CN111468378A - 一种低成本可大面积应用的辐射制冷薄膜及制备方法 - Google Patents

一种低成本可大面积应用的辐射制冷薄膜及制备方法 Download PDF

Info

Publication number
CN111468378A
CN111468378A CN202010384286.3A CN202010384286A CN111468378A CN 111468378 A CN111468378 A CN 111468378A CN 202010384286 A CN202010384286 A CN 202010384286A CN 111468378 A CN111468378 A CN 111468378A
Authority
CN
China
Prior art keywords
film
radiation refrigeration
inorganic particles
particles
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010384286.3A
Other languages
English (en)
Inventor
郝加明
李世民
文政绩
许昊
孙艳
邓惠勇
戴宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202010384286.3A priority Critical patent/CN111468378A/zh
Publication of CN111468378A publication Critical patent/CN111468378A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • B05D5/061Special surface effect
    • B05D5/063Reflective effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/542No clear coat specified the two layers being cured or baked together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/544No clear coat specified the first layer is let to dry at least partially before applying the second layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/003Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2451/00Type of carrier, type of coating (Multilayers)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • B05D2518/12Ceramic precursors (polysiloxanes, polysilazanes)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了一种低成本可大面积应用的辐射制冷薄膜及制备方法。该材料体系自下而上包括金属薄膜层、无机物颗粒与有机物混合层;该薄膜体系具有辐射效率高、太阳光能量吸收小、广角度辐射的特点。太阳光能量平均反射率达到90%,大气窗口平均辐射率达到92%。本辐射制冷材料可以实现低于室外8℃左右的降温效果,其不但工艺简单、成本低廉、可大面积制备,而且还具有柔性、疏水等一系列优点,使其可被用于建筑,交通工具,航天等众多领域。

Description

一种低成本可大面积应用的辐射制冷薄膜及制备方法
技术领域
本发明涉及温控材料技术领域,涉及一种低成本可大面积应用的辐射制冷薄膜材料及其制备方法。
背景技术
随着人类社会的飞速发展,能源需求也越来越大。在目前人类能源消耗中,制冷占据了极其巨大的比重。面对如此巨大的能耗,人们开始对低能耗或零能耗产品的研发产生兴趣,并希望以此构建更加绿色的生活形态。
鉴于宇宙背景可以被视为一个巨大的低温容器,地球表面物体对宇宙背景的热辐射是其降温的主要原因。通过合适的材料选择和结构设计以长波红外(8-13um)热辐射的方式,将物体表面的热量释放到大气层以外,从而实现物体表面低于环境温度或低于同等条件下不进行辐射制冷的物体温度的目的,即辐射制冷(radiative cooling)。辐射制冷这一概念早在上个世纪60年代就已经引起关注和研究。但是基于材料和加工手段的限制,这个设想一直只能在夜晚无光照条件下才能有效工作,而白天日照条件下的有效辐射制冷很难实现。因为要实现辐射制冷,原理上除了要保证在大气窗口的辐射以外,还要尽可能降低太阳光的吸收。
随着微纳加工技术的发展,虽然近几年人们通过光子晶体,超构材料等结构设计实现了一定的辐射制冷效果。但是由于微纳结构加工难度大和成本高,很难做到大面积应用推广。
本发明公开一种利用简单工业化制备方法生产的具有良好辐射制冷效果的大面积薄膜材料。其优点包括:太阳光能量平均反射率达到90%,大气窗口平均辐射率达到92%,可实现低于环境温度8℃左右的降温效果。该辐射制冷材料具有热辐射效率高、太阳光能量吸收小,且工艺简单、成本低廉、可大面积制备、柔性等一系列优点。
发明内容
本发明公开了一种通过简单工业化方法,设计并制备具有辐射制冷效果的大面积薄膜材料。该薄膜结构设计合理,层间结合强度高,使用性能稳定,寿命长,制冷效果良好,使用时安全可靠。
该塑料薄膜采用多层复合结构设计,包括金属薄膜层1、无机物颗粒2、有机物3。复合薄膜自下而上依次为金属薄膜层1、无机物颗粒2与有机物3混合层。
所述金属薄膜层1起到提高薄膜在太阳光谱和红外波段的反射的作用。主要用铝箔,锡箔或金膜、银膜等制成的薄膜,金属镀膜厚度在100nm-200nm;
所述无机物颗粒2用来辐射8-13um的红外波,起到将能量辐射到外太空的作用,同时利用球散射原理增强材料在太阳光谱的反射,起到减少阳光能量的吸收的作用。微纳粉末(如氧化物颗粒TiO2、SiO、SiO2,硫化物,氮化物Si3N4颗粒等)混合后利用刮涂,喷涂,旋涂等方式而制成,厚度可以进行自由调整,厚度越大可见光反射效果越好。
所述有机物3用来增强8-13um的红外波辐射,同时提高薄膜的耐磨损和粘附性的作用。由高分子有机物聚二甲基硅氧烷(PDMS)疏水涂层构成,通过将制备好的有机物稀释液喷涂或刮涂在薄膜表面形成疏水特性。
附图说明
图1为辐射制冷多层薄膜结构示意图,其中1是金属薄膜层,2是无机物颗粒,3是有机物。
具体实施方式
实施例一:首先配置前驱体溶液:(a)PDMS溶液:将聚二甲基硅氧烷预聚物A、交联剂B,混合于三氯甲烷中,混合比例为10:1:20,然后通过磁力搅拌使其混合均匀,静置待用。(b)颗粒物分散液:将20nm的Si3N4颗粒物分散在去离子水中,超声搅拌20分钟,磁力搅拌3分钟后备用。然后开始样品制备:将蒸镀银厚度为100nm玻璃衬底放在刮膜机平板表面,然后将配置颗粒物分散液喷涂在铝箔上,然后放置在通风厨内自然干燥20分钟。然后将配置好的PDMS溶液适量倒置在薄膜刮涂初始端,选择型号为6um厚线棒以一定速度进行刮涂。将涂覆好的薄膜放入烘箱中,以100摄氏度进行固化一小时。最后取出静置冷却得到1umPDMS膜。通过红外和可见光谱仪测试光谱,减去合适大小进行实际降温效果测试。
实施例二:有机物和颗粒物前驱体溶液配置方法同实施例一,所用颗粒大小为100nm的SiO2。然后开始样品制备:将蒸镀金厚度为150nm玻璃衬底放在刮膜机平板表面,将配置颗粒物分散液喷涂在铝箔上,然后放置在通风厨内自然干燥20分钟。然后将样品放置在旋涂仪吸盘上,将配置好的PDMS溶液旋涂在样品表面。将涂覆好的薄膜放入烘箱中,以100摄氏度进行固化一小时。最后取出静置冷却得到1.5um厚PDMS膜。通过红外和可见光谱仪测试光谱,减去合适大小进行实际降温效果测试。
实施例三:有机物和颗粒物前驱体溶液配置方法同实施例一,所用颗粒为100nm的TiO2。然后开始样品制备:将铝箔展平放置在刮膜机平板表面,将配置颗粒物分散液喷涂在铝箔上,然后放置在通风厨内自然干燥20分钟。然后将PDMS喷涂在样品表面,并将涂覆好的薄膜放入烘箱中,以100摄氏度进行固化一小时。最后取出静置冷却得到1.5um厚PDMS膜。通过红外和可见光谱仪测试光谱,剪合适大小进行实际降温效果测试。
实施例四:首先配置前驱体溶液:(a)PDMS溶液:将聚二甲基硅氧烷预聚物A、交联剂B,混合于三氯甲烷中,混合质量比例为10:1.5:60,然后通过磁力搅拌使其混合均匀,静置待用。(b)颗粒物分散液:过程同实施例一,所用颗粒为100nm的SiO。然后开始样品制备得到2um厚PDMS膜:同实施例三。通过红外和可见光谱仪测试光谱,剪合适大小进行实际降温效果测试。
实施例五:首先配置前驱体溶液:(a)PDMS溶液:将聚二甲基硅氧烷预聚物A、交联剂B,混合于三氯甲烷中,混合质量比例为10:2:100,然后通过磁力搅拌使其混合均匀,静置待用。(b)颗粒物分散液:过程同实施例一,所用颗粒为200nm的Si3N4。然后开始样品制备得到1um厚PDMS膜:同实施例三。通过红外和可见光谱仪测试光谱,剪合适大小进行实际降温效果测试。

Claims (2)

1.一种低成本可大面积应用的辐射制冷薄膜,包括金属薄膜层(1)、无机物颗粒(2)和有机物(3),其特征在于:
复合薄膜自下而上依次为金属薄膜层(1)、无机物颗粒(2)与有机物(3)混合层;
所述金属薄膜层(1)是铝、锡、金或银制成的薄膜,厚度为100nm-200nm;
所述无机物颗粒(2)是氧化物颗粒TiO2、SiO、SiO2,硫化物或氮化物Si3N4颗粒的微纳粉末,颗粒物直径为10-200nm;
所述有机物(3)由聚二甲基硅氧烷PDMS构成,薄膜厚度为1-2um。
2.一种制备如权利要求1所述的低成本可大面积应用的辐射制冷薄膜的方法,其特征在于方法如下:
所述金属薄膜层(1)直接采用铝箔或锡箔,或在其他衬底上蒸镀金膜、银膜;
所述无机物颗粒(2)由微纳粉末溶于水或乙醇分散剂后,利用刮刀刮涂,喷笔喷涂,匀胶机旋涂在金属薄膜层(1)上;
所述有机物(3)通过将聚二甲基硅氧烷预聚物、交联剂,混合于甲苯或三氯甲烷有机溶剂中,混合质量比例为10:1:20到10:2:100,然后将溶液喷涂或刮涂在薄膜表面形成疏水特性,形成无机物颗粒(2)与有机物(3)混合层。
CN202010384286.3A 2020-05-09 2020-05-09 一种低成本可大面积应用的辐射制冷薄膜及制备方法 Pending CN111468378A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010384286.3A CN111468378A (zh) 2020-05-09 2020-05-09 一种低成本可大面积应用的辐射制冷薄膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010384286.3A CN111468378A (zh) 2020-05-09 2020-05-09 一种低成本可大面积应用的辐射制冷薄膜及制备方法

Publications (1)

Publication Number Publication Date
CN111468378A true CN111468378A (zh) 2020-07-31

Family

ID=71762160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010384286.3A Pending CN111468378A (zh) 2020-05-09 2020-05-09 一种低成本可大面积应用的辐射制冷薄膜及制备方法

Country Status (1)

Country Link
CN (1) CN111468378A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250973A (zh) * 2020-09-25 2021-01-22 河北工业大学 一种多孔辐射制冷薄膜及其制备方法
CN114106691A (zh) * 2021-11-19 2022-03-01 三峡大学 复合型具有超疏水辐射制冷的涂层材料及其制备方法
CN114801378A (zh) * 2022-05-21 2022-07-29 南开大学 一种低于室温的柔性彩色辐射制冷器件及其制备方法
CN115160620A (zh) * 2022-06-29 2022-10-11 三峡大学 双层结构辐射制冷薄膜及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100102700A1 (en) * 2008-10-24 2010-04-29 Abhishek Jaiswal Flame spray pyrolysis with versatile precursors for metal oxide nanoparticle synthesis and applications of submicron inorganic oxide compositions for transparent electrodes
CN103411335A (zh) * 2013-07-30 2013-11-27 中国科学院上海技术物理研究所 辐射吸收层基于混合物的选择性吸收膜系
US20160243583A1 (en) * 2013-10-16 2016-08-25 Beijing University Of Chemical Technology Transparent flame-retardant thermal-insulating uv-blocking polymer composite film, preparation method and uses thereof
US20170248381A1 (en) * 2016-02-29 2017-08-31 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
CN107923718A (zh) * 2015-06-18 2018-04-17 纽约市哥伦比亚大学理事会 用于辐射冷却和加热的系统和方法
CN109084610A (zh) * 2018-07-18 2018-12-25 华中科技大学 一种用于白天辐射制冷的透明柔性薄膜材料及应用
CN110128688A (zh) * 2019-03-29 2019-08-16 宁波瑞凌新能源科技有限公司 一种辐射制冷薄膜及其制备方法
CN110274326A (zh) * 2018-03-16 2019-09-24 浙江大学 一种日间辐射制冷器及其制备方法
CN110552199A (zh) * 2019-09-09 2019-12-10 上海交通大学 一种辐射制冷复合光子结构薄膜及其制备方法
CN210390369U (zh) * 2018-12-19 2020-04-24 宁波瑞凌辐射制冷科技有限公司 一种抗氧化的辐射制冷薄膜

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100102700A1 (en) * 2008-10-24 2010-04-29 Abhishek Jaiswal Flame spray pyrolysis with versatile precursors for metal oxide nanoparticle synthesis and applications of submicron inorganic oxide compositions for transparent electrodes
CN103411335A (zh) * 2013-07-30 2013-11-27 中国科学院上海技术物理研究所 辐射吸收层基于混合物的选择性吸收膜系
US20160243583A1 (en) * 2013-10-16 2016-08-25 Beijing University Of Chemical Technology Transparent flame-retardant thermal-insulating uv-blocking polymer composite film, preparation method and uses thereof
CN107923718A (zh) * 2015-06-18 2018-04-17 纽约市哥伦比亚大学理事会 用于辐射冷却和加热的系统和方法
US20170248381A1 (en) * 2016-02-29 2017-08-31 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
CN110274326A (zh) * 2018-03-16 2019-09-24 浙江大学 一种日间辐射制冷器及其制备方法
CN109084610A (zh) * 2018-07-18 2018-12-25 华中科技大学 一种用于白天辐射制冷的透明柔性薄膜材料及应用
CN210390369U (zh) * 2018-12-19 2020-04-24 宁波瑞凌辐射制冷科技有限公司 一种抗氧化的辐射制冷薄膜
CN110128688A (zh) * 2019-03-29 2019-08-16 宁波瑞凌新能源科技有限公司 一种辐射制冷薄膜及其制备方法
CN110552199A (zh) * 2019-09-09 2019-12-10 上海交通大学 一种辐射制冷复合光子结构薄膜及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250973A (zh) * 2020-09-25 2021-01-22 河北工业大学 一种多孔辐射制冷薄膜及其制备方法
CN114106691A (zh) * 2021-11-19 2022-03-01 三峡大学 复合型具有超疏水辐射制冷的涂层材料及其制备方法
CN114106691B (zh) * 2021-11-19 2022-06-03 三峡大学 复合型具有超疏水辐射制冷的涂层材料及其制备方法
CN114801378A (zh) * 2022-05-21 2022-07-29 南开大学 一种低于室温的柔性彩色辐射制冷器件及其制备方法
CN114801378B (zh) * 2022-05-21 2023-10-20 南开大学 一种低于室温的柔性彩色辐射制冷器件及其制备方法
CN115160620A (zh) * 2022-06-29 2022-10-11 三峡大学 双层结构辐射制冷薄膜及其制备方法和应用
CN115160620B (zh) * 2022-06-29 2024-03-12 三峡大学 双层结构辐射制冷薄膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111468378A (zh) 一种低成本可大面积应用的辐射制冷薄膜及制备方法
Sarkın et al. A review of anti-reflection and self-cleaning coatings on photovoltaic panels
WO2021253580A1 (zh) 一种辐射降温薄膜、其制备方法及其应用
Biswas et al. Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol–gel indium tin oxide films on glass
CN107828289B (zh) 疏水自洁净表面温度昼夜低于气温的反思托克斯荧光及辐射制冷涂料及其制备方法
CN111690301B (zh) 具有梯度结构的辐射制冷涂层及其制备方法与应用
CN110372976B (zh) 一种反射型辐射制冷材料、薄膜、制备方法及应用
CN112250973A (zh) 一种多孔辐射制冷薄膜及其制备方法
CN113025219B (zh) 可拉伸辐射冷却胶带及其制备方法和应用
AU2019355035B2 (en) Metal-free solar-reflective infrared-emissive paints and methods of producing the same
CN104960286B (zh) 一种可控的二维材料柔性转移方法
CN118206894A (zh) 包括具有纳米或微粒的涂料涂层的辐射冷却元件
CN108962497B (zh) 一种在图形化衬底上制备银纳米线基透明导电薄膜的方法
CN111286054B (zh) 一种聚4-甲基戊烯与SiO2微球复合薄膜及其制备方法
CN108912572B (zh) 一种具有自清洁功能的辐射致冷膜及其制备方法
Du et al. Visible transparent, infrared stealthy polymeric films with nanocoating of ITO@ MXene enable efficient passive radiative heating and solar/electric thermal conversion
CN114957888B (zh) 一种ptfe三维多孔辐射薄膜及其制备方法
CN112500595A (zh) 空气孔光子晶体结构被动辐射冷却薄膜及其制备方法
CN104752546A (zh) 一种金属氧化物紫外探测器及其制备方法
Lin et al. A Highly Transparent Photo‐Electro‐Thermal Film with Broadband Selectivity for All‐Day Anti‐/De‐Icing
Rahman et al. Preparation and characterization of silver nanoparticles on localized surface plasmon-enhanced optical absorption
CN108373610A (zh) 微纳结构表面构筑纳米涂层的方法及其在减反射上的应用
Kang et al. Effects of annealing temperature on the structure, electrical resistivity and infrared emissivity of PtOx films
CN113024866A (zh) 具有各向异性结构的日间被动辐射制冷疏水纤维素材料及其制备方法
CN117304769A (zh) 一种制冷涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200731

WD01 Invention patent application deemed withdrawn after publication