在开始引诱光的射出后24小时后回收粘合纸,按照每个种类计数被粘合纸捕捉的测试昆虫的只数。相对于第九试验用捕捉器1i、第十试验用捕捉器1j及第十一试验用捕捉器1k,按照每个捕捉器实施这些顺序。
图30及图31中表示本试验的结果。图30及图31分别表示牧放地点其它的粉斑螟蛾的捕虫比例及牧放地点其它的地中海斑螟的捕虫比例。图30及图31中,横轴表示牧放位置的距引诱光的射出端(捕捉器1)的距离,纵轴表示捕虫比例。
如图30及图31所示,第十试验用捕捉器1j及第十一试验用捕捉器1k的捕虫比例与试验例5-1一样,不管牧放位置及斑螟(粉斑螟蛾或地中海斑螟)的种类,均呈现较低的倾向。另一方面,与试验例5-1一样,第九试验用捕捉器1i的捕虫比例比其它的捕捉器高。另外,与试验例5-1一样,相对于在接近捕捉器的试验例5-2的第一牧放地点R1′牧放的斑螟(粉斑螟蛾或地中海斑螟),第九试验用捕捉器1i的捕虫比例呈现特别高的值。
如以上进行的说明,根据与试验例5相关的考察表示,能够满足上述的要求射出特性,且在比光源的高度靠下侧形成引导路径的捕捉器1在斑螟成虫的引诱及捕捉上是有效的。另外,第一捕捉器在行动抑制边界面的上侧形成行动抑制区域,且能够引诱大范围的斑螟成虫。在此,斑螟至少包含烟草粉斑螟、印度谷螟、粉斑螟蛾以及地中海斑螟。
[试验例6]
本试验例中,对使用能够将光源11放射的引诱光利用光圈13作为窄角配光的引诱光射出的第二实施方式的捕捉器1(第十二试验用捕捉器1l及第十三试验用捕捉器1m)实施的捕捉试验进行说明。
图32表示将本试验例中实施了捕捉试验的第二试验区域A2(仓库)的结构从上方观察的俯视图。如图32所示,第二试验区域A2的深度(X方向)为32m,地面面积约为748m2。在从捕捉器1向X+方向(引诱光的射出方向)分离5m的位置设置有第四牧放地点R4。同样,在从捕捉器1向X+方向分离10m、20m、30m的位置分别设置有第五牧放地点R5、第六牧放地点R6、第七牧放地点R7。第四牧放地点R4~第七牧放地点R7的各个牧放地点分开地配置于捕捉器1的Y+侧及Y-侧的两个部位。在第二试验区域A2的X-侧的壁面,可向X+方向射出引诱光地配置有捕捉器1。第十二试验用捕捉器1l及第十三试验用捕捉器1m以各个捕捉器1的下端与地面接触的方式配置。第二试验区域A2是不会从试验区域外入射光的空的仓库。
参照图3,第十二试验用捕捉器1l具有上述的第二实施方式的捕捉器1的结构。第十二试验用捕捉器1l具备:具备第四光源11d(光源11)及第三光圈13c(光圈13,光学元件12)的光源部10、具备中央捕捉部23的捕捉部20、支承部件30。
第十二试验用捕捉器1l具备的第四光源11d配置于中央捕捉部23的X-侧的中心附近。
第三光圈13c(光圈13)的开口部配置于中央捕捉部23的中心。第三光圈13c的开口部的形状为大致圆形。第三光圈13c的开口部的面积为3mm2
中央捕捉部23的捕捉部件配置于中央捕捉部23的X+侧。捕捉部件是开口部设置于中心的50cm角的可更换的粘合纸。
第十三试验用捕捉器1m除了光圈13(光学元件12)的形状及大小不同以外,与第十二试验用捕捉器1l相同。第十三试验用捕捉器1m的第四光圈13d(光圈13)的开口部的形状为10mm角的大致矩形。第四光圈13d的开口部的面积为100mm2
本试验中使用的测试昆虫为雌雄各200只烟草粉斑螟。测试昆虫从分别设置于两个部位的第四牧放地点R4、第五牧放地点R5、第六牧放地点R6或第七牧放地点R7每雌雄各100只牧放。
在此,说明本试验的顺序。首先,向捕捉部20安装粘合纸。然后,将测试昆虫200只从各个牧放地点每100只同时牧放。牧放后,使光源部10以规定的放射强度射出引诱光。在开始引诱光的射出后3天后(4天后)回收粘合纸,并计数被粘合纸捕捉的测试昆虫的只数。本试验进行在开始引诱光的射出后3天后计数捕虫数的试验和开始引诱光的射出后4天后计数捕虫数的试验。相对于第十二试验用捕捉器1l及第十三试验用捕捉器1m各自,按照第四牧放地点R4~第七牧放地点R7的各个牧放地点进行这些顺序。
图33中表示本试验的结果。图33表示开口部的面积为3mm2的第十二试验用捕捉器1l的捕虫比例和开口部的面积为100mm2的第十三试验用捕捉器1m的捕虫比例。图33中,横轴表示牧放位置的距引诱光的射出端(捕捉器1)的距离,纵轴表示捕虫比例。
如图33所示,表示了即使使用第十二试验用捕捉器1l及第十三试验用捕捉器1m的任意捕捉器1,也能够捕捉斑螟。另外,相对于在接近捕捉器1的第一牧放地点R1牧放的斑螟,捕虫比例呈现特别高的值。
比较第十二试验用捕捉器1l的捕虫比例和第十三试验用捕捉器1m的捕虫比例时,也表示了光圈13的开口部的面积较大的第十三试验用捕捉器1m的捕虫比例一方高。这能够推测为基于开口部的面积的行动抑制区域的大小(引诱光的光量,放射强度)引起的。
根据以上,本试验的结果与上述的试验例的试验结果一样,除了在比光源高度靠下侧(行动抑制边界面的下侧)形成引导路径的捕捉器1的有用性之外,利用较大的行动抑制区域进一步呈现相对于斑螟成虫的引诱性较高的捕捉器1的有用性。
[试验例7]
本试验中,对窄角配光的引诱光的水平方向(Y方向)的引诱性(捕虫比例)进行研究。
图34表示将第三试验区域A3(仓库)的结构从上方观察的俯视图。用作第三试验区域A3的空间(仓库)与第二试验区域A2一样。具体而言,配置有捕捉器1的第三试验区域A3的X-侧的壁面是第二试验区域A2的Y-侧的壁面。在从捕捉器1分离5m的位置放射状地设置有第八牧放地点R8、第九牧放地点R9及第十牧放地点R10。第八牧放地点R8以在捕捉器1的X+方向(引诱光的射出方向)上与引诱光的射出端正对的方式配置。第九牧放地点R9相对于捕捉器1配置于从第八牧放地点R8的位置沿顺时针方向移动+45°的位置。第十牧放地点R10相对于捕捉器1配置于从第八牧放地点沿顺时针方向移动-45°的位置。在第三试验区域A3的X-侧的壁面可向X+方向射出引诱光地配置有捕捉器1。第三试验区域A3为空的仓库,以不从试验区域外入射光的方式构成。
本试验例中,使用试验例5-1中使用的第九试验用捕捉器1i和第十试验用捕捉器1j实施捕捉试验。
本试验中使用的测试昆虫是雌雄各20只烟草粉斑螟及印度谷螟。测试昆虫从第八牧放地点R8、第九牧放地点R9及第十牧放地点R10的各个牧放地点每烟草粉斑螟及印度谷螟的雌雄各20只牧放。测试昆虫中,为了能够判别从哪个牧放地点牧放,施加印记。
在此,说明本试验的顺序。首先,向捕捉部20安装粘合纸。然后,将测试昆虫240只从各个牧放地点同时牧放。牧放后,使光源部10以规定的放射强度射出引诱光。在开始引诱光的射出后10小时后回收粘合纸,并计数被粘合纸捕捉的测试昆虫的只数。将这些顺序对第九试验用捕捉器1i、第十试验用捕捉器1j各个捕捉器均实施。
图35及图36中表示本试验的结果。图35及图36分别表示烟草粉斑螟相对于牧放位置的捕虫比例和印度谷螟相对于牧放位置的捕虫比例。图35及图36中,横轴表示以引诱光的射出端为基准的牧放位置相对于引诱光的光轴的角度,纵轴表示捕虫比例。
如图35及图36所示,第九试验用捕捉器1i的捕虫比例成为比第十试验用捕捉器1j的捕虫比例大致高的值。特别是相对于从位于引诱光的射出方向的第八牧放地点R8牧放的斑螟的捕虫比例突出。另一方面,例如以发现第十牧放地点R10的捕虫比例的方式射出窄角配光的引诱光的第九试验用捕捉器1i的捕虫比例相对于从引诱光的射出方向偏离的位置的斑螟较低。
即,第九试验用捕捉器1i相对于位于第九试验用捕捉器1i形成的行动抑制区域SA的下方(Z-方向)或前方(X+方向)的斑螟的引诱性高。另一方面,相对于位于从第九试验用捕捉器1i形成的行动抑制区域SA在水平方向(Y方向)上偏离的区域的斑螟的引诱性较低。
根据以上,本试验的结果表示,将窄角配光的引诱光沿水平方向放射状地射出的捕捉器1的有用性。即,表示了水平方向上为广角配光,且重力方向(Z方向)上为窄角配光的具有指向性的引诱光的有用性。
[试验例8]
本试验例中,对使用通过将光源11放射的引诱光中、朝向行动抑制边界面的下侧的引诱光利用ND滤镜进行减光并射出而能够形成非行动抑制区域及引导路径的第十四试验用捕捉器1n实施的捕捉试验进行说明。
本试验例的试验区域是参照图13说明的第一试验区域A1。本试验例的试验通过在上述的第一试验区域A1的X-侧的壁面可向X+方向射出引诱光地配置第十四试验用捕捉器1n(捕捉器1)而进行。第十四试验用捕捉器1n配置于光源高度成为70cm的高度。
参照图5,第十四试验用捕捉器1n具有上述的第三实施方式的捕捉器1的结构。如图1所示,第十四试验用捕捉器1n的光源部10具备光源11(第四光源11d)和减光部件14(光学元件12)。
光源部10的第四光源11d(光源11)是参照图18说明的、能够射出紫外光(引诱光)的4W的荧光管。第四光源11d产生的测量位置MP的光通量密度[photons/m2/s]的值为42.3×1014。第四光源11d为直管形的荧光管,因此,第四光源11d放射的光线(引诱光)的指向特性在第四光源11d的周向上一样(Z方向上全向)。
光源部10的减光部件14(光学元件12)是减光学滤光片(ND片,#2110.9ND610×610mm,LFEFILTER株式会社制造)。图37中表示第四光源11d的该减光学滤光片透射(通过)后的光线的分光分布。图37中所示的图表中,纵轴为每个波长的放射照度[μW/cm2/nm],横轴为波长[nm]。图37所示的放射照度是在图2所示的测量位置MP测量的值。参照图18,引诱光的中心(峰值)波长与不使用上述的减光学滤光片的情况一样。减光学滤光片透射后的第四光源11d的引诱光产生的、测量位置MP的光通量密度[photons/m2/s]的值为0.5×1014
这样,减光部件14使从减光部件14的上侧(Z+侧)入射的光线(引诱光)减光98%以上。因此,使用了第十四试验用捕捉器1n的试验中,作为行动抑制光量以上的区域的行动抑制区域与作为低于行动抑制光量的区域的非行动抑制区域的边界为减光部件14,因此,配置有减光部件14的位置为行动抑制边界面。
另外,本试验例中,作为比较例,在同条件下使用第十五试验用捕捉器1o进行试验。第十五试验用捕捉器1o除了不具备减光部件14以外,与第十四试验用捕捉器1n相同。
本试验中使用的测试昆虫是雌雄各60只烟草粉斑螟及印度谷螟。测试昆虫从第一牧放地点R1、第二牧放地点R2及第三牧放地点R3每雌雄各20只牧放。测试昆虫中,为了能够判别从哪个牧放地点牧放,施加印记。
在此,说明本试验的顺序。首先,向捕捉部20安装粘合纸。然后,将测试昆虫240只从各个牧放地点同时牧放。牧放后,使光源部10以规定的放射强度射出引诱光10小时。在开始引诱光的射出后10小时后回收粘合纸,并计数被粘合纸捕捉的测试昆虫的只数。
图38及图39中表示本试验的结果。图38及图39分别表示牧放地点其它的烟草粉斑螟的捕虫比例和牧放地点其它的印度谷螟的捕虫比例。图38及图39中,横轴表示牧放位置的距引诱光的射出端的距离,纵轴表示捕虫比例。如图38及图39所示,在比光源11的高度靠下侧形成引导路径的第十四试验用捕捉器1n的捕虫比例比未形成引导路径的第十五试验用捕捉器1o的捕虫比例高。
根据以上内容,上述的要求射出特性也可以使用减光部件14(光学元件12)实现。另外,表示能够在行动抑制边界面的上侧形成行动抑制区域,且在下侧形成非行动抑制区域(引导路径)的捕捉器1在斑螟成虫的捕捉中是有效的。
此外,本发明不限定于上述实施方式,可在实施阶段在不脱离其宗旨的范围内进行各种变形。另外,各实施例也可以适当组合并实施,在该情况下,得到组合的效果。另外,上述实施方式中包含各种发明,通过从公开的多个构成要件选择的组合,可提取各种发明。例如,即使从实施方式中表示的全部构成要件删除一些构成要件,也能够解决课题,在得到效果的情况下,删除了该构成要件的结构可作为发明提取。
例如,第一变形例的技术也可以适用于第三实施方式的捕捉器1。另外,各个试验用捕捉器的结构中也可以使用构成为窄角配光的光源11,也可以使用各种光圈13、减光部件14等的光学元件12。例如,第三试验例的试验用捕捉器的结构也可以以狭缝的开口部的长边方向与Y方向大致平行的形式使用。例如,还考虑在大致水平地配置于X-Y面的减光部件14的Z+侧的面配置光源11,且在Z-侧的面配置捕捉部20的结构。
上述的试验例中,将烟草粉斑螟、印度谷螟、粉斑螟蛾以及地中海斑螟中的至少一种用作试验昆虫并进行了试验。但是,这些试验中得到的见解不限于用作试验昆虫的斑螟,能够视为相对于包含烟草粉斑螟、印度谷螟、粉斑螟蛾以及地中海斑螟的室内性的斑螟成虫的见解。当然,适当的行动抑制光量和移动区域的形状及大小可根据种类不同而各异。另一方面,如果是在地面附近移动之后从射出端的下侧向引诱光的射出端飞行的斑螟成虫且能够定义行动抑制光量的斑螟成虫,则能够应用上述的引诱方法、捕捉方法、光源装置及捕捉器的技术。
附图标记说明
1…捕捉器,1a…第一试验用捕捉器,1b…第二试验用捕捉器,1c…第三试验用捕捉器,1d…第四试验用捕捉器,1e…第五试验用捕捉器,1f…第六试验用捕捉器,1g…第七试验用捕捉器,1h…第八试验用捕捉器,1i…第九试验用捕捉器,1j…第十试验用捕捉器,1k…第十一试验用捕捉器,1l…第十二试验用捕捉器,1m…第十三试验用捕捉器,1n…第十四试验用捕捉器,1o…第十五试验用捕捉器,2…壁面,3…地面,10…光源部,11…光源,11a…第一光源,11b…第二光源,11c…第三光源,11d…第四光源,11e…第五光源,11f…第六光源,11g…第七光源,12…光学元件,13…光圈,13a…第一光圈,13b…第二光圈,13c…第三光圈,13d…第四光圈,14…减光部件,20…捕捉部,21…下侧捕捉部,22…上侧捕捉部,23…中央捕捉部,24…卧式捕捉部,30…支承部件,50…照明装置。

Claims (26)

1.一种斑螟成虫的捕捉方法,该斑螟成虫是属于斑螟亚科的蛾的成虫即室内性的斑螟成虫,其中,
以规定的光通量密度将具有指向性的引诱光射出规定的时间以上,
在比所述引诱光的射出端的高度靠下侧且具有比所述规定的光通量密度小的光通量密度的区域内形成将所述斑螟成虫引导至所述射出端的附近的引导路径,
在所述引导路径内捕捉被所述引诱光引诱的所述斑螟成虫,
所述引导路径内的所述引诱光的光通量密度d[photons/m2/s]是满足
0<d<20×1014
的关系的值。
2.如权利要求1所述的斑螟成虫的捕捉方法,其中,
所述引导路径处于所述射出端的高度与地面之间的区域中的非行动抑制区域内且移动区域内,在所述非行动抑制区域中所述引诱光的光通量密度的值低于使所述斑螟成虫产生行动抑制的光通量密度的值,在所述移动区域中被所述引诱光引诱的斑螟成虫向所述射出端的附近移动,
所述非行动抑制区域内的所述引诱光的光通量密度d[photons/m2/s]是满足
0<d<20×1014
的关系的值。
3.如权利要求1或2所述的斑螟成虫的捕捉方法,其中,
所述引诱光的射出通过将降低所述引诱光的光通量密度的减光部件配置于所述射出端的下侧而进行,
所述减光部件将所述规定的光通量密度设为低于在所述引导路径内使所述斑螟成虫产生行动抑制的光通量密度的值。
4.如权利要求3所述的斑螟成虫的捕捉方法,其中,
所述减光部件沿大致水平方向延伸。
5.如权利要求1所述的斑螟成虫的捕捉方法,其中,
具有所述指向性的所述引诱光的射出通过在与光源对置的位置配置包含孔部或狭缝的光圈而进行。
6.如权利要求1或5所述的斑螟成虫的捕捉方法,其中,
具有所述指向性的所述引诱光的射出关于大致水平方向放射状地进行。
7.如权利要求1或2所述的斑螟成虫的捕捉方法,其中,
所述引导路径包含与地面大致平行地距配置有所述射出端的面15cm以内的区域和距地面的高度为30cm以内的区域。
8.如权利要求1或2所述的斑螟成虫的捕捉方法,其中,
所述引诱光的射出向大致水平方向进行,
所述引导路径内的所述引诱光的光通量密度d[photons/m2/s]是满足
0<d<2×1014
的关系的值。
9.如权利要求1或2所述的斑螟成虫的捕捉方法,其中,
所述引诱光的射出向大致水平方向进行,
所述引导路径内的所述引诱光的光通量密度d[photons/m2/s]是满足
0<d≦0.1×1014
的关系的值。
10.如权利要求1或2所述的斑螟成虫的捕捉方法,其中,
所述捕捉通过在所述引导路径内的所述射出端的附近配置捕捉部件而进行。
11.如权利要求1或2所述的斑螟成虫的捕捉方法,其中,
所述捕捉通过在所述引导路径内的地面上配置捕捉部件而进行。
12.如权利要求1或2所述的斑螟成虫的捕捉方法,其中,
还包括使用斑螟成虫用的引诱物质将所述斑螟成虫引诱至所述射出端的附近。
13.如权利要求1或2所述的斑螟成虫的捕捉方法,其中,
所述斑螟成虫为粉斑螟蛾的成虫,
所述引导路径包含与地面大致平行地距配置有所述射出端的面15cm以内的区域和距所述地面的高度为50cm以内的区域,
所述捕捉通过在距所述引导路径内的所述地面50cm以下的高度配置捕捉部件而进行。
14.如权利要求1或2所述的斑螟成虫的捕捉方法,其中,
所述斑螟成虫为地中海斑螟的成虫,
所述引导路径包含与地面大致平行地距配置有所述射出端的面15cm以内的区域、距所述地面的高度为30cm以内的区域、距所述地面50cm以上且80cm以下的高度的区域,
所述捕捉通过在距所述引导路径内的所述地面30cm以下的高度或距所述引导路径内的所述地面50cm以上且80cm以下的高度配置捕捉部件而进行。
15.一种烟草粉斑螟成虫的捕捉方法,其中,
以规定的光通量密度将具有指向性的引诱光射出规定的时间以上,
在比所述引诱光的射出端的高度靠下侧且具有比所述规定的光通量密度小的光通量密度的区域内形成将所述烟草粉斑螟成虫引导至所述射出端的附近的引导路径,
在所述引导路径内捕捉被所述引诱光引诱的所述烟草粉斑螟成虫,
所述引导路径内的所述引诱光的光通量密度d[photons/m2/s]是满足
0<d<20×1014
的关系的值。
16.一种光源装置,用于引诱斑螟成虫,其中,
以规定的光通量密度射出具有指向性的引诱光,通过所述引诱光的射出,在比所述引诱光的射出端的高度靠下侧且具有比所述规定的光通量密度小的光通量密度的区域内形成将属于斑螟亚科的蛾的成虫即室内性的斑螟成虫引导至所述射出端的附近的引导路径,
所述引导路径内的所述引诱光的光通量密度d[photons/m2/s]是满足
0<d<20×1014
的关系的值。
17.根据用于引诱权利要求16所述的斑螟成虫的光源装置,其中,
所述引导路径处于所述射出端的高度与地面之间的区域中的的非行动抑制区域内且移动区域内,在所述非行动抑制区域中所述引诱光的光通量密度的值低于使所述斑螟成虫产生行动抑制的光通量密度的值,在所述移动区域中被所述引诱光引诱的斑螟成虫向所述射出端的附近移动,
所述非行动抑制区域内的所述引诱光的光通量密度d[photons/m2/s]是满足
0<d<20×1014
的关系的值。
18.根据用于引诱权利要求16或17所述的斑螟成虫的光源装置,其中,
具备减光部件,其配置于所述射出端的下侧,且将所述规定的光通量密度设为低于在所述引导路径内使所述斑螟成虫产生行动抑制的光通量密度的值。
19.根据用于引诱权利要求16所述的斑螟成虫的光源装置,其中,
具有所述指向性的所述引诱光关于大致水平方向放射状地射出。
20.根据用于引诱权利要求19所述的斑螟成虫的光源装置,其中,
具备射出所述引诱光的至少一个发光二极管。
21.根据用于引诱权利要求16或17所述的斑螟成虫的光源装置,其中,
具备光源和将从所述光源入射的光线作为所述引诱光射出的光学元件。
22.根据用于引诱权利要求21所述的斑螟成虫的光源装置,其中,
所述光学元件是配置于与所述光源对置的位置的包含孔部或狭缝的光圈。
23.一种斑螟成虫的捕捉器,其中,具备:
权利要求16~22中任一项所述的所述光源装置;
捕捉部,其配置于所述引导路径内,且能够捕捉被所述引诱光引诱的所述斑螟成虫。
24.如权利要求23所述的斑螟成虫的捕捉器,其中,
所述捕捉部配置于所述引导路径内的所述射出端的附近。
25.如权利要求23所述的斑螟成虫的捕捉器,其中,
所述捕捉部配置于所述引导路径内的地面上。
26.如权利要求23~25中任一项所述的斑螟成虫的捕捉器,其中,
还具备药剂收纳部,其构成为能够将斑螟成虫用的引诱物质向所述射出端的附近扩散。
CN201880083953.5A 2017-12-26 2018-09-26 室内性的属于斑螟亚科的蛾的成虫的捕捉方法、光源装置及捕捉器 Active CN111511205B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017249932 2017-12-26
JP2017-249932 2017-12-26
PCT/JP2018/035743 WO2019130698A1 (ja) 2017-12-26 2018-09-26 屋内性のマダラメイガ亜科に属する蛾の成虫の捕獲方法、光源装置及び捕獲器

Publications (2)

Publication Number Publication Date
CN111511205A CN111511205A (zh) 2020-08-07
CN111511205B true CN111511205B (zh) 2022-12-09

Family

ID=67066954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880083953.5A Active CN111511205B (zh) 2017-12-26 2018-09-26 室内性的属于斑螟亚科的蛾的成虫的捕捉方法、光源装置及捕捉器

Country Status (5)

Country Link
US (2) US11968970B2 (zh)
EP (1) EP3732960A4 (zh)
JP (1) JP6972176B2 (zh)
CN (1) CN111511205B (zh)
WO (1) WO2019130698A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708559B (zh) * 2019-11-27 2020-11-01 廣達電腦股份有限公司 捕蟲裝置及其計數方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251397A (en) * 1992-03-09 1993-10-12 Happy Jack, Inc. Illuminated flea trap
US5607711A (en) * 1995-11-01 1997-03-04 The Regents Of The University Of California Method of controlling insects and mites with pulsed ultraviolet light
JPH1175657A (ja) * 1997-09-16 1999-03-23 Ishimoto Nougiken:Kk 捕虫器
JP4162770B2 (ja) * 1998-08-28 2008-10-08 イカリ消毒株式会社 殺虫装置
JP2004000093A (ja) * 2002-05-31 2004-01-08 Toshiba Lighting & Technology Corp 発光装置および照明装置
WO2008067678A1 (en) 2006-12-07 2008-06-12 Contech Enterprises Inc. Apparatus and method for emitting specific wavelengths of visible light to manipulate the behavior of stored product insect pests
WO2008111232A1 (ja) * 2007-03-15 2008-09-18 Hiromichi Yamasaki 飛翔虫捕獲器
JP5662799B2 (ja) * 2007-09-24 2015-02-04 ブランデンバーグ (ユーケイ) リミテッド 捕虫器
JP5568546B2 (ja) * 2009-02-26 2014-08-06 株式会社アン企画 捕虫機
JP3162013U (ja) * 2010-05-26 2010-08-19 三興電機株式会社 遮光板付電撃殺虫器
JP2012152125A (ja) * 2011-01-25 2012-08-16 Japan Tobacco Inc 捕虫システム
CN202059910U (zh) * 2011-03-18 2011-12-07 北京中捷四方生物科技有限公司 一种用于防治粉斑螟属和谷斑螟属的诱捕装置
US8978290B2 (en) * 2011-04-22 2015-03-17 William Wright Luminous insect trap
JP2012239443A (ja) * 2011-05-23 2012-12-10 Akari Higo 捕虫器
JP5938653B2 (ja) * 2012-05-11 2016-06-22 パナソニックIpマネジメント株式会社 害虫防除照明システム
CA2900244C (en) * 2013-03-01 2021-11-09 Arthropod Biosciences, Llc Insect trap device and method of using
JP6118239B2 (ja) * 2013-11-29 2017-04-19 雅敏 堀 害虫の防除方法及び防除装置
CN106793769B (zh) * 2014-12-08 2020-10-23 中国电力株式会社 藤壶类的附着抑制方法
EP3181759B1 (en) * 2015-03-27 2021-01-27 The Chugoku Electric Power Co., Inc. Method for preventing adhesion of fouling organisms
MX2017015377A (es) * 2015-05-29 2018-03-15 Ecolab Usa Inc Dispositivo y metodo para atraer y atrapar insectos voladores.
KR20180036743A (ko) * 2015-07-31 2018-04-09 고쿠리츠겐큐가이하츠호징 노우교 · 쇼쿠힝 산교기쥬츠 소고겐큐기코 포식성 곤충의 유인 또는 정착 방법
JP3204262U (ja) * 2016-03-04 2016-05-26 株式会社西當照明 捕虫器
WO2017159918A1 (ko) * 2016-03-14 2017-09-21 서울바이오시스 주식회사 포충기

Also Published As

Publication number Publication date
EP3732960A4 (en) 2021-09-15
US20230014533A1 (en) 2023-01-19
WO2019130698A1 (ja) 2019-07-04
US11968971B2 (en) 2024-04-30
JP6972176B2 (ja) 2021-11-24
US20200323189A1 (en) 2020-10-15
CN111511205A (zh) 2020-08-07
US11968970B2 (en) 2024-04-30
JPWO2019130698A1 (ja) 2020-10-22
EP3732960A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
KR102491078B1 (ko) 점착형 포충기
US8276314B2 (en) Terrestrial arthropod trap
KR102457324B1 (ko) 포충기
KR101099946B1 (ko) 면감지 센서 및 해충 포획장치
CN111511205B (zh) 室内性的属于斑螟亚科的蛾的成虫的捕捉方法、光源装置及捕捉器
US20100088948A1 (en) Device for catching phototaxis flying insects
JP2009268438A (ja) 捕虫装置
JP6006303B2 (ja) 飛翔虫誘引ステーション
JP2007000102A (ja) 光誘引捕虫システム
JP2007082479A (ja) 捕獲殺虫装置
KR20150124766A (ko) 해충 트랩 장치
JP6073760B2 (ja) 捕虫装置
JP2012152125A (ja) 捕虫システム
JP6699962B2 (ja) 捕虫器
TWI820305B (zh) 捕蟲器
KR20190066225A (ko) 점착시트로 빛이 투과되는 파리 포충기
JP7109073B2 (ja) 捕虫装置及び当該捕虫装置を用いた捕虫方法
GB2477079A (en) Insect trap
EP4154708A1 (en) Insect trap
CN115316356A (zh) 一种多功能林木害虫监测装置
JP2012055246A (ja) 徘徊性昆虫誘引システム
JP3759299B2 (ja) 昆虫誘引忌避装置
KR20090061454A (ko) 해충 포획장치
JPH09140311A (ja) 害虫誘引捕獲器
JP2020195403A (ja) 捕虫器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant