CN111434641A - 用于白光照明的荧光陶瓷、制备方法及白光光源装置 - Google Patents

用于白光照明的荧光陶瓷、制备方法及白光光源装置 Download PDF

Info

Publication number
CN111434641A
CN111434641A CN201910029079.3A CN201910029079A CN111434641A CN 111434641 A CN111434641 A CN 111434641A CN 201910029079 A CN201910029079 A CN 201910029079A CN 111434641 A CN111434641 A CN 111434641A
Authority
CN
China
Prior art keywords
fluorescent
white light
ceramic
equal
fluorescent ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910029079.3A
Other languages
English (en)
Other versions
CN111434641B (zh
Inventor
朱宁
朱锦超
曾庆兵
王红
叶勇
张攀德
冯少尉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aviation Electric Co Ltd
Original Assignee
Shanghai Aviation Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aviation Electric Co Ltd filed Critical Shanghai Aviation Electric Co Ltd
Priority to CN201910029079.3A priority Critical patent/CN111434641B/zh
Publication of CN111434641A publication Critical patent/CN111434641A/zh
Application granted granted Critical
Publication of CN111434641B publication Critical patent/CN111434641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

本发明公开用于白光照明的荧光陶瓷、制备方法及白光光源装置。所述荧光陶瓷具有镥铝石榴石荧光相,且所述荧光陶瓷的晶粒尺寸小于3um。所述镥铝石榴石荧光相的表达式为(Lu1‑x‑ yREyCex)3(Al1‑zMnz)5O12。所述白光光源装置包含有,蓝光激发器;以及,上述荧光陶瓷。本发明的有益效果在于:1)从原材料粒度和烧结方法进行调控,实现荧光相晶粒自身对入射蓝光和发射黄光的散射效果,避免引入非荧光相的散光相带来的发光效率下降的问题;2)荧光相晶粒尺寸较小,能进一步提升陶瓷抗热冲击性能,有效解决当前白光激光照明中荧光材料的抗热冲击性能弱的问题。

Description

用于白光照明的荧光陶瓷、制备方法及白光光源装置
技术领域
本发明涉及激光照明显示用荧光材料领域,特别地是,用于白光照明的荧光陶瓷、制备方法及白光光源装置。
背景技术
激光二极管具有光电效率高、亮度高、准直性高、照射距离远、尺寸小等特点。相对于LED光源产品只适用于中低亮度领域,激光光源则可以适用于所有亮度的需求,尤其在高亮、高光效、方向性强等领域具有无可比拟的优势。由于激光器自身工艺技术限制,虽然激光器方向性强但激光光束存在能量密度分布不均的情况,因此激光照明用荧光材料需自带散光和匀光功能,可以简化整灯系统的二次配光设计和光机结构。
白光LED光源的荧光材料工作时经受的蓝光光功率密度大部分在1W/mm2以下,最大不超过5W/mm2,而激光照明用荧光材料所需要承受的蓝光辐照功率密度是白光LED照明的十倍甚至百倍以上。这就使得激光照明用荧光材料需要具备优异的耐蓝光辐照能力、优异的高温荧光特性和优良抗热冲击性能。
为解决上述大功率激光照明用荧光材料出光不均匀和抗热冲击能力弱的问题,通常会引入具有散光和导热功能的第二相,这样会减少荧光相的相对含量,从而导致发光效率下降。
发明内容
人们一直期望解决现有技术中激光照明出光不均匀和显色指数低(70左右),尤其红光成分缺失,但始终未能获得成功。本发明人通过陶瓷配方设计和制备工艺技术控制陶瓷晶粒尺寸,提供一种用于白光照明的荧光陶瓷及其制备方法,能有效地解决上述问题。
本发明的技术方案是这样实现的:用于白光照明的荧光陶瓷,其特征在于,所述荧光陶瓷具有镥铝石榴石荧光相,且所述荧光陶瓷的晶粒尺寸小于3um,优选地,所述荧光陶瓷的晶粒尺寸小于1um。
作为用于白光照明的荧光陶瓷的优选方案,所述镥铝石榴石荧光相的表达式为(Lu1-x-yREyCex)3(Al1-zMnz)5O12,其中,RE为Tb、Gd、Sm、Pr、Cr中一种或多种;其中,x的取值范围为0.0001≤x≤0.1,优选地,0.0005≤x≤0.05,更优选地,0.001≤x≤0.03;y的取值范围为0<y≤0.5,优选地,0.005<y≤0.3;z的取值范围为0≤z≤0.1,优选地,0.001<z≤0.03。
本发明还提供用于白光照明的荧光陶瓷的制备方法,包含有以下步骤,
步骤S1,合成陶瓷粉体原料,陶瓷粉体原料为(Lu,RE,Ce)3(Al,Mn)5O12,粒径D50为0.01~1.0μm,优选地,0.05~0.5μm;
步骤S2,球磨混料;
步骤S3,干燥过筛;
步骤S4,烧结成陶瓷块;
步骤S5,退火,得到权利要求1或2中的荧光陶瓷。
作为用于白光照明的荧光陶瓷的制备方法的优选方案,步骤S1中,起始原材料为硝酸盐、氯化物、草酸盐,沉淀剂为尿素、柠檬酸,水热合成温度为100~400℃,保温时间为4~72h,经水洗干燥后在400~800℃灼烧1~6h而成。
作为用于白光照明的荧光陶瓷的制备方法的优选方案,步骤S2中,添加烧结助剂为Li+,Ca2+/Mg2+/Ba2+,La3+/Y3+,TEOS/SiO2,金属离子可以是以氧化物、碳酸盐、氟化物等形式的盐类;烧结助剂的添加量为0.01~10wt%,优选为0.5~3.0wt%。
作为用于白光照明的荧光陶瓷的制备方法的优选方案,步骤S4中,采用等离子体烧结炉进行烧结:真空度为10-2~10-3Pa,烧结压力50~80MPa,升温速率100~200℃/min,烧结温度1400~1800℃,烧结保温时间为1~60min。
作为用于白光照明的荧光陶瓷的制备方法的优选方案,步骤S5中,采用马弗炉,保温温度为1200~1600℃,保温时间为1~24h,优选地,保温温度为1350~1500℃,保温时间为5~10h。
本发明还提供白光光源装置,包含有,
蓝光激发器;以及,
荧光陶瓷。
与现有技术相比,本发明的有益效果至少在于:1)从原材料粒度和烧结方法进行调控,所得荧光陶瓷晶粒尺寸小于1um,实现荧光相晶粒自身对入射蓝光和发射黄光的散射效果,避免引入非荧光相的散光相带来的发光效率下降的问题;2)荧光相晶粒尺寸较小,能进一步提升陶瓷抗热冲击性能,有效解决当前白光激光照明中荧光材料的抗热冲击性能弱的问题。
附图说明
图1为本发明的显微结构示意图。
图2为含有本发明荧光陶瓷的透射式光路。
图3为含有本发明荧光陶瓷的反射式光路。
具体实施方式
下面通过具体的实施方式结合附图对本发明作进一步详细说明。
比较例1
按照(Lu0.79Tb0.2Ce0.01)3Al5O12化学计量比,称取高纯氧化镥(Lu2O3)、氧化铝(Al2O3)、氧化铽(Tb4O7)、氧化铈(CeO2)为原料,以氧化镁(MgO)和正硅酸乙酯(TEOS)作为烧结助剂。氧化镁(MgO)添加量为质量分数0.1%,正硅酸乙酯(TEOS)添加量为质量分数0.6%。按该组成配方配制好粉体原料,再以无水乙醇为球磨介质放入氧化铝球磨罐进行球磨,粉料经干燥、过筛、600℃保温4h预烧后,放入石墨模具经等离子体烧结炉中在1780℃真空度10-3Pa的条件下烧结40min,最后在马弗炉中经1450℃退火10h,获得(Lu0.79Tb0.2Ce0.01)3Al5O12荧光陶瓷。将所得到的陶瓷材料进行切磨抛加工处理,得到0.2mm厚度的白光照明用荧光陶瓷。
实施例1
按照(Lu0.79Tb0.2Ce0.01)3Al5O12化学配比,称取高纯硝酸镥(Lu(NO3)3)、硝酸铝(Al(NO3)3)、硝酸铈(Ce(NO3)3)、硝酸铽(Tb(NO3)3)原料,以尿素为络合剂,放入水热反应罐于250℃烘箱保温48h,经水洗干燥后,置于马弗炉中600℃灼烧4h;然后加入氧化镁(MgO)和正硅酸乙酯(TEOS)作为烧结助剂进行球磨混料,其中,氧化镁(MgO)添加量为质量分数0.1%,正硅酸乙酯(TEOS)添加量为质量分数0.6%。将混合好的粉体原料置于石墨模具,经等离子体烧结炉中在1700℃真空度10-3Pa的条件下烧结30min,最后在马弗炉中经1450℃退火10h,获得(Lu0.79Tb0.2Ce0.01)3Al5O12荧光陶瓷。将所得到的陶瓷材料进行切磨抛加工处理,得到0.2mm厚度的白光照明用荧光陶瓷。
实施例2
按照(Lu0.79Tb0.2Ce0.01)3Al5O12化学配比,称取高纯硝酸镥(Lu(NO3)3)、硝酸铝(Al(NO3)3)、硝酸铈(Ce(NO3)3)、硝酸铽(Tb(NO3)3)原料,以柠檬酸为络合剂,放入水热反应罐于250℃烘箱保温60h,经水洗干燥后,置于马弗炉中600℃灼烧4h;然后加入氧化镁(MgO)和正硅酸乙酯(TEOS)作为烧结助剂进行球磨混料,其中,氧化镁(MgO)添加量为质量分数0.1%,正硅酸乙酯(TEOS)添加量为质量分数0.6%。将混合好的粉体原料置于石墨模具,经等离子体烧结炉中在1600℃真空度10-3Pa的条件下烧结40min,最后在马弗炉中经1450℃退火10h,获得(Lu0.79Tb0.2Ce0.01)3Al5O12荧光陶瓷。将所得到的陶瓷材料进行切磨抛加工处理,得到0.2mm厚度的白光照明用荧光陶瓷。
实施例3
按照(Lu0.79Tb0.2Ce0.01)3Al5O12化学配比,称取高纯硝酸镥(Lu(NO3)3)、硝酸铝(Al(NO3)3)、硝酸铈(Ce(NO3)3)、硝酸铽(Tb(NO3)3)原料,以尿素为络合剂,放入水热反应罐于250℃烘箱保温30h,经水洗干燥后,置于马弗炉600℃保温4h预烧后,加入氧化镁(MgO)和正硅酸乙酯(TEOS)作为烧结助剂进行球磨混料,其中,氧化镁(MgO)添加量为质量分数0.1%,正硅酸乙酯(TEOS)添加量为质量分数0.6%。将混合好的粉体原料置于石墨模具,经等离子体烧结炉中在1500℃真空度10-3Pa的条件下烧结50min,最后在马弗炉中经1450℃退火10h,获得(Lu0.79Tb0.2Ce0.01)3Al5O12荧光陶瓷。将所得到的陶瓷材料进行切磨抛加工处理,得到0.2mm厚度的白光照明用荧光陶瓷。
表1为比较例及实施例1~3荧光陶瓷发光强度及其出光均匀性
45°出光角度照度,% 色温均值,K 色温方差
比较例1 100 5112 246
实施例1 99 5058 154
实施例2 102 5156 142
实施例3 95 5272 112
在光斑外圆周上取4等分点测试白光色温,这些实施例荧光陶瓷的出光均匀性,如表1所示。相对于比较例,含有实施例陶瓷的白光光斑的色温均匀性有明显提升。图1所示为实施例2的显微结构图,平均晶粒尺寸约1um。含有该陶瓷复合体的光源装置示意图请参见图2和图3,将上述陶瓷复合体的底面镀银并焊接在铜质散热基座(5)中,可以通过透射式或者反射式光路实现白光照明。利用单颗或多颗激光器(1)作为激发光源,经透镜(2)准直、聚束以及匀光装置(3)匀光后照射至该陶瓷复合体(4)表面,该陶瓷复合体将激发光源波长(6)转换为橙光,剩余蓝光与陶瓷片发射光混合获得亮度高且显色指数Ra>85的均匀白光(7)。
以上仅表达了本发明的实施方式,其描述较为具体和详细,但且不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.用于白光照明的荧光陶瓷,其特征在于,所述荧光陶瓷具有镥铝石榴石荧光相,且所述荧光陶瓷的晶粒尺寸小于3um,优选地,所述荧光陶瓷的晶粒尺寸小于1um。
2.根据权利要求1所述的用于白光照明的荧光陶瓷,其特征在于,所述镥铝石榴石荧光相的表达式为(Lu1-x-yREyCex)3(Al1-zMnz)5O12,其中,RE为Tb、Gd、Sm、Pr、Cr中一种或多种;其中,x的取值范围为0.0001≤x≤0.1,优选地,0.0005≤x≤0.05,更优选地,0.001≤x≤0.03;y的取值范围为0<y≤0.5,优选地,0.005<y≤0.3;z的取值范围为0≤z≤0.1,优选地,0.001<z≤0.03。
3.用于白光照明的荧光陶瓷的制备方法,其特征在于,包含有以下步骤,
步骤S1,合成陶瓷粉体原料,陶瓷粉体原料为(Lu,RE,Ce)3(Al,Mn)5O12,粒径D50为0.01~1.0µm,优选地,0.05~0.5µm;
步骤S2,球磨混料;
步骤S3,干燥过筛;
步骤S4,烧结成陶瓷块;
步骤S5,退火,得到权利要求1或2中的荧光陶瓷。
4.根据权利要求3所述的用于白光照明的荧光陶瓷的制备方法,其特征在于,步骤S1中,起始原材料为硝酸盐、氯化物、草酸盐,沉淀剂为尿素、柠檬酸,水热合成温度为100~400℃,保温时间为4~72h,经水洗干燥后在400~800℃灼烧1~6h而成。
5.根据权利要求3所述的用于白光照明的荧光陶瓷的制备方法,其特征在于,步骤S2中,添加烧结助剂为Li+,Ca2+/Mg2+/Ba2+, La3+/Y3+,TEOS/SiO2,金属离子可以是以氧化物、碳酸盐、氟化物等形式的盐类;烧结助剂的添加量为0.01~10wt%,优选为0.5~3.0wt%。
6.根据权利要求3所述的用于白光照明的荧光陶瓷的制备方法,其特征在于,步骤S4中,采用等离子体烧结炉进行烧结:真空度为10-2~10-3Pa,烧结压力50~80MPa,升温速率100~200℃/min,烧结温度1400~1800℃,烧结保温时间为1~60min。
7.根据权利要求3所述的用于白光照明的荧光陶瓷的制备方法,其特征在于,步骤S5中,采用马弗炉,保温温度为1200~1600℃,保温时间为1~24h,优选地,保温温度为1350~1500℃,保温时间为5~10h。
8.白光光源装置,其特征在于,包含有,
蓝光激发器;以及,
权利要求1至87中任意一项所述的荧光陶瓷。
CN201910029079.3A 2019-01-12 2019-01-12 用于白光照明的荧光陶瓷、制备方法及白光光源装置 Active CN111434641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910029079.3A CN111434641B (zh) 2019-01-12 2019-01-12 用于白光照明的荧光陶瓷、制备方法及白光光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910029079.3A CN111434641B (zh) 2019-01-12 2019-01-12 用于白光照明的荧光陶瓷、制备方法及白光光源装置

Publications (2)

Publication Number Publication Date
CN111434641A true CN111434641A (zh) 2020-07-21
CN111434641B CN111434641B (zh) 2023-04-28

Family

ID=71580587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910029079.3A Active CN111434641B (zh) 2019-01-12 2019-01-12 用于白光照明的荧光陶瓷、制备方法及白光光源装置

Country Status (1)

Country Link
CN (1) CN111434641B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094120A (zh) * 2020-10-16 2020-12-18 贵州赛义光电科技有限公司 一种发光颜色可调的荧光陶瓷及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837142A (zh) * 2006-04-07 2006-09-27 中国科学院上海硅酸盐研究所 一种镥铝石榴石基透明陶瓷及其制备方法
CN102173825A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 用于钇铝石榴石基荧光透明陶瓷的烧结助剂及其使用方法
CN103396121A (zh) * 2013-08-13 2013-11-20 中国科学院宁波材料技术与工程研究所 一种具有石榴石结构的新型透明闪烁陶瓷及其制备方法
CN103468263A (zh) * 2013-08-21 2013-12-25 江苏西凯华程光电科技有限公司 蓝光激发的白色led用狭窄粒度分布荧光粉及其制造方法
CN103476903A (zh) * 2011-02-24 2013-12-25 日东电工株式会社 具有磷光体组分的发光复合物
CN107324805A (zh) * 2016-04-29 2017-11-07 中国科学院上海硅酸盐研究所 一种多组分石榴石基激光透明陶瓷材料及其制备方法
CN108264899A (zh) * 2016-12-30 2018-07-10 中国科学院宁波材料技术与工程研究所 一种应用于led的荧光陶瓷及其制备方法
CN108503352A (zh) * 2018-03-27 2018-09-07 中国科学院上海硅酸盐研究所 一种石榴石基红色荧光陶瓷材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837142A (zh) * 2006-04-07 2006-09-27 中国科学院上海硅酸盐研究所 一种镥铝石榴石基透明陶瓷及其制备方法
CN102173825A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 用于钇铝石榴石基荧光透明陶瓷的烧结助剂及其使用方法
CN103476903A (zh) * 2011-02-24 2013-12-25 日东电工株式会社 具有磷光体组分的发光复合物
CN103396121A (zh) * 2013-08-13 2013-11-20 中国科学院宁波材料技术与工程研究所 一种具有石榴石结构的新型透明闪烁陶瓷及其制备方法
CN103468263A (zh) * 2013-08-21 2013-12-25 江苏西凯华程光电科技有限公司 蓝光激发的白色led用狭窄粒度分布荧光粉及其制造方法
CN107324805A (zh) * 2016-04-29 2017-11-07 中国科学院上海硅酸盐研究所 一种多组分石榴石基激光透明陶瓷材料及其制备方法
CN108264899A (zh) * 2016-12-30 2018-07-10 中国科学院宁波材料技术与工程研究所 一种应用于led的荧光陶瓷及其制备方法
CN108503352A (zh) * 2018-03-27 2018-09-07 中国科学院上海硅酸盐研究所 一种石榴石基红色荧光陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOANNA M. OGIEGŁO 等: "Luminescence and Energy Transfer in Lu3Al5O12 Scintillators Co-Doped with Ce3+ and Tb3+", 《THE JOURNAL OF PHYSICAL CHEMISTRY A》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094120A (zh) * 2020-10-16 2020-12-18 贵州赛义光电科技有限公司 一种发光颜色可调的荧光陶瓷及其制备方法

Also Published As

Publication number Publication date
CN111434641B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
JP6834491B2 (ja) 焼結蛍光体、発光装置、照明装置、車両前照灯、及び焼結蛍光体の製造方法
CN107540368B (zh) 复相半透明荧光陶瓷的制备方法和led模组
JP7056553B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
CN109896852B (zh) 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN109467453B (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
JP6897387B2 (ja) 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN109896853B (zh) 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置
CN103360110B (zh) 其中扩散有稀土元素的氧化物陶瓷荧光材料
CN106145922A (zh) 一种led用yag透明荧光陶瓷的制备方法
WO2018021418A1 (ja) 焼結蛍光体、発光装置、照明装置及び車両用表示灯
CN109896851B (zh) 具有浓度梯度的陶瓷复合体、制备方法及光源装置
CN112939578A (zh) 荧光陶瓷及其制备方法、发光装置以及投影装置
CN111285682A (zh) 用于激光照明与显示的全光谱复相荧光陶瓷及制备方法
CN109020509B (zh) 一种发光陶瓷及其制备方法
CN109987932B (zh) 用于白光照明的复相荧光陶瓷、制备方法及光源装置
CN107200587B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN104829236A (zh) 一种SiAlON透明陶瓷荧光体的制备方法
CN111434641A (zh) 用于白光照明的荧光陶瓷、制备方法及白光光源装置
CN108395222A (zh) 一种反射式激光显示用光转换、散热一体化陶瓷材料及其制备方法
JP4916469B2 (ja) 蛍光体
CN107200589B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
WO2019179118A1 (zh) 发光陶瓷及其制备方法
CN111285675A (zh) 激光照明用浓度渐变荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant