CN111420674B - 一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及应用 - Google Patents

一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及应用 Download PDF

Info

Publication number
CN111420674B
CN111420674B CN202010274283.4A CN202010274283A CN111420674B CN 111420674 B CN111420674 B CN 111420674B CN 202010274283 A CN202010274283 A CN 202010274283A CN 111420674 B CN111420674 B CN 111420674B
Authority
CN
China
Prior art keywords
catalyst
reactor
reaction
composite oxide
synthesis gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010274283.4A
Other languages
English (en)
Other versions
CN111420674A (zh
Inventor
钟良枢
齐行振
林铁军
王新星
吕东
孙予罕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Advanced Research Institute of CAS
Original Assignee
Shanghai Advanced Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Advanced Research Institute of CAS filed Critical Shanghai Advanced Research Institute of CAS
Priority to CN202010274283.4A priority Critical patent/CN111420674B/zh
Publication of CN111420674A publication Critical patent/CN111420674A/zh
Application granted granted Critical
Publication of CN111420674B publication Critical patent/CN111420674B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • C07C45/505Asymmetric hydroformylation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及其应用。该催化剂包括复合氧化物和氢甲酰化固相催化剂;复合氧化物为CoM1复合氧化物或CoM1M2复合氧化物,M1选自Mg、Ca、Cu、Zn、Al、Zr、Mn、La和Ce中的一种或多种,M2选自Li、Na、K、Rb和Cs中的一种或多种。该催化剂体系经过还原及碳化得到用于合成气一步法直接合成醇醛类含氧产物的催化剂活性组分,该活性组分综合合成气制烯烃以及氢甲酰化催化剂的双重功能。催化剂制备相对简单,采用合适的发挥其双功能协同作用,用于合成气一步法直接合成醇醛类含氧产物反应体系中得到较高的醇醛类含氧产物选择性,同时催化剂稳定性也较好。

Description

一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及 应用
技术领域
本发明涉及催化剂技术领域,具体涉及一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及应用。
背景技术
以合成气催化转化为基础的C1化工技术,是实现煤和天然气清洁高效转化的重要途径之一。基于合成气催化转化路线,已经实现工业化的主要有以下几种反应类型:费托合成、甲醇合成、甲醇制烯烃、煤制乙二醇等。作为合成气催化转化的一个重要路线,合成气制混合醇一直是科学界持续关注的重点研究领域,但时至今日尚未实现工业化。混合醇,尤其是高碳醇具有较高的经济附加值以及实际应用前景,不仅可以直接作为燃料供汽车等现代交通工具使用,还可以作为汽油添加剂或精细化工品的中间产物,广泛应用于表面活性剂、增塑剂、洗涤剂和化妆品等领域。
在合成气制混合醇的反应过程中,根据该反应过程的机理及实际产物分布情况可知,除了生成一系列不同碳数的醇类产物之外,还会生成一系列不同碳数的醛类、烯烃、烷烃以及CO2等副产物,如何尽可能把副产物转化为更高价值的混合醇具有很重要的意义。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及其应用,该催化剂包括复合氧化物和氢甲酰化固相催化剂,质量比为1:5~5:1;所述复合氧化物为CoM1复合氧化物或CoM1M2复合氧化物,M1选自Mg、Ca、Cu、Zn、Al、Zr、Mn、La和Ce中的一种或多种,M2选自Li、Na、K、Rb和Cs中的一种或多种,涉及Co基催化剂与氢甲酰化固相催化剂双功能协同,用于合成气制醇醛类含氧产物,具有较高的醇醛类含氧产物选择性。
为实现上述目的及其他相关目的,本发明第一方面提供一种用于合成气一步法直接合成醇醛类含氧产物的催化剂,包括复合氧化物和氢甲酰化固相催化剂,质量比为1:5~5:1,如1:5~1:1、1:1~2:1或2:1~5:1;所述复合氧化物为CoM1复合氧化物或CoM1M2复合氧化物,M1选自Mg、Ca、Cu、Zn、Al、Zr、Mn、La和Ce中的一种或多种,M2选自Li、Na、K、Rb和Cs中的一种或多种。
优选地,M1选自Mn、Cu、Zn和Al中的一种或多种。
优选地,M2选自Na和K中的一种或多种。
优选地,所述复合氧化物和所述氢甲酰化固相催化剂的质量比为1:2~2:1。
优选地,Co与M1的摩尔比为1:10~10:1,如1:10~1:2、1:2~1:1、1:1~2:1或2:1~10:1。更优选地,Co与M1的摩尔比为1:3~3:1。
优选地,M2占复合氧化物的质量百分比为0%~5%,如0%~1%或1%~5%。更优选地,M2占复合氧化物的质量百分比为1%~2%。
优选地,氢甲酰化固相催化剂包括活性组分的氧化物和载体,所述活性组分选自Rh、Pd、Ru和Co中的一种或多种,所述载体选自氧化铝、氧化硅、氧化锆、氧化锰、活性炭。更优选地,所述活性组分选自Rh和Ru中的一种或多种,所述载体选自氧化硅和活性炭中的一种或多种。
更优选地,所述活性组分为所述载体质量的0.5%~10%,如0.5%~1%或1%~10%。进一步更优选地,所述活性组分为所述载体质量的1%~2%。
优选地,所述复合氧化物采用共沉淀法、溶胶凝胶法、络合法和浸渍法中的至少一种制备方法获得。
优选地,所述氢甲酰化固相催化剂采用共沉淀法、溶胶凝胶法和浸渍法中的至少一种制备方法获得。
本发明第二方面提供上述催化剂的用途,用于合成气一步法直接合成醇醛类含氧产物。
优选地,还包括如下技术特征中的一项:
1)所述催化剂在单一反应器中用于合成气一步法直接合成醇醛类含氧产物时,采用单床层混合型催化剂状态模式,将所述复合氧化物和所述氢甲酰化固相催化剂通过物理混合方式混合;
2)所述催化剂在单一反应器中用于合成气一步法直接合成醇醛类含氧产物时,采用双床层催化剂状态模式,将所述复合氧化物装填于反应器恒温区上部,所述氢甲酰化固相催化剂装填于反应器恒温区下部;
3)所述催化剂在串联双反应器中用于合成气一步法直接合成醇醛类含氧产物时,所述串联双反应器依次包括第一反应器和第二反应器,将所述复合氧化物置于所述第一反应器的恒温区,所述氢甲酰化固相催化剂置于所述第二反应器的恒温区。
更优选地,还包括如下技术特征中的至少一项:
11)特征1)中,所述复合氧化物和所述氢甲酰化固相催化剂物理混合后压片过筛至40-60目颗粒;
12)特征1)中,所述复合氧化物和所述氢甲酰化固相催化剂分别压片过筛至40-60目颗粒后再物理混合;
13)特征1)中,所述反应器为固定床反应器或浆态床反应器;
14)特征1)中,在用于合成气一步法直接合成醇醛类含氧产物之前,将所述催化剂进行还原和碳化;
21)特征2)中,将所述复合氧化物压片过筛至40-60目颗粒后装填于反应器恒温区上部,所述氢甲酰化固相催化剂压片过筛至40-60目颗粒后装填于反应器恒温区下部;
22)特征2)中,所述反应器为固定床反应器或浆态床反应器;
23)特征2)中,在用于合成气一步法直接合成醇醛类含氧产物之前,将所述催化剂进行还原和碳化;
31)特征3)中,所述复合氧化物压片过筛至40-60目颗粒置于所述第一反应器的恒温区,所述氢甲酰化固相催化剂压片过筛至40-60目颗粒置于所述第二反应器的恒温区;
32)特征3)中,所述第一反应器和所述第二反应器为固定床反应器或浆态床反应器;
33)特征3)中,在用于合成气一步法直接合成醇醛类含氧产物之前,将所述复合氧化物进行还原和碳化,将所述氢甲酰化固相催化剂进行还原和碳化。
与现有技术相比,本发明具有如下有益效果中的至少一项:
1)本发明提供一种全新的催化剂设计方案,以烯烃作为中间产物,催化剂包括Co基催化剂部分与氢甲酰化催化剂部分,可以实现由合成气一步法合成醇醛类含氧产物。
2)本发明的催化剂具有较为优异的综合催化性能,产物分布中醇醛类选择性较高,同时烃类选择性相应的有所降低,产物分布方面更具经济性。
3)本发明中提供四种催化剂的装填方式以及多种反应器选择方式,可以根据实际情况和需求灵活选择,从而达到较优的综合性能。
4)催化剂稳定性较好,在80h内CO转化率的降低可控制在5%以内,同时催化剂制备相对简单,可实现规模化放大制备。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
下列实施例采用下述一种方法进行装填:
1、催化剂A(即复合氧化物)和催化剂B(即氢甲酰化固相催化剂)物理混合,然后压片过筛至40-60目颗粒。
2、催化剂A(即复合氧化物)和催化剂B(即氢甲酰化固相催化剂)分别压片过筛至40-60目颗粒,然后再物理混合。
3、催化剂A(即复合氧化物)和催化剂B(即氢甲酰化固相催化剂)分别压片过筛至40-60目颗粒,然后再A装填于反应器恒温区上部,B装填于反应器恒温区下部。
4、催化剂A(即复合氧化物)和催化剂B(即氢甲酰化固相催化剂)分别压片过筛至40-60目颗粒,然后再A置于所述第一反应器的恒温区,B置于所述第二反应器的恒温区,所述第一反应器和所述第二反应器串联。
【实施例1】
催化剂A按照Co/Mn摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两者质量比1:1物理混合均匀后压片过筛至40-60目,然后称量1.5g催化剂与3.0g稀释剂石英砂物理混合稀释,采用1装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度240℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例2】
催化剂A按照Co/Mn摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度240℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例3】
催化剂A按照Co/Mn摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂分别与1.5g稀释剂石英砂物理混合稀释,采用3装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度240℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例4】
催化剂A按照Co/Mn摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂分别与1.5g稀释剂石英砂物理混合稀释,采用4装填至两套小试固定床反应器中,前套填装催化剂A-Co2Mn1Na1%,后套填装催化剂B-Rh1%/SiO2。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:前套反应温度240℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,后套反应温度260℃,具体反应结果如表1所示。
【实施例5】
催化剂A按照Co/Mn/Zn摩尔比2:1:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Zn1Na1%。
催化剂B活性金属组分为Ru,占载体活性炭质量的1%,命名为催化剂Ru1%/活性炭。
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂分别与1.5g稀释剂石英砂物理混合稀释,采用3装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度240℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例6】
催化剂A按照Co/Mn摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量10.0g催化剂物理混合,采用4装填至两套浆态床反应器中,前套填装催化剂A-Co2Mn1Na1%,后套填装催化剂B-Rh1%/SiO2。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间15h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:前套反应温度270℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,后套反应温度280℃,具体反应结果如表1所示。
【实施例7】
催化剂A按照Co/Mn摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例8】
催化剂A按照Co/Mn摩尔比2:1,K含量占催化剂质量的1%制备,命名为催化剂Co2Mn1K1%。
催化剂B活性金属组分为Rh,占载体活性炭质量的1%,命名为催化剂Rh1%/活性炭。
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=2.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=2.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=2.0,具体反应结果如表1所示。
【实施例9】
催化剂A按照Co/Mn摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂分别与1.5g稀释剂石英砂物理混合稀释,采用3装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度230℃,反应空速2000h-1,反应压力1.5MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例10】
催化剂A按照Co/Mn摩尔比1:2,Na含量占催化剂质量的0.5%制备,命名为催化剂Co1Mn2Na0.5%。
催化剂B活性金属组分为Ru,占载体SiO2质量的1%,命名为催化剂Ru1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂分别与1.5g稀释剂石英砂物理混合稀释,采用3装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间15h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力0.5MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例11】
催化剂A按照Co/Mn摩尔比1:1,Na含量占催化剂质量的1%制备,命名为催化剂Co1Mn1Na1%。
催化剂B活性金属组分为Ru,占载体MnO2质量的0.5%,命名为催化剂Ru0.5%/MnO2
催化剂A和B均为粉末状态,将两者质量比1:5物理混合均匀后压片过筛至40-60目,然后称量1.5g催化剂与3.0g稀释剂石英砂物理混合稀释,采用1装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为8000h-1,还原压力0.5MPa,还原温度300℃,还原时间5h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=0.5)开始碳化过程,维持碳化空速为2000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度240℃,反应空速2000h-1,反应压力3MPa,原料气H2/CO=1.0。该催化剂在80h内CO转化率的降低可控制在5%以内,稳定性较好,具体反应结果如表1所示。
【实施例12】
催化剂A按照Co/Mn摩尔比1:1,Na含量占催化剂质量的1%制备,命名为催化剂Co1Mn1Na1%。
催化剂B活性金属组分为Ru,占载体MnO2质量的10%,命名为催化剂Ru10%/MnO2
催化剂A和B均为粉末状态,将两者质量比5:1物理混合均匀后压片过筛至40-60目,然后称量1.5g催化剂与3.0g稀释剂石英砂物理混合稀释,采用1装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为8000h-1,还原压力0.5MPa,还原温度300℃,还原时间5h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=0.5)开始碳化过程,维持碳化空速为2000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度220℃,反应空速2000h-1,反应压力3MPa,原料气H2/CO=1.0。该催化剂在80h内CO转化率的降低可控制在5%以内,稳定性较好,具体反应结果如表1所示。
【实施例13】
催化剂A按照Co/Mg摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mg1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例14】
催化剂A按照Co/Ca摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Ca1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用1装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例15】
催化剂A按照Co/Cu/Al摩尔比2:1:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Cu1Al1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用1装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例16】
催化剂A按照Co/Cu/Zr摩尔比2:1:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Cu1Zr1Na1%。
催化剂B活性金属组分为Rh,占载体SiO2质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用1装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例17】
催化剂A按照Co/La摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2La1Na1%。
催化剂B活性金属组分为Ru,占载体SiO2质量的1%,命名为催化剂Ru1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用1装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例18】
催化剂A按照Co/Ce摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Ce1Na1%。
催化剂B活性金属组分为Ru,占载体SiO2质量的1%,命名为催化剂Ru1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用1装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例19】
催化剂A按照Co/Mn摩尔比2:1,Li含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Li1%。
催化剂B活性金属组分为Rh,占载体活性炭质量的1%,命名为催化剂Rh1%/活性炭。
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=2.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=2.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=2.0,具体反应结果如表1所示。
【实施例20】
催化剂A按照Co/Mn摩尔比2:1,Rb含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Rb1%。
催化剂B活性金属组分为Rh,占载体活性炭质量的1%,命名为催化剂Rh1%/活性炭。
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A 1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=2.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=2.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=2.0,具体反应结果如表1所示。
【实施例21】
催化剂A按照Co/Mn摩尔比2:1,Cs含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Cs1%。
催化剂B活性金属组分为Rh,占载体活性炭质量的1%,命名为催化剂Rh1%/活性炭。
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后称量催化剂A1.0g催化剂和催化剂B 0.5g然后与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=2.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=2.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度250℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=2.0,具体反应结果如表1所示。
【实施例22】
催化剂A按照Co/Mn摩尔比1:10,Na含量占催化剂质量的0%制备,命名为催化剂Co1Mn10%。
催化剂B活性金属组分为Rh,占载体Al2O3质量的1%,命名为催化剂Rh1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度240℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例23】
催化剂A按照Co/Mn摩尔比10:1,Na含量占催化剂质量的5%制备,命名为催化剂Co10Mn1Na5%。
催化剂B活性金属组分为Rh,占载体MnO2质量的1%,命名为催化剂Rh1%/MnO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度240℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例24】
催化剂A按照Co/Mn摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Na1%。
催化剂B活性金属组分为Pd,占载体ZrO2质量的1%,命名为催化剂Pd1%/ZrO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度240℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
【实施例25】
催化剂A按照Co/Mn摩尔比2:1,Na含量占催化剂质量的1%制备,命名为催化剂Co2Mn1Na1%。
催化剂B活性金属组分为Co,占载体SiO2质量的1%,命名为催化剂Co1%/SiO2
催化剂A和B均为粉末状态,将两组催化剂分别压片过筛至40-60目,然后各自称量0.75g催化剂与3.0g稀释剂石英砂物理混合稀释,采用2装填至单套小试固定床反应器中。还原气氛为10%H2,还原空速为6000h-1,还原压力0.5MPa,还原温度300℃,还原时间10h。还原过程结束后降温至250℃,切换至10%的合成气(H2/CO=1.0)开始碳化过程,维持碳化空速为6000h-1,碳化压力0.5MPa,碳化温度250℃,碳化时间24h,碳化过程结束后降温至200℃开始用纯合成气(H2/CO=1.0)背压至反应压力开始反应,根据催化剂反应性能进一步改变反应温度,设置反应条件如下:反应温度240℃,反应空速2000h-1,反应压力1.0MPa,原料气H2/CO=1.0,具体反应结果如表1所示。
表1实施例催化剂反应结果
Figure BDA0002444222880000141
Figure BDA0002444222880000151
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种用于合成气一步法直接合成醇醛类含氧产物的催化剂,其特征在于,包括复合氧化物和氢甲酰化固相催化剂,质量比为1:5~5:1;所述复合氧化物为CoM1复合氧化物或CoM1M2复合氧化物,M1选自Mg、Ca、Cu、Zn、Al、Zr、Mn、La和Ce中的一种或多种,M2选自Li、Na、K、Rb和Cs中的一种或多种;氢甲酰化固相催化剂包括活性组分的氧化物和载体,所述活性组分选自Rh、Pd、Ru和Co中的一种或多种,所述载体选自氧化铝、氧化硅、氧化锆、氧化锰、活性炭,所述活性组分为所述载体质量的0.5 %~10 %;Co与M1的摩尔比为1:10~10:1;M2占复合氧化物的质量百分比为0%~5%。
2.如权利要求1所述的催化剂,其特征在于,所述复合氧化物采用共沉淀法、溶胶凝胶法、络合法和浸渍法中的至少一种制备方法获得。
3.如权利要求1所述的催化剂,其特征在于,所述氢甲酰化固相催化剂采用共沉淀法、溶胶凝胶法和浸渍法中的至少一种制备方法获得。
4.如权利要求1至3任一项所述的催化剂用于合成气一步法直接合成醇醛类含氧产物。
5.如权利要求4所述的用途,其特征在于,还包括如下技术特征中的至少一项:
1)所述催化剂在单一反应器中用于合成气一步法直接合成醇醛类含氧产物时,采用单床层混合型催化剂状态模式,将所述复合氧化物和所述氢甲酰化固相催化剂通过物理混合方式混合;
2)所述催化剂在单一反应器中用于合成气一步法直接合成醇醛类含氧产物时,采用双床层催化剂状态模式,将所述复合氧化物装填于反应器恒温区上部,所述氢甲酰化固相催化剂装填于反应器恒温区下部;
3)所述催化剂在串联双反应器中用于合成气一步法直接合成醇醛类含氧产物时,所述串联双反应器依次包括第一反应器和第二反应器,将所述复合氧化物置于所述第一反应器的恒温区,所述氢甲酰化固相催化剂置于所述第二反应器的恒温区。
6.如权利要求5所述的用途,其特征在于,特征1)中,所述复合氧化物和所述氢甲酰化固相催化剂物理混合后压片过筛至40-60目颗粒。
7.如权利要求5所述的用途,其特征在于,特征1)中,所述复合氧化物和所述氢甲酰化固相催化剂分别压片过筛至40-60目颗粒后再物理混合。
8.如权利要求5所述的用途,其特征在于,特征1)中,所述反应器为固定床反应器或浆态床反应器。
9.如权利要求5所述的用途,其特征在于,特征1)中,在用于合成气一步法直接合成醇醛类含氧产物之前,将所述催化剂进行还原和碳化。
10.如权利要求5所述的用途,其特征在于,还包括如下技术特征中的至少一项:
21)特征2)中,将所述复合氧化物压片过筛至40-60目颗粒后装填于反应器恒温区上部,所述氢甲酰化固相催化剂压片过筛至40-60目颗粒后装填于反应器恒温区下部;
22)特征2)中,所述反应器为固定床反应器或浆态床反应器;
23)特征2)中,在用于合成气一步法直接合成醇醛类含氧产物之前,将所述催化剂进行还原和碳化;
31)特征3)中,所述复合氧化物压片过筛至40-60目颗粒置于所述第一反应器的恒温区,所述氢甲酰化固相催化剂压片过筛至40-60目颗粒置于所述第二反应器的恒温区;
32)特征3)中,所述第一反应器和所述第二反应器为固定床反应器或浆态床反应器;
33)特征3)中,在用于合成气一步法直接合成醇醛类含氧产物之前,将所述复合氧化物进行还原和碳化,将所述氢甲酰化固相催化剂进行还原和碳化。
CN202010274283.4A 2020-04-09 2020-04-09 一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及应用 Active CN111420674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010274283.4A CN111420674B (zh) 2020-04-09 2020-04-09 一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010274283.4A CN111420674B (zh) 2020-04-09 2020-04-09 一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及应用

Publications (2)

Publication Number Publication Date
CN111420674A CN111420674A (zh) 2020-07-17
CN111420674B true CN111420674B (zh) 2023-03-21

Family

ID=71557899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010274283.4A Active CN111420674B (zh) 2020-04-09 2020-04-09 一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及应用

Country Status (1)

Country Link
CN (1) CN111420674B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114522734A (zh) * 2020-11-23 2022-05-24 中国科学院大连化学物理研究所 一种催化剂及其制备和在合成气制混合醇醛中的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB768848A (en) * 1954-09-15 1957-02-20 On Carbide And Carbon Corp Synthesis of organic oxygen-containing compounds
EP0107430A2 (en) * 1982-10-21 1984-05-02 Texaco Development Corporation Method for the preparation of alcohols and aldehydes by reacting olefins with carbon monoxide and hydrogen
US5409877A (en) * 1991-08-22 1995-04-25 Director-General Of Agency Of Industrial Science And Technology Catalyst for producing aldehyde and alcohol from olefin, carbon monoxide and hydrogen
WO1997001521A1 (en) * 1995-06-29 1997-01-16 Sasol Technology (Propietary) Limited Process for producing oxygenated products
CN1333201A (zh) * 2000-07-14 2002-01-30 奥克森诺奥勒芬化学股份有限公司 羰基合成醛和/或醇的多级制备方法
CN104772150A (zh) * 2014-01-15 2015-07-15 中国科学院上海高等研究院 用于合成气一步法制混合醇、醛的钴基催化剂及其制法和应用
CN105251505A (zh) * 2014-05-27 2016-01-20 中国科学院上海高等研究院 用于合成气制c2+含氧化合物并联产烯烃的钴基催化剂及制法和应用
CN106268852A (zh) * 2016-07-14 2017-01-04 中国科学院上海高等研究院 一种用于合成气一步法联产混合醇和α‑烯烃的催化剂及其制备方法与应用
CN107744810A (zh) * 2017-11-06 2018-03-02 江南大学 一种由合成气制高级醇的催化剂及其工艺流程
CN109847741A (zh) * 2017-11-30 2019-06-07 中国科学院大连化学物理研究所 一种单原子铑催化剂及其制备和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756411B2 (en) * 1995-06-29 2004-06-29 Sasol Technology (Proprietary) Limited Process for producing oxygenated products

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB768848A (en) * 1954-09-15 1957-02-20 On Carbide And Carbon Corp Synthesis of organic oxygen-containing compounds
EP0107430A2 (en) * 1982-10-21 1984-05-02 Texaco Development Corporation Method for the preparation of alcohols and aldehydes by reacting olefins with carbon monoxide and hydrogen
US5409877A (en) * 1991-08-22 1995-04-25 Director-General Of Agency Of Industrial Science And Technology Catalyst for producing aldehyde and alcohol from olefin, carbon monoxide and hydrogen
WO1997001521A1 (en) * 1995-06-29 1997-01-16 Sasol Technology (Propietary) Limited Process for producing oxygenated products
CN1333201A (zh) * 2000-07-14 2002-01-30 奥克森诺奥勒芬化学股份有限公司 羰基合成醛和/或醇的多级制备方法
CN104772150A (zh) * 2014-01-15 2015-07-15 中国科学院上海高等研究院 用于合成气一步法制混合醇、醛的钴基催化剂及其制法和应用
CN105251505A (zh) * 2014-05-27 2016-01-20 中国科学院上海高等研究院 用于合成气制c2+含氧化合物并联产烯烃的钴基催化剂及制法和应用
CN106268852A (zh) * 2016-07-14 2017-01-04 中国科学院上海高等研究院 一种用于合成气一步法联产混合醇和α‑烯烃的催化剂及其制备方法与应用
CN107744810A (zh) * 2017-11-06 2018-03-02 江南大学 一种由合成气制高级醇的催化剂及其工艺流程
CN109847741A (zh) * 2017-11-30 2019-06-07 中国科学院大连化学物理研究所 一种单原子铑催化剂及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst;Tiejun Lin et al.;《Angewandte Chemie》;20190228;第58卷;摘要、Supporting Information:Catalyst preparation、第4627页左栏第1段、Catalytic reaction、第4628页左栏最后一段 *

Also Published As

Publication number Publication date
CN111420674A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
KR101085038B1 (ko) 합성가스로부터 메탄올 합성용 촉매 및 이의 제조방법
CA1153753A (en) Methanation catalyst and process for its preparation
WO2022247717A1 (zh) 一种乙醇催化转化合成高级醇的方法
CN106607043A (zh) 铁基催化剂及其制备方法和应用
CN111420674B (zh) 一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及应用
EP0553115B1 (en) Iron-zinc based catalysts and conversion of synthesis gas to alpha-olefins using the catalysts
CN105435779B (zh) 一氧化碳气相合成草酸酯催化剂
CN114029063B (zh) 一种二氧化碳加氢制备甲醇的催化剂及其制备方法
CN105435801A (zh) 负载型铁催化剂及其制备方法和应用
US5070058A (en) Method for making a catalyst composition used in the production of lower aliphatic alcohols
KR101468377B1 (ko) 합성가스로부터 함산소탄소화합물 제조를 위한 규칙적인 메조다공성 탄소계 촉매 및 이를 이용한 함산소탄소화합물의 제조방법
CN109304219B (zh) 合成气制低碳烯烃的催化剂
CN106607048A (zh) 固定床生产低碳烯烃的方法
CN111111760A (zh) 二氧化碳加氢制取低碳烯烃的催化剂及其用途
KR102438144B1 (ko) 알칼리 토금속 기반 수성 가스 전환 반응용 촉매 및 이의 제조방법
CN114433059A (zh) Co2加氢合成低碳烯烃化合物的催化剂及制备和应用
US4639431A (en) Catalysts in Fischer-Tropsch process for producing olefins
CN109092291B (zh) 合成气制低碳烯烃催化剂
CN112430472A (zh) 一种co2加氢直接制备低碳醇联产汽油的方法
CN111111763A (zh) 二氧化碳加氢直接制低碳烯烃的催化剂及其用途方法
US5185378A (en) Iron-zinc catalysts for the conversion of synthesis gas to alpha-olefins
CN110639495B (zh) 用于合成气合成低碳烯烃的催化剂及合成低碳烯烃中的应用
CN111068640B (zh) 合成气制低碳烯烃催化剂及在合成气制低碳烯烃中的应用
CN109092290B (zh) Co和h2直接制低碳烯烃的反应方法
KR101527161B1 (ko) 합성가스로부터 함산소탄소화합물 제조를 위한 결정 형태의 촉매 활성 금속이 담지 된 촉매 및 이를 이용한 함산소탄소화합물의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant