CN111505078A - 一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法 - Google Patents

一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法 Download PDF

Info

Publication number
CN111505078A
CN111505078A CN202010431901.1A CN202010431901A CN111505078A CN 111505078 A CN111505078 A CN 111505078A CN 202010431901 A CN202010431901 A CN 202010431901A CN 111505078 A CN111505078 A CN 111505078A
Authority
CN
China
Prior art keywords
nanowire array
enzyme
glucose sensor
electrode
composite nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010431901.1A
Other languages
English (en)
Other versions
CN111505078B (zh
Inventor
王玫
周晓斌
刘芳
孟二超
巩飞龙
李峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Light Industry
Original Assignee
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Light Industry filed Critical Zhengzhou University of Light Industry
Priority to CN202110662723.8A priority Critical patent/CN113189176B/zh
Priority to CN202010431901.1A priority patent/CN111505078B/zh
Publication of CN111505078A publication Critical patent/CN111505078A/zh
Application granted granted Critical
Publication of CN111505078B publication Critical patent/CN111505078B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry

Abstract

本发明提供了一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法,将阳极氧化铝模板进行导电处理;在阳极氧化铝导电模板内进行Au沉积,然后再进行Ni沉积;去除沉积了Au和Ni的阳极氧化铝导电模板,得到Ni/Au复合纳米线阵列;将Ni/Au复合纳米线阵列一端粘到修饰电极上,进行电位环扫直至循环伏安图稳定,即得到无酶葡萄糖传感器电极。该无酶葡萄糖传感器电极采用电沉积法将具有不同电负性的贵金属元素及非贵金属元素构建为双层的纳米线结构,明显提高了电极电流,提高了无酶葡萄糖传感器的灵敏度,解决了制约无酶葡萄糖传感器的应用限制问题。

Description

一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备 方法
技术领域
本发明属于电化学技术领域。具体涉及一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法。
背景技术
葡萄糖含量的快速灵敏检测在临床医学检验、食品安全分析以及生物发酵控制等领域都有着十分重要的应用,其中又以血液中葡萄糖含量的检测最为重要。血液中的葡萄糖水平异常会导致许多严重的疾病,最为常见且与人们身体密切相关的有糖尿病。根据国际糖尿病联盟(International Diabetes Federation,IDF)的数据,2015年,全世界共有4.15亿糖尿病患者,几乎每11个人中就有1个糖尿病患者,而糖尿病如果不能有效控制,可导致脑中风、冠心病、失明、肾衰尿毒症、下肢坏死等多种并发症,严重威胁人们的健康。全球每年约有460万人死于糖尿病及其并发症,平均每7秒钟就有1人因糖尿病离世。由此可见,全球糖尿病防控形势已日趋严峻。
因此,作为临床上诊断糖尿病的唯一标准,血液中葡萄糖含量的检测显得尤为重要。目前,葡萄糖含量的检测方法有很多种,如色谱法、光谱法和电化学方法等。其中的电化学葡萄糖传感器因其能够实时检测、可靠性高、成本低及易于操作等优点而被广泛研究。
葡萄糖传感器根据修饰电极中是否含有葡萄糖氧化酶,可以分为酶葡萄糖传感器和无酶葡萄糖传感器两大类。对于酶葡萄糖传感器由于酶易失活,且受环境因素(如温度、湿度及pH等)的影响大,固定困难等问题,导致酶葡萄糖传感器的稳定性和寿命较差。对于无酶葡萄糖传感器而言,电极材料是决定其性能的最重要因素。金属及其氧化物材料,如铂、金、钯、镍、铜、钴等,由于良好的催化性能和生物兼容性,成为无酶葡萄糖传感器理想的电极材料。但是相对于酶催化剂而言,无酶催化剂对葡萄糖氧化的反应动力学较慢、选择性较差,从而导致无酶葡萄糖传感器的灵敏度较差、性能相对较差,这是制约无酶葡萄糖传感器应用的主要问题。因此研究高性能无酶葡萄糖传感器电极材料的生长机理及制备方法,改善电极材料的灵敏度、选择性和稳定性,成为该领域中的研究热点。
发明内容
针对上述问题,本发明创造性的提出了一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法。该无酶葡萄糖传感器电极采用电沉积法将具有不同电负性的贵金属元素及非贵金属元素构建为双层的纳米线结构,明显提高了电极电流,提高了无酶葡萄糖传感器的灵敏度,解决了制约无酶葡萄糖传感器的应用限制问题。
一种上述的Ni/Au复合纳米线阵列无酶葡萄糖传感器电极的制备方法,该方法包括以下步骤:
(1)Ni/Au复合纳米线阵列的制备
将阳极氧化铝模板进行导电处理;
在阳极氧化铝导电模板内进行Au沉积,然后再进行Ni沉积;
去除沉积了Au和Ni的阳极氧化铝导电模板,得到Ni/Au复合纳米线阵列;
(2)无酶葡萄糖传感器电极的制备
将步骤(1)得到的Ni/Au复合纳米线阵列一端粘到(采用导电银浆(Ted Pella,Inc.)进行粘贴)修饰电极上,进行电位环扫直至循环伏安图稳定,即得到无酶葡萄糖传感器电极。
进一步地,采用磁控溅射Au层的方法对阳极氧化铝模板进行所述导电处理,包括:在阳极氧化铝模板上利用磁控溅射的方法溅射一层金层作为导电层;所述金层的厚度优选为100-200nm。
进一步地,步骤(1)去除阳极氧化铝导电模板后还包括以下步骤:去除沉积了Au和Ni的阳极氧化铝导电模板,然后进行清洗、烘干处理。
进一步地,氧化铝导电模板上沉积Au时以Au/阳极氧化铝为阴极、铂片为阳极、氯金酸溶液为电解液进行Au的沉积;优选地,沉积Au时的电流为0.08-0.12mA·cm-2,如0.08mA·cm-2、0.09mA·cm-2、0.1mA·cm-2、0.11mA·cm-2、0.12mA·cm-2;沉积时间优选为6-10小时,如6小时、7小时、8小时、9小时、10小时;
独立优选地,所用氯金酸溶液的浓度为22-28mmol/L,如22mmol/L、23mmol/L、24mmol/L、25mmol/L、26mmol/L、28mmol/L。
进一步地,在氧化铝导电模板上进行Au沉积还包括以下步骤:Au沉积完成后,将沉积Au的阳极氧化铝模板采用去离子水清洗三次,然后放入烘箱中在60℃条件下烘干0.8-1.2小时,如0.8小时、0.9小时、1.0小时、1.1小时、1.2小时。
进一步地,进行Ni沉积时以Au/阳极氧化铝为阴极,铂片为阳极,硼酸溶液、柠檬酸溶液和硫酸镍溶液的混合溶液为电解液进行Ni的沉积;优选地,Ni沉积时的电流为0.08-0.12mA·cm-2,如0.08mA·cm-2、0.09mA·cm-2、0.1mA·cm-2、0.11mA·cm-2、0.12mA·cm-2;沉积时间优选为6-10小时,如6小时、7小时、8小时、9小时、10小时;
独立优选地,Ni沉积电解液中硼酸的浓度为20g/L硼酸,柠檬酸的浓度为0.8g/L,硫酸镍的浓度独立可选为80g/L。
进一步地,所述去除沉积了Au和Ni的阳极氧化铝导电模板具体为:将沉积了Au和Ni的阳极氧化铝导电模板至于浓度为0.8-1.2mol/L的氢氧化钠溶液中浸泡10-14小时,其中氢氧化钠的浓度可以为0.8mol/L、0.9mol/L、1.0mol/L、1.1mol/L、1.2mol/L,浸泡时间可以为10小时、11小时、12小时、13小时、14小时。
进一步地,将步骤(1)得到的Ni/Au复合纳米线阵列一端粘到修饰电极上之后还包括以下操作:将Ni/Au复合纳米线阵列一端粘到修饰电极上之后,采用烘箱在60℃条件下烘干0.8-1.2小时;并将Ni/Au与修饰电极的边缘密封、再在60℃条件下烘干0.8-1.2小时;然后进行电位扫面。
进一步地,所述电位环扫时的电压范围为-0.8~0.8V;工作时的温度优选为25-30℃。
进一步地,所述电位环扫时的扫速为50mV/S。
进一步地,该过程中烘干均是在60±10℃条件下烘干0.8-1.2小时。
进一步地,所述Ni/Au复合纳米线阵列无酶葡萄糖传感器电极的制备方法,包括以下步骤:
(1)Ni/Au复合纳米线阵列的制备:
①将阳极氧化铝模板导电处理:采用磁控溅射Au层的方法对阳极氧化铝模板的一面进行导电化处理,在阳极氧化铝模板上利用磁控溅射的方法溅射一层厚度为100-200nm之间的金层作为导电层;
②采用导电银浆(Ted Pella,Inc.)将阳极氧化铝模板进行了导电处理的一面连接到导电线上,再用胶水(优选为3mol/L Scotch超强度)将粘有银浆的导电线及其靠近部分密封;
③采用CHI 660E电化学工作站,利用计时电位法(chronopotentiometry)在0.1mA·cm-2的恒定电流下进行Au沉积。电沉积过程中阴极用Au/阳极氧化铝,阳极由铂片组成,使用的电解液为24mmol/L的氯金酸溶液,电沉积时间为8h;沉积完成后用去离子水清洗3次,放入烘箱中在60℃条件下烘干60min;
④采用CHI 660E电化学工作站,利用计时电位法(chronopotentiometry)在0.1mAcm-2的恒定电流下进行Ni沉积。电沉积过程中阴极用Au/阳极氧化铝,阳极由铂片组成,电解液为20g/L硼酸、0.8g/L柠檬酸和80g/L硫酸镍的混合溶液,电沉积时间为8h;
⑤将沉积了Au和Ni的阳极氧化铝在1mol/L的氢氧化钠溶液中浸泡12h去除阳极氧化铝模板,然后用去离子水清洗三次,并再次放入烘箱中在60℃条件下烘干60min;得到Ni/Au纳米线阵列。
(2)无酶葡萄糖传感器电极的制备
⑥将步骤(1)制备的Ni/Au复合纳米线阵列用导电银浆粘到修饰电极中心;所述的修饰电极优选为玻碳电极;然后放入烘箱中在60℃条件下烘干60min,取出;
⑦用环氧树脂将纳米线阵列边缘和玻碳电极表面其他导电部分完全封住;然后放入烘箱中在60℃条件下烘干60min,取出;
⑧电位环扫:将步骤⑦制得的经Ni/Au纳米线阵列修饰的玻碳电极置于1mol/LNaOH中利用电位仪进行电位环扫,直至循环伏安图稳定;即可得到所述工作电极;
所述Ni/Au纳米线阵列修饰的玻碳电极电位环扫时的工作温度优选为25℃-30℃;电位环扫时的扫速为50mV/S;所述Ni/Au纳米线阵列修饰的玻碳电极电位环扫时的电压范围为-0.8~0.8V。
进一步地,采用两种具有电负性差的元素,也可制备出本发明的复合纳米线,在无酶葡萄糖传感器中使用时具有较大的灵敏性及较好的选择性,如Pt/Ni,Pd/Ni,Au/Fe等。
一种由上述Ni/Au复合纳米线阵列无酶葡萄糖传感器电极的制备方法制备得到的Ni/Au复合纳米线阵列无酶葡萄糖传感器电极,该电极包括Ni/Au复合纳米线阵列,所述的Ni/Au复合纳米线阵列为实心圆柱体型,实心圆柱体型包括上层Ni层以及下层Au层;该电极还包括Au层一端粘附的修饰电极。
进一步地,所述Ni/Au复合纳米线阵列直径为10-200nm,长度在20μm以下。
与现有技术相比,本发明具有以下积极有益效果
本发明以阳极氧化铝为导电模板,进行Ni及Au的沉积制备得到Ni层与Au层紧密相连的结构,该结构综合了Ni材料对葡萄糖良好的催化能力、Au材料的高电子转移速率以及Ni和Au之间的协同作用,由此构建的无酶葡萄糖传感器具有高灵敏度、选择性好、响应时间短等优势,电化学测试结果也表明从0.05mM到10mM范围内,此种结构的Ni/Au复合纳米线无酶葡萄糖传感器的电流响应随着浓度变化的线性度良好,灵敏度为5150uA/(mM·cm-2),该灵敏度的提高远远超越了现有技术中无酶葡萄糖传感器的灵敏度。因此,本发明中复合纳米线在Ni对葡萄糖良好的催化能力、Au材料的高电子转移速率、Ni和Au之间的协同作用以及纳米线的高比表面积的综合作用下,明显提高了无酶葡萄糖传感器的灵敏度。该结构不仅提高了灵敏度还明显提高了响应时间,大大扩展了其应用范围。
该Ni/Au复合纳米线制备得到的无酶葡萄糖传感器对于血液中的其他有机物,如抗化学酸、尿酸等具有良好的选择性,可以选择性催化氧化葡萄糖,这将在其高灵敏度的基础上大大提高检测效率,非常明显的克服了其应用中受到的限制。
附图说明
图1为本发明制备的Ni/Au复合纳米线阵列的SEM图之一,
图2为本发明制备的Ni/Au复合纳米线阵列的EDS图谱(图1中对应位置的复合纳米线的EDS图谱),
图3为本发明制备的Ni/Au复合纳米线阵列的背散射图,
图4为本发明制备的Ni/Au复合纳米线阵列的TEM图,
图5为图4中的局部放大图,
图6为循环伏安特性检测结果图,图中(a)表示Ni/Au复合纳米线阵列无酶葡萄糖传感器在10mmol/L葡萄糖+1mol/L氢氧化钠(氮气饱和)下的循环伏安曲线;(b)表示Ni/Au复合纳米线阵列无酶葡萄糖传感器在1M氢氧化钠(氮气饱和)下的循环伏安曲线;(c)表示Ni纳米线阵列无酶葡萄糖传感器在10mmol/L葡萄糖+1mol/L氢氧化钠(氮气饱和)下的循环伏安曲线;(d)表示Ni纳米线阵列无酶葡萄糖传感器在1M氢氧化钠(氮气饱和)下的循环伏安曲线。采用的扫速均为50mV/s;
图7为本发明Ni/Au复合纳米线阵列无酶葡萄糖电极的无酶葡萄糖传感器电流响应特性检测结果,图中,(a)表示Ni/Au复合纳米线阵列无酶葡萄糖传感器和Ni纳米线阵列无酶葡萄糖传感器的I-t曲线,葡萄糖浓度为0-65mmol/L;(b)表示Ni/Au复合纳米线阵列无酶葡萄糖传感器峰值氧化电流和葡萄糖浓度0-65mmol/L之间的拟合曲线;(c)表示Ni/Au复合纳米线阵列无酶葡萄糖传感器的I-t曲线,葡萄糖浓度为0-10mmol/L;(d)表示Ni/Au复合纳米线阵列无酶葡萄糖传感器峰值氧化电流和葡萄糖浓度0-10mmol/L之间的拟合曲线;(e)表示Ni/Au复合纳米线阵列无酶葡萄糖传感器的I-t曲线,葡萄糖浓度为10-65mmol/L;(f)表示Ni/Au复合纳米线阵列无酶葡萄糖传感器峰值氧化电流和葡萄糖浓度10-65mmol/L之间的拟合曲线;
图8为Ni/Au复合纳米线阵列无酶葡萄糖传感器的选择性;
图9为Ni/Au复合纳米线阵列无酶葡萄糖传感器的响应时间;
图10为Ni/Au复合纳米线阵列无酶葡萄糖传感器电极的制备过程示意图,(a)图中透明多孔的部分为阳极氧化铝模板,(b)图为在阳极氧化铝模板中沉积Au层,(c)图为在阳极氧化铝模板中沉积Ni层,(d)图为将Ni/Au复合纳米线阵列的阳极氧化铝模板去掉获得的纳米线阵列;图中Ni/Au复合纳米线阵列下方是磁控溅射的Au层,Au层保证Ni/Au复合纳米线阵列不会散开,也是Ni/Au复合纳米线阵列和玻碳电极之间的电连接。
具体实施方式
下面通过具体实施方式对本发明进行更加详细的说明,以便于对本发明技术方案的理解,但并不用于对本发明保护范围的限制。
本发明提供了一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极的制备方法,包括以下步骤:
(1)Ni/Au复合纳米线阵列的制备:
①将阳极氧化铝模板导电处理:采用磁控溅射Au层的方法对阳极氧化铝模板的一面进行导电化处理,在阳极氧化铝模板上利用磁控溅射的方法溅射一层厚度为100nm金层作为导电层;
②采用导电银浆(Ted Pella,Inc.)将阳极氧化铝模板进行了导电处理的一面连接到导电线上,再用胶水(采用3mol/L Scotch超强度胶)将粘有银浆的导电线及其靠近部分密封;
③采用CHI 660E电化学工作站,利用计时电位法(chronopotentiometry)在0.1mA·cm-2的恒定电流下进行Au沉积。电沉积过程中阴极用Au/阳极氧化铝,阳极由铂片组成,使用的电解液为24mmol/L的氯金酸溶液,电沉积时间为8h;沉积完成后用去离子水清洗3次,放入烘箱中在60℃条件下烘干60min;
④采用CHI 660E电化学工作站,利用计时电位法(chronopotentiometry)在0.1mAcm-2的恒定电流下进行Ni沉积。电沉积过程中阴极用Au/阳极氧化铝,阳极由铂片组成,电解液为20g/L硼酸、0.8g/L柠檬酸和80g/L硫酸镍的混合溶液,电沉积时间为8h;
⑤将沉积了Au和Ni的阳极氧化铝在1M/L的氢氧化钠溶液中浸泡12h去除阳极氧化铝模板,然后用去离子水清洗三次,并再次放入烘箱中在60℃条件下烘干60min;得到Ni/Au纳米线阵列。
(2)无酶葡萄糖传感器电极的制备
⑥将步骤(1)制备的Ni/Au复合纳米线阵列用导电银浆粘到修饰电极中心;所述的修饰电极优选为玻碳电极;然后放入烘箱中在60℃条件下烘干60min,取出;
⑦用环氧树脂将纳米线阵列边缘和玻碳电极表面其他导电部分完全封住;然后放入烘箱中在60℃条件下烘干60min,取出;
⑧电位环扫:将步骤⑦制得的经Ni/Au纳米线阵列修饰的玻碳电极置于1mol/LNaOH中利用电位仪进行电位环扫,直至循环伏安图稳定;即可得到所述工作电极;
其中,Ni/Au纳米线阵列修饰的玻碳电极电位环扫时的工作温度为25℃-30℃;电位环扫时的扫速为50mV/S;所述Ni/Au纳米线阵列修饰的玻碳电极电位环扫时的电压范围为-0.8~0.8V。
通过上述制备方法制备得到的Ni/Au复合纳米线阵列无酶葡萄糖传感器电极,包括Ni/Au复合纳米线阵列,所述的Ni/Au复合纳米线阵列为实心圆柱体型,实心圆柱体型包括上层Ni层以及下层Au层;该电极还包括Au层一端通过导电银浆粘附的修饰电极(优选为玻碳电极)。
该Ni/Au复合纳米线阵列直径可以为10-200nm之间的任意一个数值,长度在20μm以下。
将上述制备的Ni/Au复合纳米线阵列无酶葡萄糖电极按照常规方法制备成为无酶葡萄糖传感器,然后进行以下测试:
1、采用本领域中公知的方法测试其在葡萄糖溶液中的循环伏安曲线,并与现有技术中的无酶葡萄糖传感器在葡萄糖溶液中的循环伏安曲线进行比较,结果如图6所示;由检测结果可以看出,采用本发明的Ni/Au复合纳米线阵列所得无酶葡萄糖传感器效果非常明显的优于现有技术中的无酶葡萄糖传感器。
2、采用本领域中公知的方法对该无酶葡萄糖传感器进行电流响应特性进行检测,结果如图7所示;
3、采用本领域中公知的方法对该无酶葡萄糖传感器的选择性进行检测,结果如图8所示;由于检测结果可以看出,具有明显的选择性。
4、采用本领域中公知的方法对该传感器的响应时间进行检测,结果如图9所示;有检测结果可以看出,本发明制备的Ni/Au复合纳米线阵列无酶葡萄糖电极制备无酶葡萄糖传感器的响应时间为2.5秒,比现有技术中的响应时间明显提高。

Claims (10)

1.一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极的制备方法,该方法包括以下步骤:
(1)Ni/Au复合纳米线阵列的制备
将阳极氧化铝模板进行导电处理;
在阳极氧化铝导电模板内进行Au沉积,然后再进行Ni沉积;
去除沉积了Au和Ni的阳极氧化铝导电模板,得到Ni/Au复合纳米线阵列;
(2)无酶葡萄糖传感器电极的制备
将步骤(1)得到的Ni/Au复合纳米线阵列一端粘到修饰电极上,进行电位环扫直至循环伏安图稳定,得到无酶葡萄糖传感器电极。
2.根据权利要求1所述的制备方法,其特征在于,采用磁控溅射Au层的方法对阳极氧化铝模板进行所述导电处理,包括:在阳极氧化铝模板上利用磁控溅射的方法溅射一层金层作为导电层;所述金层的厚度优选为100-200nm。
3.根据权利要求1所述的制备方法,其特征在于,阳极氧化铝导电模板上沉积Au时以Au/阳极氧化铝为阴极、铂片为阳极、氯金酸溶液为电解液进行Au的沉积;
优选地,沉积Au时的电流为0.08-0.12mA·cm-2,沉积时间为6-10小时;
独立优选地,所用氯金酸溶液的浓度为20-28mmol/L。
4.根据权利要求1所述的制备方法,其特征在于,进行Ni沉积时以Au/阳极氧化铝为阴极,铂片为阳极,硼酸、柠檬酸和硫酸镍复合溶液为电解液进行Ni的沉积;
优选地,Ni沉积时的电流为0.08-0.12mA·cm-2,沉积时间为6-10小时;
独立优选地,Ni沉积电解液中硼酸的浓度为20g/L,柠檬酸的浓度优选为0.8g/L,硫酸镍的浓度独立可选为80g/L。
5.根据权利要求1所述的制备方法,其特征在于,所述去除沉积了Au和Ni的阳极氧化铝导电模板的操作,包括:将沉积了Au和Ni的阳极氧化铝导电模板至于浓度为0.8-1.2mol/L的氢氧化钠溶液中浸泡10-14小时。
6.根据权利要求1所述的制备方法,其特征在于,所述电位环扫时的电压范围为-0.8~0.8V。
7.根据权利要求6所述的制备方法,其特征在于,所述电位环扫时的扫速为50mV/S。
8.权利要求1-7任一项所述的制备方法制备得到的Ni/Au复合纳米线阵列无酶葡萄糖传感器电极。
9.根据权利要求8所述的电极,其特征在于,该电极包括Ni/Au复合纳米线阵列,所述的Ni/Au复合纳米线阵列为实心圆柱体型,实心圆柱体型包括上层Ni层以及下层Au层;该电极还包括Au层一端粘附的修饰电极。
10.根据权利要求8所述的电极,其特征在于,所述Ni/Au复合纳米线阵列直径为10-200nm,长度在20μm以下。
CN202010431901.1A 2020-05-20 2020-05-20 一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法 Active CN111505078B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110662723.8A CN113189176B (zh) 2020-05-20 2020-05-20 Ni/Au复合纳米线阵列及其在无酶葡萄糖传感器电极中的应用
CN202010431901.1A CN111505078B (zh) 2020-05-20 2020-05-20 一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010431901.1A CN111505078B (zh) 2020-05-20 2020-05-20 一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110662723.8A Division CN113189176B (zh) 2020-05-20 2020-05-20 Ni/Au复合纳米线阵列及其在无酶葡萄糖传感器电极中的应用

Publications (2)

Publication Number Publication Date
CN111505078A true CN111505078A (zh) 2020-08-07
CN111505078B CN111505078B (zh) 2021-04-23

Family

ID=71872070

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010431901.1A Active CN111505078B (zh) 2020-05-20 2020-05-20 一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法
CN202110662723.8A Active CN113189176B (zh) 2020-05-20 2020-05-20 Ni/Au复合纳米线阵列及其在无酶葡萄糖传感器电极中的应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110662723.8A Active CN113189176B (zh) 2020-05-20 2020-05-20 Ni/Au复合纳米线阵列及其在无酶葡萄糖传感器电极中的应用

Country Status (1)

Country Link
CN (2) CN111505078B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113176315A (zh) * 2021-03-15 2021-07-27 杭州电子科技大学 一种具有核壳结构的NiO/Au纳米管阵列柔性电极及其应用
CN113340961A (zh) * 2021-05-17 2021-09-03 西安交通大学 一种柔性无酶葡萄糖传感器电极及其制备方法
WO2022062409A1 (zh) * 2020-09-24 2022-03-31 江苏大学 一种无酶葡萄糖传感器及其制备方法和用途
CN114935597A (zh) * 2022-05-20 2022-08-23 杭州电子科技大学 一种松果状Ni/Au双金属纳米合金修饰针灸针的无酶葡萄糖电化学传感器
US11733199B2 (en) 2020-09-24 2023-08-22 Jiangsu University Fabrication method of enzyme-free glucose sensor and use of enzyme-free glucose sensor fabricated by the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110065223A (ko) * 2009-12-09 2011-06-15 서울대학교산학협력단 경질 주형 안에서 글루코스 산화 효소가 고정되어 있는 공중합체 나노튜브 막반응기의 제조
CN102263244A (zh) * 2011-06-29 2011-11-30 福州大学 一种用于锂离子电池的碳限域包覆Sn/MgO纳米线阵列的制备方法
CN104777203A (zh) * 2015-04-02 2015-07-15 天津大学 Pt-Ni合金纳米管阵列电极的制备方法及在无酶葡萄糖传感器的应用
CN105675693A (zh) * 2016-01-13 2016-06-15 天津大学 Pt纳米颗粒修饰的Cu纳米线阵列电极的制备方法及在无酶葡萄糖传感器的应用
CN109778249A (zh) * 2019-02-22 2019-05-21 浙江交通科技股份有限公司 一种制备金属核壳纳米线的制备方法
US20190310223A1 (en) * 2018-04-10 2019-10-10 Tuskegee University Carbon nanofiber sensor for non-enzymatic glucose detection and methods of glucose detection using such carbon nanofiber sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995468A (zh) * 2006-12-18 2007-07-11 天津理工大学 一种直径可控的金属纳米线阵列的制备方法
TWI461552B (zh) * 2011-03-17 2014-11-21 Univ Southern Taiwan 製備奈米柱之氧化鋁模板、氧化鋁模板之製備方法及奈米柱之製備方法
CN105603469B (zh) * 2015-12-23 2018-07-13 中国石油大学(北京) 一种CuO/Ni核壳纳米线及其制备方法
CN105839156B (zh) * 2016-04-19 2018-04-17 清华大学深圳研究生院 一种在导电基底上制备有序一维纳米阵列的方法
CN105967142A (zh) * 2016-04-27 2016-09-28 中国计量大学 一种用于sers基底的多明治周期性纳米线阵列及其制备方法
CN106167912B (zh) * 2016-06-23 2018-07-17 苏州蓝锐纳米科技有限公司 铂纳米颗粒/二氧化钛纳米管阵列的制备方法、电极、非酶葡萄糖传感器和复合材料
CN106676602B (zh) * 2017-01-17 2019-04-05 北京邮电大学 一种复合结构金属纳米线及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110065223A (ko) * 2009-12-09 2011-06-15 서울대학교산학협력단 경질 주형 안에서 글루코스 산화 효소가 고정되어 있는 공중합체 나노튜브 막반응기의 제조
CN102263244A (zh) * 2011-06-29 2011-11-30 福州大学 一种用于锂离子电池的碳限域包覆Sn/MgO纳米线阵列的制备方法
CN104777203A (zh) * 2015-04-02 2015-07-15 天津大学 Pt-Ni合金纳米管阵列电极的制备方法及在无酶葡萄糖传感器的应用
CN105675693A (zh) * 2016-01-13 2016-06-15 天津大学 Pt纳米颗粒修饰的Cu纳米线阵列电极的制备方法及在无酶葡萄糖传感器的应用
US20190310223A1 (en) * 2018-04-10 2019-10-10 Tuskegee University Carbon nanofiber sensor for non-enzymatic glucose detection and methods of glucose detection using such carbon nanofiber sensor
CN109778249A (zh) * 2019-02-22 2019-05-21 浙江交通科技股份有限公司 一种制备金属核壳纳米线的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUHAMMAD H. ASIF等: "Facile synthesis of multisegment Au/Ni/Au nanowire for high", 《MATERIALS RESEARCH EXPRESS》 *
何丽忠: "金属多层纳米线的控制合成及其性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022062409A1 (zh) * 2020-09-24 2022-03-31 江苏大学 一种无酶葡萄糖传感器及其制备方法和用途
US11733199B2 (en) 2020-09-24 2023-08-22 Jiangsu University Fabrication method of enzyme-free glucose sensor and use of enzyme-free glucose sensor fabricated by the same
CN113176315A (zh) * 2021-03-15 2021-07-27 杭州电子科技大学 一种具有核壳结构的NiO/Au纳米管阵列柔性电极及其应用
CN113340961A (zh) * 2021-05-17 2021-09-03 西安交通大学 一种柔性无酶葡萄糖传感器电极及其制备方法
CN114935597A (zh) * 2022-05-20 2022-08-23 杭州电子科技大学 一种松果状Ni/Au双金属纳米合金修饰针灸针的无酶葡萄糖电化学传感器
CN114935597B (zh) * 2022-05-20 2023-10-20 杭州电子科技大学 一种松果状Ni/Au双金属纳米合金修饰针灸针的无酶葡萄糖电化学传感器

Also Published As

Publication number Publication date
CN111505078B (zh) 2021-04-23
CN113189176A (zh) 2021-07-30
CN113189176B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN111505078B (zh) 一种Ni/Au复合纳米线阵列无酶葡萄糖传感器电极及其制备方法
WO2019214363A1 (zh) 无酶的葡萄糖电化学传感器及其检测方法
CN101975807B (zh) 三维Pt-Pb纳米花针式无酶葡萄糖传感器电极的制备方法
Gutés et al. Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes
CN108802140A (zh) 一种多孔金修饰的叉指电极及其制备方法和应用
CN111307904B (zh) 竹节状铜镍纳米线阵列葡萄糖传感器电极制备方法及应用
CN110006974A (zh) 一种高效柔性无酶葡萄糖生物传感电极及制备方法
CN113447552A (zh) 一种无酶葡萄糖电化学传感器及制备方法
US10996187B2 (en) Method for simultaneously detecting glucose concentration and percentage of glycated hemoglobin in single test strip
CN102435649A (zh) Pt-Ag合金纳米颗粒无酶葡萄糖传感器电极的制备及应用
White et al. Investigations of platinized and rhodinized carbon electrodes for use in glucose sensors
CN114235924B (zh) 一种卷心菜结构的Pt/Au纳米合金修饰针灸针的无酶血糖传感器微电极及其制备
Hernández-Saravia et al. A Cu-NPG/SPE sensor for non-enzymatic and non-invasive electrochemical glucose detection
CN110455894A (zh) 一种汗液检测葡萄糖的纳米多孔金无酶柔性传感电极及其制备方法与应用
CN106725470B (zh) 一种连续或非连续的生理参数分析系统
US8308924B2 (en) Enzyme electrode and method for producing the same
CN115389596B (zh) 一种无酶型葡萄糖电化学检测试纸及其制备方法
CN107255662B (zh) 一种探针载体和葡萄糖探针及其制备方法与应用
CN112903782A (zh) Zif三维骨架电极、其制备方法和应用
CN113008957A (zh) 可在体同步检测过氧化氢与一氧化氮的双微电极的制作方法
CN113176315B (zh) 一种具有核壳结构的NiO/Au纳米管阵列柔性电极及其应用
CN114965643B (zh) 一种Cu/Cu2O/Ni(OH)2电极及其葡萄糖传感器和应用
Narayanan et al. Flexible non-enzymatic glucose biosensor based on gold-platinum colloidal
CN110823971B (zh) 一种类花状结构NiSe2的制备方法及其应用
CN102539491A (zh) 一种Pd-Ni/SiNWs阵列电极葡萄糖传感器及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant