CN111471476A - 基于间壁换热与微波加热相结合的废轮胎裂解装置及方法 - Google Patents

基于间壁换热与微波加热相结合的废轮胎裂解装置及方法 Download PDF

Info

Publication number
CN111471476A
CN111471476A CN202010234242.2A CN202010234242A CN111471476A CN 111471476 A CN111471476 A CN 111471476A CN 202010234242 A CN202010234242 A CN 202010234242A CN 111471476 A CN111471476 A CN 111471476A
Authority
CN
China
Prior art keywords
shell
microwave heating
waste tire
heat exchange
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010234242.2A
Other languages
English (en)
Inventor
肖睿
郑宏彬
曾德望
王兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010234242.2A priority Critical patent/CN111471476A/zh
Publication of CN111471476A publication Critical patent/CN111471476A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B51/00Destructive distillation of solid carbonaceous materials by combined direct and indirect heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

本发明公开了基于间壁换热与微波加热相结合的废轮胎裂解装置及方法,该裂解装置的主体为水平圆柱形的壳体(12),在壳体的左侧设有螺旋输送装置(3),螺旋输送装置的右半段位于壳体中,在螺旋输送装置左侧上部设有设有进料口(2),螺旋输送装置由第一调速电机(1.1)驱动,在壳体的右侧下端设有热解炭黑收集箱(11),电加热装置(6)安装在壳体外的前段,微波加热段的微波加热装置(9)安装在壳体外的后段,壳体下部有四个支撑架(4)支撑整个装置,壳体内设有螺旋叶片(13)自左向右贯穿壳体。本发明利用螺旋结构输送物料,改善了反应器的物料适应性;废轮胎颗粒在前段电加热的持续升温过程中实现了轻微炭化,大大提高了其吸波性。

Description

基于间壁换热与微波加热相结合的废轮胎裂解装置及方法
技术领域
本发明提供一种基于间壁换热与微波加热相结合的废轮胎裂解装置,属于固体废弃物再利用技术领域。
背景技术
废轮胎能量密度高,产量增速大,但不合理的利用会污染环境。废轮胎热解是一种极具潜力的综合化、资源化利用技术,传统的加热方式会导致废轮胎裂解效率很低,主要是由于轮胎为热不良导体,且轮胎颗粒热阻相对较大,因此需要较大的停留时间才能达到裂解要求。因此在传统加热方式下,反应器的长度及体积变得很大,为了减小反应器的主体长度,微波加热作为一种新型加热方式被广泛应用起来。微波是指频率为300MHz~300GHz的电磁波,微波加热的基本原理是:在高频电磁作用下,介质材料中的极性分子从原来的随机分布状态转向按电场的极性排列取向,取向运动以每秒数十亿的频率不断变化,从而造成分子剧烈运动与碰撞摩擦,产生热量,使介质温度不断升高。微波具有穿透性、选择加热、加热均匀等特性。从而可以对物料进行内外部同时加热,大大减小了物料的停留时间,克服了物料热阻大的难点。
微波加热反应器为废轮胎热解技术的核心部件。现有的微波加热反应器主要存在以下三个问题:
1.能耗高。微波加热反应器需要微波发生器先产生高频电磁波,电磁转化过程能量损耗较大。而微波加热参与物料的预热、升温、裂解全过程,造成了高能耗。
2.对物料吸波性能要求较高。微波加热强烈依赖于物料的吸波性,废轮胎颗粒初始吸波性能较差,微波的耗散会大大增强,降低热效率。
3.难以实现物料的连续化处理。现有固定床微波反应器,物料的添加与收取都需要停止微波加热,降低了处理效率,频繁的微波启停也会导致能耗增加。
发明内容
为了解决上述问题,本发明提供了一种基于间壁换热与微波加热相结合的废轮胎裂解装置,该装置结合微波加热和间壁加热两种加热方式。
对现存问题具体的解决方法为:
1.物料前期的预热与轮胎颗粒的外层升温过程在间壁加热段完成。该段物料温度较低,间壁加热的热效率也较高,在到达微波加热段后,轮胎内部开始升温并开始热解。只在末端利用微波加热,既为热解提供了充足的能量输入,又解决了微波能耗高的问题,同时解决了轮胎热阻较大的问题;
2.在间壁加热段,物料已完成轻微炭化,因此其吸波性能大大增强,解决了对物料吸波性能的依赖;
3.添加了螺旋叶片及螺旋进料器,使得物料实现了连续式处理。微波发生器一直工作,不用频繁启停。
该装置结合微波加热和间壁加热两种加热方式,实现了废轮胎的高效热解,提高了传热性能,改善了物料适应性,增大了废轮胎处理量。
技术方案:本发明的一种基于间壁换热与微波加热相结合的废轮胎裂解装置是通过如下技术方案实现的:
该裂解装置的主体为水平圆柱形的壳体,在壳体的左侧设有螺旋输送装置,螺旋输送装置的右半段位于壳体中,在螺旋输送装置左侧上部设有设有进料口,螺旋输送装置由第一调速电机驱动,在壳体的右侧下端设有热解炭黑收集箱,电加热装置安装在壳体外的前段,微波加热段的微波加热装置安装在壳体外的后段,壳体下部有四个支撑架支撑整个装置,壳体内设有螺旋叶片自左向右贯穿壳体。
所述的壳体左侧连接有旋转齿轮。
所述螺旋叶片焊接在壳体内,由第二调速电机驱动旋转齿轮带动螺旋叶片和壳体一起转动。
所述微波加热段的微波加热装置焊制在壳体上随壳体一起转动,在微波加热装置外部布置钢化玻璃以透过微波并防止异物落入微波加热装置中,在钢化玻璃外部均布置微波吸收棉,防止微波泄漏。
本发明的的基于间壁换热与微波加热相结合的废轮胎裂解装置的废轮胎裂解方法是结合间壁换热及微波加热两种加热方式,利用轮胎颗粒轻微炭化后的强吸波特性,达到强化全过程换热的目标,利用螺旋转速变化影响固体停留时间的特性,使得废轮胎裂解温度在500-600℃、固体停留时间为20-30min。
具体步骤为:先将废轮胎颗粒投入进料口,在重力作用下,颗粒进入螺旋输送装置,在输送作用下进入壳体内并在螺旋叶片的轴向推力作用下不断向热解炭黑收集箱方向运动,同时在前段的电加热装置的加热作用下进行初步热解,废轮胎颗粒在螺旋前进的过程中发生热解反应,产生了轻微炭化,在电加热装置末端,废轮胎颗粒的温度为350-380℃;进入到微波加热装置后,轮胎颗粒温度迅速上升并发生剧烈的热解反应,整个过程中产生的热解气由位于壳体右端的热解气出口排出,热解炭由壳体右侧排到热解炭黑收集箱中。
本发明的热解反应器工作时不需要通入流化载气,而是通过螺旋叶片的旋转运动使废轮胎颗粒沿着高温反应器的内壁作螺旋式机械位移,且可以通过改变反应器壁面外侧的加热温度和壳体的转速来调节废轮胎颗粒的受热温度和受热时间,从而使废轮胎颗粒实现有选择性的热解转化,如热解液化、热解气化或热解炭化。
有益效果:本发明与现有技术相比,其优点是:
1、结合间壁换热及微波加热两种加热方式,利用轮胎颗粒轻微炭化后的强吸波特性,达到强化全过程换热的目标,使得装置具有单位体积反应热强度高、废轮胎处理量大等优点;
2、微波加热为传统加热方式依赖大温差的问题提供了解决方案;
3、热解反应器中采用螺旋结构输送物料,促进了物料混合,并可调节转速,进而调节固体的停留时间,以改变各热解产物的产率,方便对不同粒径范围的废轮胎颗粒进行热解处理;
4、采用微波加热手段,裂解炭黑具有很好的吸波性能,使热量由内向外传递,并能显著提高产物品质,提升裂解油产物中重要化合物(甲苯、柠檬烯)的含量,增大裂解炭黑的比表面积和吸油值、吸碘值,提高了裂解炭黑作为可替代商业炭黑的潜在价值。
附图说明
图1是本发明实施例的结构简图;
图中有:第一调速电机1.1、第二调速电机1.2、进料口2、螺旋输送装置3、支撑架4、旋转齿轮5、电加热装置6、钢化玻璃7、微波吸收棉8、微波加热装置9、热解气出口10、热解炭黑收集箱11、壳体12、螺旋叶片13。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示基于间壁换热与微波加热相结合的废轮胎裂解装置,该裂解装置的主体为水平圆柱形的壳体12,在壳体12的左侧设有螺旋输送装置3,螺旋输送装置3的右半段位于壳体12中,在螺旋输送装置3左侧上部设有设有进料口2,螺旋输送装置3由第一调速电机1.1驱动,在壳体12的右侧下端设有热解炭黑收集箱11,电加热装置6安装在壳体12外的前段,微波加热段的微波加热装置9安装在壳体12外的后段,壳体12下部有四个支撑架4支撑整个装置,壳体12内设有螺旋叶片13自左向右贯穿壳体。
所述的壳体12左侧连接有旋转齿轮5。
所述螺旋叶片13焊接在壳体12内,由第二调速电机1.2驱动旋转齿所述微波加热段的微波加热装置9焊制在壳体12上随壳体一起转动,在微波加热装置9外部布置钢化玻璃7以透过微波并防止异物落入微波加热装置9中,在钢化玻璃7外部均布置微波吸收棉8,防止微波泄漏。
具体方法是,先将废轮胎颗粒投入进料口2,在重力作用下,颗粒进入螺旋输送装置,在输送作用下进入反应器内并在螺旋叶片13的轴向推力作用下不断向热解炭黑收集箱11方向运动,同时在前段的电加热装置的加热作用下进行初步热解。废轮胎颗粒在螺旋前进的过程中发生热解反应,产生了轻微炭化。在电加热末端,废轮胎颗粒的温度大致为350-380℃。进入到微波加热段后,轮胎颗粒温度迅速上升并发生剧烈的热解反应。整个过程中产生的热解气由热解气出口10排出,热解炭由内旋滚筒右侧排到热解炭黑收集箱11中。
本发明的基于间壁换热与微波加热相结合的废轮胎裂解装置的废轮胎裂解方法是基于间壁换热与微波加热相结合的废轮胎裂解方法,包括以下步骤:
S1、电加热装置6打开并逐渐加热到400℃,并在该温度下保持5分钟,在加热阶段,电机也被打开,设置外螺旋的转速;
S2、将废轮胎颗粒投入进料口2,在重力作用下,颗粒进入螺旋输送装置,在输送作用下进入反应器内并在螺旋叶片13的轴向推力作用下不断向热解炭黑收集箱11方向运动,同时在前段的电加热装置的加热作用下进行初步热解;
S3、步骤S2实施完10分钟后,打开微波发生器9,轮胎颗粒在电加热装置6的初步加热后发生了轻微炭化,进入微波加热段后,快速升温,获得热解所需的能量,完成高效热解;
S4、步骤S3中得到的热解炭在螺旋叶片13的推动作用下排到热解炭黑收集箱11;
S5、步骤S3中得到的热解油蒸汽由热解气出口10排入相应的冷凝装置进行回收利用。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种基于间壁换热与微波加热相结合的废轮胎裂解装置,其特征在于该裂解装置的主体为水平圆柱形的壳体(12),在壳体(12)的左侧设有螺旋输送装置(3),螺旋输送装置(3)的右半段位于壳体(12)中,在螺旋输送装置(3)左侧上部设有进料口(2),螺旋输送装置(3)由第一调速电机(1.1)驱动,在壳体(12)的右侧下端设有热解炭黑收集箱(11),电加热装置(6)安装在壳体(12)外的前段,微波加热段的微波加热装置(9)安装在壳体(12)外的后段,壳体(12)下部有四个支撑架(4)支撑整个装置,壳体(12)内设有螺旋叶片(13)自左向右贯穿壳体。
2.根据权利要求1所述的一种基于间壁换热与微波加热相结合的废轮胎裂解装置,其特征在于:所述的壳体(12)左侧连接有旋转齿轮(5)。
3.根据权利要求1或2所述的一种基于间壁换热与微波加热相结合的废轮胎裂解装置,其特征在于:所述螺旋叶片(13)焊接在壳体(12)内,由第二调速电机(1.2)驱动旋转齿轮(5)带动螺旋叶片(13)和壳体(12)一起转动。
4.根据权利要求1或2所述的一种基于间壁换热与微波加热相结合的废轮胎裂解装置,其特征在于:所述微波加热段的微波加热装置(9)焊制在壳体(12)上随壳体一起转动,在微波加热装置(9)外部布置钢化玻璃(7)以透过微波并防止异物落入微波加热装置(9)中,在钢化玻璃(7)外部均布置微波吸收棉(8),防止微波泄漏。
5.一种如权利要求1所述的基于间壁换热与微波加热相结合的废轮胎裂解装置的废轮胎裂解方法,其特征在于,结合间壁换热及微波加热两种加热方式,利用轮胎颗粒轻微炭化后的强吸波特性,达到强化全过程换热的目标,利用螺旋转速变化影响固体停留时间的特性,使得废轮胎裂解温度在500-600℃、固体停留时间为20-30min。
6.根据权利要求5所述的基于间壁换热与微波加热相结合的废轮胎裂解装置,其特征在于具体步骤为:先将废轮胎颗粒投入进料口(2),在重力作用下,颗粒进入螺旋输送装置(3),在输送作用下进入壳体(12)内并在螺旋叶片(13)的轴向推力作用下不断向热解炭黑收集箱(11)方向运动,同时在前段的电加热装置(6)的加热作用下进行初步热解,废轮胎颗粒在螺旋前进的过程中发生热解反应,产生了轻微炭化,在电加热装置(6)末端,废轮胎颗粒的温度为350-380℃;进入到微波加热装置(9)后,轮胎颗粒温度迅速上升并发生剧烈的热解反应,整个过程中产生的热解气由位于壳体(12)右端的热解气出口(10)排出,热解炭由壳体(12)右侧排到热解炭黑收集箱(11)中。
CN202010234242.2A 2020-03-30 2020-03-30 基于间壁换热与微波加热相结合的废轮胎裂解装置及方法 Pending CN111471476A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010234242.2A CN111471476A (zh) 2020-03-30 2020-03-30 基于间壁换热与微波加热相结合的废轮胎裂解装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010234242.2A CN111471476A (zh) 2020-03-30 2020-03-30 基于间壁换热与微波加热相结合的废轮胎裂解装置及方法

Publications (1)

Publication Number Publication Date
CN111471476A true CN111471476A (zh) 2020-07-31

Family

ID=71747890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010234242.2A Pending CN111471476A (zh) 2020-03-30 2020-03-30 基于间壁换热与微波加热相结合的废轮胎裂解装置及方法

Country Status (1)

Country Link
CN (1) CN111471476A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111849537A (zh) * 2020-08-27 2020-10-30 青岛科技大学 一种连续化废橡胶裂解装置
CN112662419A (zh) * 2020-12-09 2021-04-16 浙江大学 一种废橡塑颗粒快速热解提质增值的装置及方法
CN114921258A (zh) * 2022-05-17 2022-08-19 浙江大学 可循环利用的轮胎微波原位催化热解制备富氢气体的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104593090A (zh) * 2014-12-25 2015-05-06 华中科技大学 一种生物质热解气化制备合成气的方法及装置
CN104759446A (zh) * 2015-03-26 2015-07-08 广东新优威印刷装备科技有限公司 一种蓄热式微波处理废物或煤炭的方法
WO2017083946A1 (pt) * 2015-11-19 2017-05-26 Gomes Da Silva Edson Ricardo Processo de produção de essência de madeira
CN107376802A (zh) * 2017-09-15 2017-11-24 四川宏图普新微波科技有限公司 一种用于微波裂解废轮胎的保持腔内洁净运行的工艺
CN109251756A (zh) * 2018-11-19 2019-01-22 北京万向新元科技股份有限公司 一种废轮胎裂解炭黑碳化系统
CN109897646A (zh) * 2019-03-21 2019-06-18 深圳市中粤华远科技有限公司 一种连续滚筒式微波碳化炉及其工作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104593090A (zh) * 2014-12-25 2015-05-06 华中科技大学 一种生物质热解气化制备合成气的方法及装置
CN104759446A (zh) * 2015-03-26 2015-07-08 广东新优威印刷装备科技有限公司 一种蓄热式微波处理废物或煤炭的方法
WO2017083946A1 (pt) * 2015-11-19 2017-05-26 Gomes Da Silva Edson Ricardo Processo de produção de essência de madeira
CN107376802A (zh) * 2017-09-15 2017-11-24 四川宏图普新微波科技有限公司 一种用于微波裂解废轮胎的保持腔内洁净运行的工艺
CN109251756A (zh) * 2018-11-19 2019-01-22 北京万向新元科技股份有限公司 一种废轮胎裂解炭黑碳化系统
CN109897646A (zh) * 2019-03-21 2019-06-18 深圳市中粤华远科技有限公司 一种连续滚筒式微波碳化炉及其工作方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111849537A (zh) * 2020-08-27 2020-10-30 青岛科技大学 一种连续化废橡胶裂解装置
CN111849537B (zh) * 2020-08-27 2021-05-11 青岛科技大学 一种连续化废橡胶裂解装置
CN112662419A (zh) * 2020-12-09 2021-04-16 浙江大学 一种废橡塑颗粒快速热解提质增值的装置及方法
CN112662419B (zh) * 2020-12-09 2023-10-03 浙江大学 一种废橡塑颗粒快速热解提质增值的装置及方法
CN114921258A (zh) * 2022-05-17 2022-08-19 浙江大学 可循环利用的轮胎微波原位催化热解制备富氢气体的方法
CN114921258B (zh) * 2022-05-17 2023-02-14 浙江大学 可循环利用的轮胎微波原位催化热解制备富氢气体的方法

Similar Documents

Publication Publication Date Title
CN111471476A (zh) 基于间壁换热与微波加热相结合的废轮胎裂解装置及方法
CN201587926U (zh) 一种立式垃圾连续微波加热低温裂解炉
CN106675661B (zh) 一种物料连续热解气化的方法
CN101811129B (zh) 一种立式垃圾连续微波加热低温裂解炉
CN105542830A (zh) 双螺旋连续裂解炉
CN104672487A (zh) 一种废旧橡胶的再生方法及其装置
WO2021169535A1 (zh) 一种基于热解炭内循环强化传热的双螺旋热解反应器
CN114602955B (zh) 一种连续式碳纤维再生装置、系统及方法
CN113457575A (zh) 一种微波连续热解制碳纳米纤维及氢气的系统及方法
CN106732491A (zh) 一种粉状废活性炭的卧式连续再生设备
CN206318947U (zh) 连续型废塑料循环裂解系统
CN101391765A (zh) 微波连续石墨膨化装置
CN214244314U (zh) 一种传热强化耦合碾磨功能的废橡塑高效热解装置
CN210945498U (zh) 一种用于废旧轮胎热解机的筒壁防粘连装置
CN203333590U (zh) 等离子体强化型微波裂解反应器
CN106675662B (zh) 物料连续热解气化装置
CN205347339U (zh) 双螺旋连续裂解炉
CN114410324B (zh) 一种蓄热球内外循环干燥热解装置及方法
CN113736496B (zh) 有机废弃物干燥热解炭化制粉系统、方法及传热传质球
CN211339392U (zh) 一种废旧轮胎裂解碳化冷却系统
CN111534314A (zh) 一种分段控温式废轮胎连续裂解反应器
CN112226239A (zh) 一种秸秆连续粉碎及炭化设备
CN213644810U (zh) 废塑料连续化热裂解高热焓固态储热介质筛分装置
CN220425295U (zh) 一种蜡烛生产用废料回收机
CN115501952B (zh) 一种铁基生物炭研磨装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200731

RJ01 Rejection of invention patent application after publication