CN111468153B - 一种(Ru/WC)或(Pd/WC-P)复合助催化剂及制备和应用 - Google Patents
一种(Ru/WC)或(Pd/WC-P)复合助催化剂及制备和应用 Download PDFInfo
- Publication number
- CN111468153B CN111468153B CN202010360409.XA CN202010360409A CN111468153B CN 111468153 B CN111468153 B CN 111468153B CN 202010360409 A CN202010360409 A CN 202010360409A CN 111468153 B CN111468153 B CN 111468153B
- Authority
- CN
- China
- Prior art keywords
- cds
- composite
- preparing
- solution
- composite photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 239000011941 photocatalyst Substances 0.000 claims abstract description 40
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 29
- 239000001257 hydrogen Substances 0.000 claims abstract description 29
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000003054 catalyst Substances 0.000 claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 101150003085 Pdcl gene Proteins 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 15
- 230000001699 photocatalysis Effects 0.000 claims description 15
- 238000005406 washing Methods 0.000 claims description 15
- 238000001914 filtration Methods 0.000 claims description 14
- 238000000227 grinding Methods 0.000 claims description 14
- 238000011068 loading method Methods 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 14
- 230000032683 aging Effects 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 11
- XIEPJMXMMWZAAV-UHFFFAOYSA-N cadmium nitrate Inorganic materials [Cd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XIEPJMXMMWZAAV-UHFFFAOYSA-N 0.000 claims description 11
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 claims description 11
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 11
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 11
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 11
- 239000002244 precipitate Substances 0.000 claims description 11
- 229910052979 sodium sulfide Inorganic materials 0.000 claims description 11
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims description 11
- 238000009210 therapy by ultrasound Methods 0.000 claims description 11
- 238000001704 evaporation Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 238000001291 vacuum drying Methods 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 150000002431 hydrogen Chemical class 0.000 claims description 7
- 238000010335 hydrothermal treatment Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 238000003763 carbonization Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000002161 passivation Methods 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 230000020477 pH reduction Effects 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 6
- 238000010000 carbonizing Methods 0.000 claims 3
- 239000002243 precursor Substances 0.000 claims 3
- 239000002994 raw material Substances 0.000 claims 3
- 230000002194 synthesizing effect Effects 0.000 claims 3
- 238000004821 distillation Methods 0.000 claims 1
- 229910052707 ruthenium Inorganic materials 0.000 abstract description 12
- 229910000510 noble metal Inorganic materials 0.000 abstract description 11
- 229910052763 palladium Inorganic materials 0.000 abstract description 7
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 238000000975 co-precipitation Methods 0.000 abstract 1
- 238000013329 compounding Methods 0.000 abstract 1
- 238000001027 hydrothermal synthesis Methods 0.000 abstract 1
- 238000005470 impregnation Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 11
- 239000013078 crystal Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 3
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/20—Carbon compounds
- B01J27/22—Carbides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/612—Surface area less than 10 m2/g
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1094—Promotors or activators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明为一种(Ru/WC)或(Pd/WC‑P)复合助催化剂及制备和应用,涉及的是一种(Ru、Pd/WC)/CdS产氢催化剂的制备及其应用。该复合催化剂的制备采用如下具体步骤:(1)将RuCl3与PdCl2分别与WC浸渍氢气还原法复合在一起,得到(Ru/WC)、(Pd/WC‑P)复合助催化剂;(2)将两种复合助催化剂分别与CdS通过共沉淀水热获得(Ru/WC)/CdS和(Pd/WC‑P)/CdS复合光催化剂。本发明的优点是:将质子催化能力强的贵金属Ru、Pd与廉价、地球储量丰富的非贵金属助催化剂WC进行组合,形成较优的复合助催化剂。
Description
技术领域
本发明涉及Ru与商业WC助催化剂与半导体CdS不同组装方式复合光催化剂的制备及其应用以及Pd与WC-P复合助催化剂的制备和应用。
能源日益枯竭和环境恶化是人类始终面临的严重问题。利用太阳能取之不尽用之不竭的能量光解水产氢是我们解决能源问题的最佳手段,而且,产生的氢能具有热值高,清洁等优点,从而改变环境污染的问题。在光解水产氢过程中光催化剂是科学家研究的焦点。
光催化的产氢效率主要受电子空穴分离影响。担载助催化剂能降低半导体中电子空穴的重组,我们试图采用担载贵金属和非贵金属形成复合助催化剂,再与半导体形成复合光催化剂,解释了贵金属起催化质子产氢,非贵金属具有大的比电容,两者的协同作用提升了光催化产氢活性,但是目前助催化剂和半导体的不同组装方式在光催化产氢中的研究还没有报道。
发明内容
本发明的目的是提出Ru与WC助催化剂与半导体CdS的不同组装方式催化剂制备及其应用。也提出了(Pd/WC-P)复合助催化剂的制备,从而实现了可见光下高效分解水产氢。
本发明的技术方案:
复合助催化剂(Ru/WC)和(Pd/WC-P)按如下步骤制备获得:
(1)将0.1g WC、WC-P分别分散在30mL去离子水中,使之分散均匀,然后缓慢加入RuCl3、PdCl2溶液,超声20min,放入70℃水浴下蒸干,研磨后放入管式炉通入20mL/min的H2,300℃,1h。当温度降到室温时通入99:1的钝化气12h,取出研磨可得(Ru/WC)和(Pd/WC-P)。
(2)将(1)合成的(Ru/WC)、(Pd/WC-P)超声分散在50mL 0.14mol/L硝酸镉溶液,搅拌60min后,逐滴加入60mL 0.14mol/L硫化钠水溶液,待滴加结束后继续搅拌60min,接着陈化8h后,转移到100mL的水热釜中180℃保持24h,冷却后过滤分别用无水乙醇和去离子水离心洗涤3~5次,转移到真空干燥箱干燥12h,得到(Ru/WC)/CdS和(Pd/WC-P)/CdS。
不同组装方式制备的Ru/(WC/CdS)复合光催化剂具体步骤如下:
(3)取0.1g WC超声分散在50mL 0.14mol/L硝酸镉溶液,搅拌60min后,逐滴加入60mL 0.14mol/L硫化钠水溶液,待滴加结束后继续搅拌60min,然后陈化8h后,再转移到100mL的水热釜中180℃保持24h,冷却后过滤并用去离子水和无水乙醇洗涤三次,转移到真空干燥箱干燥12h,研磨后得到(WC/CdS);
(4)将(3)合成的(WC/CdS)分散在加入100mL水溶液(含质量浓度10%乳酸)的反应器中,搅拌60min,然后逐滴加入RuCl3溶液,超声30min,然后抽气30min,使用350W氙灯作为光源,使用420nm滤光片过滤掉紫外光,光照时间2h,然后过滤洗涤,真空干燥12h,得到Ru/(WC/CdS)。
本发明将质子催化能力强的贵金属Ru、Pd与廉价、地球储量丰富的非贵金属助催化剂WC进行组合,形成较优的复合助催化剂,相对于不同组装方式制备的复合光催化剂Ru/(WC/CdS),(Ru/WC)/CdS、(Pd/WC-P)/CdS展现了高活性,其产氢活性可达16.85mmol/h/g、29.5mmol/h/g。
本发明的优点是:复合助催化剂具有优异的助催化剂性能,可以极大提高催化剂的光催化产氢活性。也可广泛应用于光催化二氧化碳还原或光电分解水产氢产氧反应中。
附图说明
图1.复合助催化剂(Ru/WC)和(Pd/WC-P)的TEM图。
图2.(Ru/WC)/CdS和(Pd/WC-P)/CdS复合光催化剂的HRTEM图。
图3.Ru不同负载量的(Ru/WC)/CdS和(Pd/WC-P)/CdS的光催化产氢活性图。
图4.Ru不同负载量的Ru/(WC/CdS)的光催化活性图。
具体实施方式
下面通过具体的实施例对本发明作进一步详细说明。
WC-P助催化剂制备的具体过程:
(1)将0.5g聚乙烯吡咯烷酮(PVP)溶于55mL去离子水中,搅拌30min至固体溶解完全,得到饱和溶液;在饱和溶液中以1mL/min的滴速逐滴加入5mL浓度为69wt%的硝酸酸化,并一直磁力搅拌,搅速为800rpm/min;在酸化的溶液中加入1.0g偏钨酸铵,溶液开始出现白色沉淀,超声25min后,溶液变成乳白色溶液;随后转移到100mL水热釜里,再加入12mL H2O2,放入电热恒温鼓风干燥箱240℃水热12h,冷却至室温后去除上清液获得黄色的沉淀物,分别用无水乙醇和去离子水离心洗涤3次,然后放入真空干燥箱中80℃,12h烘干,取出研磨即得黄色的粉末WO3。(2)取0.5g的WO3放入石英舟转移到管式炉中,在流速为100mL/min的一氧化碳氛围中,从室温至煅烧碳化的升温速率为5℃/min,950℃煅烧2h,冷却至室温后通入流速为40mL/min的体积比99:1的N2:O2气氛保持12h。即可制得PVP辅助合成的黑色粉末WC;记为WC-P。
实施例1
一种(Ru/WC)/CdS和(Pd/WC-P)/CdS复合光催化剂的制备方法,步骤如下:
(1)将0.1g WC、WC-P分别分散在30mL去离子水中,使WC分散均匀,然后分别对应地缓慢加入1mg/mL RuCl3、PdCl2溶液5.5mL,超声20min,放入70℃水浴下蒸干,研磨后放入管式炉通入20mL/min的H2,300℃,1h。当温度降到25℃时通入N2:O2为99:1的钝化气气氛中12h,即得(Ru/WC)和(Pd/WC-P)。
(2)将(1)合成(Ru/WC)、(Pd/WC-P)分别超声分散在50mL 0.14mol/L硝酸镉溶液,搅拌60min后,分别逐滴加入60mL 0.14mol/L硫化钠水溶液,待滴加结束后继续搅拌60min,陈化8h后,再转移到100mL的水热釜中在180℃保持24h,冷却至室温过滤并用去离子水和无水乙醇洗涤三次,转移到真空干燥箱干燥12h,得到(Ru/WC)/CdS和(Pd/WC-P)/CdS。其中Ru、Pd的质量担载量0.5%;
实施例2
催化剂的制备参考实施例1,不同之处在于步骤(1)中将缓慢加入1mg/mL RuCl3、PdCl2溶液11μL,最终制得(Ru/WC)/CdS和(Pd/WC-P)/CdS复合光催化剂中Ru、Pd的质量担载量为0.001%,其余步骤与实施例1相同。
实施例3
催化剂的制备参考实施例1,不同之处在于步骤(1)中将缓慢加入1mg/mL PdCl2溶液55μL,最终制得(Pd/WC-P)/CdS复合光催化剂中Pd的质量担载量为0.005%,其余步骤与实施例1相同。
实施例4
催化剂的制备参考实施例1,不同之处在于步骤(1)中将缓慢加入1mg/mL RuCl3、PdCl2溶液110μL,最终制得(Ru/WC)/CdS和(Pd/WC-P)/CdS复合光催化剂中Ru、Pd的质量担载量为0.01%,其余步骤与实施例1相同。
实施例5
催化剂的制备参考实施例1,不同之处在于步骤(1)中将缓慢加入1mg/mL RuCl3、PdCl2溶液1.1mL,最终制得(Ru/WC)/CdS和(Pd/WC-P)/CdS复合光催化剂中Ru、Pd的质量担载量为0.1%,其余步骤与实施例1相同。
实施例6
催化剂的制备参考实施例1,不同之处在于步骤(1)中将缓慢加入1mg/mL RuCl3溶液11mL,最终制得(Ru/WC)/CdS复合光催化剂中Ru的质量担载量为1.0%,其余步骤与实施例1相同。
对比例1
不同组装方式Ru/(WC/CdS)催化剂的制备步骤:
(1)取0.1g WC超声分散在50mL 0.14mol/L硝酸镉溶液,搅拌20min后,逐滴加入60mL 0.14mol/L硫化钠水溶液,待滴加结束后继续搅拌60min,陈化8h后,再转移到100mL的水热釜中180℃保持24h,冷却后过滤并用去离子水和无水乙醇洗涤三次,转移到真空干燥箱干燥12h,研磨后得到(WC/CdS);
(2)将(1)合成的(WC/CdS)取0.1g分散在加入100mL水溶液(10%乳酸)的反应器中,搅拌10min,缓慢加入1mg/mL RuCl3溶液1μL,超声20min,然后抽气30min,使用350W氙灯作为光源,使用420nm滤光片过滤掉紫外光,光照时间1h,然后过滤洗涤,真空干燥12h,得到0.001%Ru/(WC/CdS)。
对比例2
催化剂的制备参考对比例1,不同之处在于步骤(2)中将缓慢加入1mg/mL RuCl3溶液10μL,最终制得0.01%Ru/(WC/CdS),其余步骤与对比例1相同。
对比例3
催化剂的制备参考对比例1,不同之处在于步骤(2)中将缓慢加入1mg/mL RuCl3溶液100μL,最终制得0.1%Ru/(WC/CdS),其余步骤与对比例1相同。
对比例4
催化剂的制备参考对比例1,不同之处在于步骤(2)中将缓慢加入1mg/mL RuCl3溶液0.5mL,最终制得0.5%Ru/(WC/CdS),其余步骤与对比例1相同。
对比例5
催化剂的制备参考对比例1,不同之处在于步骤(2)中将缓慢加入1mg/mL RuCl3溶液1.0mL,最终制得1.0%Ru/(WC/CdS),其余步骤与对比例1相同。
光催化产氢活性评价
将实施例1-6和对比例1-5所得光催化剂分别进行光催化产氢活性评价,如图3和图4所示。
由实施例1-5催化剂的光催化产氢活性对比可知,在同一反应条件下,当贵金属助催化剂Ru、Pd的质量担载量增加时,光催化产氢活性分布呈现火山型,先增加后减少,Ru的最佳质量担载量为0.5%,Pd的最佳质量担载量为0.1%,此时,(Ru/WC)/CdS的光催化产氢量最大,可以达到16.85mmol/h/g。(Pd/WC-P)/CdS的最大产氢量是29.5mmol/h/g。进一步证明了(Ru/WC)/CdS、(Pd/WC-P)/CdS是助催化剂与半导体最佳的组装方式以及(Ru/WC)、(Pd/WC-P)复合助催化剂展现了优异的助催化性能。
由对比例1-5催化剂的光催化产氢活性可知,在相同贵金属助催化剂Ru的质量担载量下,发现超出权利要求外的催化剂展现了低的光催化产氢活性。
图1是实施例1中制备的(Ru/WC)和(Pd/WC-P)复合助催化剂的TEM图,从(Ru/WC)的TEM图中可以看到呈现块状的WC表面上附着超细Ru颗粒,颗粒尺寸大约为1~2nm。比表面积达到1.97m2/g,块体的平均厚度约为39.55~207.7nm,块的面积约为0.01~0.3μm2。从(Pd/WC-P)的TEM图中可以看到晶格间距为0.225nm对应金属Pd的(111)晶面,也可以观察到Pd与WC纳米片之间的界面紧密接触。因为WC质量较大,块体较厚,电子难以透过,所以图像偏暗偏黑。
图2是实施例1中制备的(Ru/WC)/CdS和(Pd/WC-P)/CdS复合光催化剂的HRTEM图,从(Ru/WC)/CdS的HRTEM图中可以看出晶面间距为0.18nm的WC晶格条纹被归属为WC的(101)晶面,而晶面间距为0.29和0.23nm的晶格条纹被归属为CdS的(200)晶面和Ru的(100)晶面。可以看出三种物质结合在了一起。表明复合助催化剂(Ru/WC)成功的负载到了CdS上。从(Pd/WC-P)/CdS的HRTEM图中可以看出(Pd/WC-P)与CdS两种物质复合在了一起,晶格间距为0.137nm对应金属Pd的(111)晶面,0.188nm对应WC的(101)晶面,0.336nm对应CdS的(111)晶面。
Claims (6)
1.复合光催化剂,其特征在于:包括(Ru / WC) / CdS或(Pd / WC-P) / CdS两种复合光催化剂;
所述的两种复合光催化剂,是分别将复合助催化剂Ru / WC或Pd / WC-P分别负载在CdS上形成的,复合光催化剂中WC或WC-P助催化剂的负载量为1 ~ 15 wt %,Ru助催化剂的负载量为0.4 ~ 0.6 wt %、Pd助催化剂的负载量为0.08 ~ 0.12 wt %,其余为CdS;
(Ru / WC) / CdS的制备:
(1)制备Ru / WC:将0.01 ~ 0.3 g商业市购的WC分散在10 ~ 50 mL去离子水中;然后滴加加入RuCl3溶液,超声,水浴下蒸干,研磨,通氢气加热还原合成Ru / WC;
(2)制备(Ru / WC )/ CdS复合光催化剂:将Ru / WC超声分散在40 mL ~ 60 mL0.1mol / L ~ 0.2 mol / L的硝酸镉溶液中;然后逐滴加入40 mL ~ 80 mL0.12 mol / L ~0.15 mol / L的硫化钠水溶液;陈化后水热,沉淀物冷却、过滤、洗涤、干燥后获得(Ru /WC) / CdS复合光催化剂;
或,( Pd / WC-P) / CdS的制备:
(1)制备WC-P:以聚乙烯吡咯烷酮(PVP)和偏钨酸铵为原料,经水热合成前驱体WO3碳化制得由片层堆积的球形花状WC,记为WC-P;
(2)制备Pd / WC-P:将0.01 ~ 0.3 g WC-P分散在10 ~ 50 mL去离子水中;然后滴加入PdCl2溶液,超声,水浴下蒸干,研磨,通氢气加热还原合成Pd / WC-P;
(3)制备(Pd / WC-P) / CdS复合光催化剂:将Pd / WC-P超声分散在40 mL ~ 60mL0.1 mol / L ~ 0.2 mol / L的硝酸镉溶液中;然后逐滴加入40 mL ~ 80 mL的 0.12mol / L ~ 0.15 mol / L 的硫化钠水溶液;陈化后水热,沉淀物冷却、过滤、洗涤、干燥后获得(Pd / WC-P) / CdS复合光催化剂;
WC-P助催化剂制备的具体过程:
将0.1 ~ 1.0 g聚乙烯吡咯烷酮(PVP)溶于25 ~ 60 mL去离子水中;搅拌30 ~ 50 min;逐滴加入1 ~ 10 mL浓度为50 ~ 90 wt%的硝酸酸化,然后加入0.1 ~ 1.5 g偏钨酸铵,超声10 ~ 60 min后,溶液变成乳白色溶液,转移到水热釜里,再加入5 ~ 20 mL H2O2;水热的温度为200 ~ 250 oC,水热时长为10 ~ 36 h;冷却至室温去除上清液,分别用无水乙醇和去离子水离心洗涤3 ~ 5次,获得黄色的沉淀物,然后放入真空干燥箱中60 oC ~ 100 oC干燥,烘干时间12 ~ 24 h;烘干后得到的黄色WO3放入管式炉中,在流速为60 ~ 150 mL / min的一氧化碳氛围中,800 ~ 1100 oC煅烧1.5 ~ 5 h,从室温至煅烧碳化的升温速率为 2 ~10 oC / min;碳化后冷却至室温后通入流速为30 ~ 80 mL / min惰性气氛气体;在惰性气氛气体为体积比为98:2 ~ 99.5:0.5的N2:O2钝化气中钝化;保持8 ~ 20 h;研磨后获得的WC记为WC-P。
2.如权利要求1所述的复合光催化剂,其特征在于:包括(Ru / WC) / CdS或(Pd / WC-P) / CdS两种复合光催化剂;
所述的两种复合光催化剂,是分别将复合助催化剂Ru / WC或Pd / WC-P分别负载在CdS上形成的,复合光 催化剂中WC或WC-P助催化剂的负载量为9 ~ 11wt %,Ru助催化剂的负载量为0.4 ~ 0.6wt %、Pd助催化剂的负载量为0.08 ~ 0.12wt %,其余为CdS;
(Ru / WC) / CdS的制备:
(1)制备Ru / WC:将0.05 ~ 0.25 g商业市购的WC分散在20 ~ 40 mL去离子水中;然后滴加加入RuCl3溶液,超声,水浴下蒸干,研磨,通氢气加热还原合成Ru / WC;
(2)制备(Ru / WC) / CdS复合光催化剂:将Ru / WC超声分散在50 mL的0.12 mol / L~ 0.16 mol / L的硝酸镉溶液中;然后逐滴加入60 mL的0.14 mol / L的硫化钠水溶液;陈化后水热,沉淀物冷却、过滤、洗涤、干燥后获得(Ru / WC) / CdS复合光催化剂;
或,(Pd / WC-P) / CdS的制备:
(1)制备WC-P:以聚乙烯吡咯烷酮(PVP)和偏钨酸铵为原料,经水热合成前驱体WO3碳化制得由片层堆积的球形花状WC,记为WC-P;
(2)制备Pd / WC-P:将0.05 ~ 0.25 g WC-P分散在20 ~ 40 mL去离子水中;然后滴加入PdCl2溶液,超声,水浴下蒸干,研磨,通氢气加热还原合成Pd / WC-P;
(3)制备(Pd / WC-P) / CdS复合光催化剂:将Pd / WC-P超声分散在50 mL的0.12 mol/ L ~ 0.16 mol / L的硝酸镉溶液中;然后逐滴加入60 mL 0.14 mol / L的硫化钠水溶液;陈化后水热,沉淀物冷却、过滤、洗涤、干燥后获得(Pd / WC-P) / CdS复合光催化剂。
3.如权利要求1所述的复合光催化剂的制备方法,其特征在于:
(Ru / WC) / CdS的制备:
(1)制备Ru / WC:将0.01 ~ 0.3 g商业市购的WC分散在10 ~ 50 mL去离子水中;然后滴加加入RuCl3溶液,超声,水浴下蒸干,研磨,通氢气加热还原合成Ru / WC;
(2)制备(Ru / WC) / CdS复合光催化剂:将Ru / WC超声分散在40 mL ~ 60 mL0.1mol / L ~ 0.2 mol / L的硝酸镉溶液中;然后逐滴加入40 mL ~ 80 mL0.12 mol / L ~0.15 mol / L的硫化钠水溶液;陈化后水热,沉淀物冷却、过滤、洗涤、干燥后获得(Ru /WC) / CdS复合光催化剂;
或,( Pd / WC-P) / CdS的制备:
(1)制备WC-P:以聚乙烯吡咯烷酮(PVP)和偏钨酸铵为原料,经水热合成前驱体WO3碳化制得由片层堆积的球形花状WC,记为WC-P;
(2)制备Pd / WC-P:将0.01 ~ 0.3 g WC-P分散在10 ~ 50 mL去离子水中;然后滴加入PdCl2溶液,超声,水浴下蒸干,研磨,通氢气加热还原合成Pd / WC-P;
(3)制备(Pd / WC-P)/ CdS复合光催化剂:将Pd / WC-P超声分散在40 mL ~ 60 mL0.1mol / L ~ 0.2 mol / L的硝酸镉溶液中;然后逐滴加入40 mL ~ 80 mL的 0.12 mol / L~ 0.15 mol / L 的硫化钠水溶液;陈化后水热,沉淀物冷却、过滤、洗涤、干燥后获得(Pd /WC-P) / CdS复合光催化剂。
4.按照权利要求3所述的复合光催化剂的制备方法,其特征在于:
制备Ru / WC或制备Pd / WC-P的过程中, WC或WC-P的质量为0.05 ~ 0.25 g;分散在10 ~ 50 mL去离子水中;加入RuCl3或PdCl2溶液,超声5 ~ 60 min;放入60 ~ 90 oC水浴下蒸干;研磨后放入管式炉通入5 ~ 45 mL / min的H2;200 ~ 400 oC保持0.3 ~ 3 h;当温度降到室温时通入体积比为98:2 ~ 99.5:0.5的N2:O2钝化气中钝化;保持8 ~ 20 h;获得Ru /WC和Pd / WC-P。
5.按照权利要求3所述的复合光催化剂的制备方法,其特征在于:
制备(Ru / WC) / CdS和(Pd / WC-P) / CdS复合光催化剂的过程中,分别取0.05 ~0.25 g的Ru / WC或Pd / WC-P;分散在40 mL ~ 60 mL0.1 mol / L ~ 0.2 mol / L硝酸镉溶液中,然后逐滴加入 40 mL ~ 80 mL0.12 mol / L ~ 0.15 mol / L硫化钠水溶液;待滴加结束后继续搅拌30 ~ 120 min后;然后陈化4 ~ 12 h;再转移到100 mL的水热釜中140 ~240 oC保持12 ~ 36 h;冷却到室温后过滤并用去离子水和无水乙醇洗涤3 ~ 5次,将沉淀物干燥6 ~ 20 h;得到(Ru / WC) / CdS或(Pd / WC-P) / CdS。
6.一种权利要求1所述复合光催化剂的应用,其特征在于:该催化剂用于光催化产氢反应中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010360409.XA CN111468153B (zh) | 2020-04-30 | 2020-04-30 | 一种(Ru/WC)或(Pd/WC-P)复合助催化剂及制备和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010360409.XA CN111468153B (zh) | 2020-04-30 | 2020-04-30 | 一种(Ru/WC)或(Pd/WC-P)复合助催化剂及制备和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111468153A CN111468153A (zh) | 2020-07-31 |
CN111468153B true CN111468153B (zh) | 2023-02-28 |
Family
ID=71762078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010360409.XA Active CN111468153B (zh) | 2020-04-30 | 2020-04-30 | 一种(Ru/WC)或(Pd/WC-P)复合助催化剂及制备和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111468153B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112110883B (zh) * | 2020-10-16 | 2022-09-30 | 中国科学技术大学 | 一种烷基糠醇酯的制备方法 |
CN114086208B (zh) * | 2021-12-17 | 2024-10-25 | 澳门大学 | 用于电解水产氢的复合电极材料及其制备方法 |
CN116288506B (zh) * | 2023-05-23 | 2023-08-04 | 四川大学 | 一种her电催化剂及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8207081B1 (en) * | 2008-11-08 | 2012-06-26 | University Of Central Florida Research Foundation, Inc. | Nanocomposite for photocatalytic Hydrogen production and method for its preparation |
JP2015142882A (ja) * | 2014-01-31 | 2015-08-06 | 博 久保田 | 水素生成触媒 |
CN108126722A (zh) * | 2018-01-31 | 2018-06-08 | 宁夏大学 | 一种煤基w/wc复合催化剂及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8278011B2 (en) * | 2004-12-09 | 2012-10-02 | Nanosys, Inc. | Nanostructured catalyst supports |
-
2020
- 2020-04-30 CN CN202010360409.XA patent/CN111468153B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8207081B1 (en) * | 2008-11-08 | 2012-06-26 | University Of Central Florida Research Foundation, Inc. | Nanocomposite for photocatalytic Hydrogen production and method for its preparation |
JP2015142882A (ja) * | 2014-01-31 | 2015-08-06 | 博 久保田 | 水素生成触媒 |
CN108126722A (zh) * | 2018-01-31 | 2018-06-08 | 宁夏大学 | 一种煤基w/wc复合催化剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Role of platinum-like tungsten carbide as cocatalyst of Cds photocatalyst for hydrogen production under visible light irradiation;Jum Suk Jang et al.;《Applied Catalysis A:General》;20080521;第149-154页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111468153A (zh) | 2020-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111468153B (zh) | 一种(Ru/WC)或(Pd/WC-P)复合助催化剂及制备和应用 | |
CN110013869B (zh) | 一种氮化碳纳米片负载碳化钛量子点及其制备方法和应用 | |
CN108479855B (zh) | 一种核壳结构金属有机骨架基复合光催化剂及其制备方法 | |
CN108607593B (zh) | 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用 | |
CN112495401B (zh) | 一种Mo掺杂MoO3@ZnIn2S4 Z体系光催化剂及其制备方法与应用 | |
CN113101933A (zh) | 一种负载型镍钴双金属纳米催化剂及其在催化香兰素选择性加氢反应中的应用 | |
CN109174144B (zh) | Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用 | |
CN114471639B (zh) | 过渡金属元素掺杂及具有硫空位的硫化镉负载过渡金属磷化物光催化材料及其制备方法 | |
CN115779929B (zh) | 一种改性ZnIn2S4光催化剂及其制备方法与应用 | |
CN113042071A (zh) | 一种单原子Pd修饰CdS纳米催化剂及其制备方法 | |
CN110339852B (zh) | 一种CoO@氮硫共掺杂碳材料/CdS复合光催化材料、制备方法及其应用 | |
CN116139867A (zh) | 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用 | |
CN114377691A (zh) | 一种甜甜圈状空心多孔Pt-Ni纳米粒子负载氧化钛材料及其制备方法 | |
CN114425375A (zh) | Ni12P5/TpPa-1-COF光催化剂及其制备方法和在光催化分解水中的应用 | |
Huang et al. | CdS-based semiconductor photocatalysts for hydrogen production from water splitting under solar light | |
CN113546658A (zh) | 一种二维层状三元纳米复合光催化剂及其制备方法和应用 | |
CN113083325A (zh) | 一种氨硼烷水解制氢用催化剂Ru1-xCox/P25及其制备方法 | |
CN109078644B (zh) | 石墨烯负载Bi-BiOCl-TiO2光催化剂及制法 | |
CN114797940B (zh) | 一种具有界面协同相互作用的mxp/p-pcn复合催化剂及其制备方法和应用 | |
CN113600225B (zh) | 一种异质结复合材料及其应用 | |
CN114082420B (zh) | 一种深度脱除co的催化剂及其制备方法 | |
CN113398971B (zh) | 二维RuNi/g-C3N4复合光催化剂及其制备方法和应用 | |
Mao et al. | Acid-base bifunctional Fe-NC catalyst with Fe-N4 and Fe nanoparticles active sites derived from Fe-doped ZIF-8 boosted microalgal lipid conversion | |
CN111036270B (zh) | 一种复合光催化材料及其制备方法 | |
CN114887640A (zh) | 一种非晶Ru-RuOx复合纳米颗粒催化剂的制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |